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Abstract
Let X be a smooth projective variety of dimension 𝑛 ≥ 2 and 𝐺 � Z𝑛−1 a free abelian group of automorphisms
of X over Q. Suppose that G is of positive entropy. We construct a canonical height function ℎ̂𝐺 associated with
G, corresponding to a nef and big R-divisor, satisfying the Northcott property. By characterizing the zero locus of
ℎ̂𝐺 , we prove the Kawaguchi–Silverman conjecture for each element of G. As for other applications, we determine
the height counting function for non-periodic points and show that X satisfies potential density.

Contents

1 Introduction 1
2 Preliminaries 4

2.1 Weak numerical equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Stable and augmented base loci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Weil height and canonical height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Dynamical degrees and arithmetic degrees . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Construction of distinguished automorphisms and divisors 9
3.1 Commuting families of linear maps preserving cones . . . . . . . . . . . . . . . . . . 9
3.2 Automorphisms and divisors associated with abelian groups of maximal dynamical rank 12

4 Canonical heights for abelian group actions 18
4.1 Proofs of Theorem 1.1 and Corollaries 1.3 and 1.5 . . . . . . . . . . . . . . . . . . . . 22

1. Introduction

Given a surjective holomorphic self-map f of a compact Kähler manifold M of dimension n, the
topological entropy ℎtop ( 𝑓 ) of f is a key dynamical invariant to measure the divergence of the orbits.
A fundamental result due to Gromov [Gro03] and Yomdin [Yom87] establishes its equivalence to the
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2 F. Hu and G. Zhong

algebraic entropy ℎalg( 𝑓 ), defined as the logarithm of the spectral radius of the linear pullback operation
𝑓 ∗ acting on the cohomology group

⊕𝑛
𝑘=0 𝐻

𝑘,𝑘 (𝑀,C):

ℎalg( 𝑓 ) � log max
0≤𝑘≤𝑛

𝜌( 𝑓 ∗ |𝐻 𝑘,𝑘 (𝑀,C) ).

For each k, the quantity 𝜌( 𝑓 ∗ |𝐻 𝑘,𝑘 (𝑀,C) ) is called the k-th dynamical degree of f and denoted by 𝜆𝑘 ( 𝑓 );
see Definition 2.12 for an equivalent definition for projective M. We say that f is of positive entropy
(resp. null entropy) if ℎalg( 𝑓 ) > 0 (resp. = 0) or, equivalently, if its first dynamical degree satisfies
𝜆1( 𝑓 ) > 1 (resp. = 1). Denote the full automorphism group of M by Aut(𝑀). A subgroup 𝐺 ≤ Aut(𝑀)

is of positive entropy if all the elements of 𝐺\{id} are of positive entropy.
In their innovative work [DS04], Dinh and Sibony proved that for any abelian subgroup𝐺 ≤ Aut(𝑀),

the subset N of G consisting of automorphisms of null entropy is a group; moreover, there exists a
free abelian subgroup P of G, of positive entropy and of rank 𝑟 ≤ 𝑛 − 1, such that 𝐺 � 𝑃 × 𝑁 .
The number r is also called the dynamical rank dr(𝐺) of the abelian group G. We say that G is
of maximal dynamical rank if dr(𝐺) = 𝑛 − 1. Subsequently, Zhang [Zha09] established a theorem
of Tits type for Aut(𝑀) and extended [DS04] to the solvable group case. Since then, algebraic dy-
namics on systems with maximal dynamical rank has been intensively studied (see, for example,
[Din12, Zha13, CWZ14, DHZ15, Zha16, Les18, Hu20, Zho22, Zho23]).

On the other hand, topological dynamics on higher rank abelian group actions has also been
investigated for decades, and various rigidity theorems hold on such systems (see, for example,
[KS94, KK01, KKRH14]). However, arithmetic dynamics on these higher rank abelian group actions
does not seem to attract as much attention. In this paper, we aim to explore the system of maximal
dynamical rank from this perspective. Specifically, we construct a canonical height associated with a
𝐺 � Z𝑛−1-action of positive entropy on an n-dimensional smooth projective variety X, extending the
works in [Sil91, Kaw08] from surfaces to higher dimensions.

Throughout the paper, unless otherwise stated, we will work over the field Q of algebraic numbers.
Below is our main result; see Theorem 4.2 for its more precise form and §2.3 for a brief review of Weil’s
height theory.

Theorem 1.1 (cf. Theorem 4.2). Let X be a smooth projective variety of dimension 𝑛 ≥ 2 over Q. Let
𝐺 � Z𝑛−1 be a free abelian group of automorphisms of X such that any nontrivial element of G has
positive entropy. Then there exist a function ℎ̂𝐺 on 𝑋 (Q) with respect to a set of generators of G and a
G-invariant Zariski closed proper subset Z of X such that

(1) ℎ̂𝐺 is a Weil height function corresponding to a nef and big R-divisor on X;
(2) ℎ̂𝐺 satisfies the Northcott property on (𝑋\𝑍) (Q);
(3) for any 𝑥 ∈ (𝑋\𝑍) (Q), one has ℎ̂𝐺 (𝑥) = 0 if and only if x is g-periodic for any 𝑔 ∈ 𝐺.

We refer to the function ℎ̂𝐺 in Theorem 1.1 as a canonical height function associated with the abelian
group G (cf. Theorem 2.10 for the one associated with a single endomorphism). Canonical height
theory was initially developed by Néron and Tate for abelian varieties in the 1960s, and it has proved
to be a crucial concept in arithmetic geometry. In his pioneering work [Sil91], Silverman constructed
canonical height functions on the so-called Wehler K3 surfaces that are defined by the smooth complete
intersection of two divisors of type (1, 1) and (2, 2) in P2 × P2. Since then, there has been an extensive
body of work on canonical height in arithmetic dynamics (see [BIJ+19, §16] and the references therein).

Before deriving into the applications of our Theorem 1.1, let us provide a brief sketch of the strategy
behind its proof.

Remark 1.2. The idea of our proof of Theorem 1.1 draws significant inspiration from the innovative
works of Dinh–Sibony [DS04] and Call–Silverman [CS93]. To be specific, we first follow the approach
in [DS04] to construct n distinguished automorphisms 𝑔𝑖 in G and n common nef R-eigendivisors 𝐷𝑖

on X. Each 𝑔∗𝑖 expands 𝐷𝑖 (up to R-linear equivalence) and shrinks 𝐷 𝑗 with 𝑗 ≠ 𝑖 (up to numerical
equivalence). We refer to Theorem 3.6 for details.
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Furthermore, as established in [CS93], for each pair (𝑔𝑖 , 𝐷𝑖) as described above, there exists a unique
nef canonical height function ℎ̂𝐷𝑖 ,𝑔𝑖 . As the sum

∑
𝑖 𝐷𝑖 forms a nef and big R-divisor, the corresponding

sum
∑

𝑖 ℎ̂𝐷𝑖 ,𝑔𝑖 of nef canonical height functions turns out to be a Weil height function (denoted by ℎ̂𝐺)
satisfying the Northcott property. See Theorem 4.2 for details.

As the first application of our canonical height, we provide a positive answer to the Kawaguchi–
Silverman conjecture under the assumption of maximal dynamical rank. In general, for an arithmetic
dynamical system (𝑋, 𝑓 ) over Q and a point 𝑥 ∈ 𝑋 (Q), we use an ample height function to measure the
arithmetic complexity of the orbit O 𝑓 (𝑥). The guiding principle is that ‘geometry governs arithmetic’
in the sense that the height growth rate along the orbit is controlled by the first dynamical degree. The
conjecture predicts that if x is sufficiently complicated (e.g., has a Zariski dense orbit), then the height
growth achieves the maximum. For precise definitions and the statement of the conjecture, we refer the
reader to §2.4; see also [DGH+22] for a higher-dimensional analog.

Corollary 1.3. Under the assumption of Theorem 1.1, for each 𝑔 ∈ 𝐺, the arithmetic degree 𝛼𝑔 (𝑥)

of g at any 𝑥 ∈ 𝑋 (Q) equals the first dynamical degree 𝜆1(𝑔) of g, whenever the forward g-orbit
O𝑔 (𝑥) � {𝑔𝑚(𝑥) : 𝑚 ∈ Z≥0} of x is Zariski dense in X.

Remark 1.4. The Kawaguchi–Silverman conjecture (i.e., Conjecture 2.14) has been successfully
proved in many cases, leveraging canonical height theory. Notable contributions include works by
[Sil91, CS93, Kaw06a, Kaw08, KS14, KS16a, Shi19, LS21], among others. Our approach to proving
Corollary 1.3 closely follows this well-established strategy. In comparison, an alternative geometric
approach to address Conjecture 2.14 involves the Equivariant Minimal Model Program, as developed by
Meng and Zhang. See their survey paper [MZ24a] and the references therein. For the reader interested in
this geometric perspective, we recommend exploring [MSS18, Mat20a, MZ22, MY22, MZ23, MZ24b].
For a comprehensive overview of the current state of Conjecture 2.14, we refer to a recent survey [Mat24].

Our second application involves an investigation of the bounded height property for periodic points,
as well as an exploration of the height counting function for non-periodic points.

Corollary 1.5 (cf. [Kaw08, Theorem D] and [KS16b, Proposition 3]). Under the assumption of Theo-
rem 1.1 and with the notation therein, the following assertions hold for any 𝑔 ∈ 𝐺\{id}.

(1) The subset below

{𝑥 ∈ (𝑋\𝑍) (Q) : 𝑥 is 𝑔-periodic}

is of bounded height (see Definition 2.9).
(2) For any ample divisor 𝐻𝑋 on X and any non-g-periodic 𝑥 ∈ (𝑋\𝑍) (Q), one has

lim
𝑇→+∞

#{𝑚 ∈ Z≥0 : ℎ𝐻𝑋 (𝑔𝑚(𝑥)) ≤ 𝑇}

log𝑇
=

1
log𝜆1(𝑔)

.

As mentioned in Remark 1.2, one of the crucial ingredients to establish Theorem 1.1 is to construct a
special nef and big R-divisor D, which is the sum of G-common nef eigendivisors (see Theorem 3.6). As
a by-product of this construction, we obtain the existence of Zariski dense G-orbits, which also implies
that our X satisfies potential density. We refer the reader to [Has03, Cam04, Wit18] and the references
therein for the information on potential density.

Corollary 1.6. Under the assumption of Theorem 1.1, there exists a rational point 𝑥 ∈ 𝑋 (Q) such
that the G-orbit O𝐺 (𝑥) � {𝑔(𝑥) : 𝑔 ∈ 𝐺} of x is Zariski dense in X. Moreover, if we assume that
𝑋 = 𝑌Q � 𝑌 ×Spec 𝐾 Spec Q for some Y defined over a number field K, then there exists a finite field
extension 𝐿/𝐾 such that 𝑌𝐿 (𝐿) is Zariski dense in 𝑌𝐿 .

For the sake of completeness, we recall a few examples satisfying the maximal dynamical rank
assumption in Theorem 1.1.
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Example 1.7 (cf. [DS04, Exemple 4.5] and [Ogu14, §5.2]). Let E be an elliptic curve over Q and 𝐸𝑛

the product variety of E. There is a natural faithful action of SL𝑛 (Z) on 𝐸𝑛. It is known that SL𝑛 (Z)
admits a free abelian subgroup G of rank 𝑛− 1 which is diagonalizable; any nontrivial element of G has
an eigenvalue with modulus greater than 1 (see, for example, [Din12, Example 1.4]). It is not hard to see
that for any 𝑔 ∈ 𝐺, the first dynamical degree 𝜆1(𝑔) of g as an automorphism of 𝐸𝑛 equals the square
of the spectral radius of g as a matrix in SL𝑛 (Z). So, 𝐺 ≤ Aut(𝐸𝑛) is of maximal dynamical rank. In
this case, as 𝐸𝑛 is an abelian variety, the nef and big R-divisor D on 𝐸𝑛 obtained from Theorem 3.6(2)
is indeed ample. Consequently, the G-invariant Zariski closed proper subset Z in Theorem 1.1 is empty.

Further, thanks to Ueno [Uen75] and Campana [Cam11], one can also construct examples of Calabi–
Yau varieties and rationally connected varieties. For instance, let E be an elliptic curve over Q such that
Aut(𝐸) is cyclic of order 4, and 𝜎 the generator of Aut(𝐸). Let 𝐺 ≤ SL𝑛 (Z) be as above. Since the
diagonal action by 𝜎 is inside the centralizer of G in Aut(𝐸𝑛), there is an induced faithful G-action on
the quotient 𝐸𝑛/〈𝜎〉. Let 𝑋𝑛,4 be a G-equivariant resolution of singularities of 𝐸𝑛/〈𝜎〉. Then it is well
known that the Kodaira dimension of 𝑋𝑛,4 satisfies

𝜅(𝑋𝑛,4) =

{
0 if 𝑛 ≥ 4,
−∞ if 𝑛 ≤ 3.

Since dynamical degrees are invariant under generically finite rational maps (see Definition 2.12),
𝐺 ≤ Aut(𝑋𝑛,4) is of maximal dynamical rank. In particular, the G-invariant Zariski closed proper subset
Z in Theorem 1.1 coincides with the exceptional locus of the equivariant resolution (cf. Lemma 3.16).
There is a parallel construction for any elliptic curve E with # Aut(𝐸) = 6. See [Ogu14, §5.2] and the
references therein for more details.

This paper is organized as follows. In Section 2, we provide a review of essential concepts and results,
including weak numerical equivalence, stable base loci, Weil’s height theory and dynamical/arithmetic
degrees. In Section 3, we proceed to construct n distinguished automorphisms 𝑔𝑖 in G and a nef and
big R-divisor as a sum of common nef eigendivisors 𝐷𝑖 , possessing favorable properties from an
arithmetic perspective (see Theorem 3.6 and Remark 3.7); then we prove Corollary 1.6 as a direct
application. Following this, in Section 4, we define a canonical height function associated with the
abelian group G of maximal dynamical rank. Finally, we present the proofs of Theorem 1.1 and
Corollaries 1.3 and 1.5.

We conclude the introduction with the following remark.
Remark 1.8 (About the generalization of Theorem 1.1). It is noteworthy that extending our main result
to normal projective varieties over Q poses no essential difficulties, using intersection theory and Weil’s
height theory on R-Cartier divisors. Furthermore, the extension of our main Theorem 1.1 to global
fields in positive characteristic is also possible using the language in [Tru20, Dan20, Hu20], along with
the result from [Hu24]. However, given that the primary focus of this paper is to present a distinctive
perspective for studying abelian group actions of maximal dynamical rank, we choose to concentrate
on smooth projective varieties over Q. This decision is made in the interest of maintaining clarity
and simplicity in our exposition. We anticipate that this alternative viewpoint may provide valuable
insights into the classification problem of abelian group actions with lower dynamical rank (see [Din12,
Problem 1.5]).

2. Preliminaries

We start with notation and terminology. Let X be a smooth projective variety of dimension n over Q. The
symbols ∼, ≈ and ≡ stand for rational equivalence, algebraic equivalence and numerical equivalence
for algebraic cycles, respectively. Abusing the notation, we also denote Z-, Q-, R-linear equivalence for
divisors by ∼, ∼Q, ∼R.

For any 0 ≤ 𝑖 ≤ 𝑛, denote by CH𝑖 (𝑋) the Chow group of algebraic cycles of codimension i on X
modulo rational equivalence. It is well known in intersection theory that CH(𝑋) �

⊕𝑛
𝑖=0 CH𝑖 (𝑋) is a
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graded commutative ring with respect to the intersection product, called the Chow ring. When working
with a coefficient field K = Q or R, we write

CH𝑖 (𝑋)K � CH𝑖 (𝑋) ⊗Z K.

In particular, when 𝑖 = 1, the Chow group CH1(𝑋) coincides with the Picard group Pic(𝑋) of X. Denote
by Pic0(𝑋) the subgroup of Pic(𝑋) consisting of all integral divisors on X algebraically equivalent to
zero (modulo linear equivalence); it has a structure of an abelian variety. The quotient group

NS(𝑋) � Pic(𝑋)/Pic0(𝑋)

is called the Néron–Severi group of X, which is a finitely generated abelian group.
Let Pic0

𝑋/Q
denote the Picard variety of X over Q, i.e., the neutral connected component of the Picard

group scheme Pic𝑋/Q of X over Q; it is also the dual abelian variety of the Albanese variety Alb(𝑋) of
X (see [Kle05, Theorem 9.5.4 and Remark 9.5.25]). Note that the group of the Q-points of the Picard
variety Pic0

𝑋/Q
is exactly Pic0(𝑋).

For any 0 ≤ 𝑖 ≤ 𝑛, denote by N𝑖 (𝑋) the finitely generated free abelian group of algebraic cycles of
codimension i on X modulo numerical equivalence (cf. [Ful98, Definition 19.1]), i.e.,

N𝑖 (𝑋) � CH𝑖 (𝑋)/≡ .

For K = Q or R, denote by N𝑖 (𝑋)K � N𝑖 (𝑋) ⊗Z K the associated finite-dimensional K-vector space. It
is also well known that when 𝑖 = 1,

N1(𝑋)K = NS(𝑋)K � NS(𝑋) ⊗Z K;

see, for example, [Kle05, Theorem 9.6.3]. The Picard number 𝜌(𝑋) of X is defined as the rank of N1 (𝑋)
or dimR N1 (𝑋)R. We henceforth endow N1 (𝑋)R with the standard Euclidean topology and fix a norm
‖ · ‖ on it.

A divisor D on X is nef if the intersection number 𝐷 · 𝐶 is nonnegative for any curve C on X. The
cone of all nef R-divisors in N1 (𝑋)R is called the nef cone Nef(𝑋) of X, which is a salient closed convex
cone of full dimension. Its interior is called the ample cone Amp(𝑋) of X. An integral divisor D on X
is big if the linear system |𝑚𝐷 | of some multiple of D induces a birational map Φ |𝑚𝐷 | from X onto its
image. An R-divisor D is big if it is a positive combination of integral big divisors. It is well known that
for any nef R-divisor D on X, it is big if and only if 𝐷𝑛 > 0.

2.1. Weak numerical equivalence

It turns out to be convenient to consider the following notion (implicitly) introduced by Dinh–Sibony
[DS04] and Zhang [Zha09].

Definition 2.1 (Weak numerical equivalence). Let X be a smooth projective variety of dimension n
over Q. An algebraic cycle Z of codimension i on X is called weakly numerically trivial and denoted by
𝑍 ≡w 0 if

𝑍 · 𝐻1 · · ·𝐻𝑛−𝑖 = 0

for all ample (and hence for all) R-divisors 𝐻1, . . . , 𝐻𝑛−𝑖 on X.

Clearly, weak numerical equivalence is coarser than numerical equivalence. An important property
of weak numerical equivalence is the following result due to Dinh and Sibony [DS04]. It essentially
comes from the Hodge–Riemann bilinear relations and is crucial for deducing the nonvanishing of
intersection numbers of divisors.
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Lemma 2.2 (cf. [DS04, Lemme 4.4]). Let 𝐷1, . . . , 𝐷 𝑗 , 𝐷
′
𝑗 be nef R-divisors on X with 1 ≤ 𝑗 ≤ 𝑛 − 1

such that 𝐷1 · · ·𝐷 𝑗−1 · 𝐷 𝑗 �w 0 and 𝐷1 · · ·𝐷 𝑗−1 · 𝐷
′
𝑗 �w 0. Let f be an automorphism of X such that

𝑓 ∗(𝐷1 · · ·𝐷 𝑗−1 · 𝐷 𝑗 ) ≡w 𝜆𝐷1 · · ·𝐷 𝑗−1 · 𝐷 𝑗 and
𝑓 ∗(𝐷1 · · ·𝐷 𝑗−1 · 𝐷

′
𝑗 ) ≡w 𝜆′𝐷1 · · ·𝐷 𝑗−1 · 𝐷

′
𝑗

with positive real numbers 𝜆 ≠ 𝜆′. Then 𝐷1 · · ·𝐷 𝑗−1 · 𝐷 𝑗 · 𝐷
′
𝑗 �w 0.

2.2. Stable and augmented base loci

In the course of our construction of a canonical height function associated with an abelian group G
of automorphisms of X, we actually first construct a nef and big R-divisor on X. In dealing with the
height functions of R-divisors, it becomes necessary to consider the so-called augmented base loci of
R-divisors.

Definition 2.3 (Augmented base loci). Let X be a smooth projective variety over Q. The stable base
locus B(𝐷) of a Q-divisor D is the Zariski closed subset of X defined by

B(𝐷) �
⋂

𝑚≥1, 𝑚𝐷 is Cartier
Bs(𝑚𝐷),

where Bs(𝑚𝐷) denotes the base locus of the linear system |𝑚𝐷 |. It is an elementary fact that there is
an 𝑀 ≥ 1 such that B(𝐷) = Bs(𝑀𝐷).

The augmented base locus B+(𝐷) of an R-divisor D is the Zariski closed subset of X defined by

B+(𝐷) �
⋂
𝐴

B(𝐷 − 𝐴),

where the intersection is taken over all ample R-divisors A such that 𝐷 − 𝐴 is a Q-divisor.

For a detailed study of augmented base loci, we direct the reader to [ELM+06] and references therein.
Here, we only state a few of them which will be utilized in the proofs of Theorem 1.1 and its corollaries.

Proposition 2.4 (cf. [ELM+06, Propositions 1.4 and 1.5, Example 1.7]). Let X be a smooth projective
variety over Q. Then the following assertions hold.

(1) For any R-divisor D on X, it is big if and only if B+(𝐷) ≠ 𝑋 .
(2) If 𝐷1 and 𝐷2 are numerically equivalent R-divisors on X, then B+(𝐷1) = B+(𝐷2).
(3) For any R-divisor D on X, there is a positive number 𝜀 such that for any ample R-divisor A with

‖𝐴‖ ≤ 𝜀 and such that 𝐷 − 𝐴 is a Q-divisor, B+(𝐷) = B(𝐷 − 𝐴).

Lesieutre and Satriano [LS21] observed that for two nef R-divisors 𝐷1, 𝐷2 on X, the augmented base
locus of B+(𝑎1𝐷1 + 𝑎2𝐷2) is independent of the positive coefficients 𝑎1 and 𝑎2. By induction, we can
easily deduce the following.

Lemma 2.5 (cf. [LS21, Lemma 2.16]). Let 𝐷1, . . . , 𝐷𝑚 be nef R-divisors on X. Then for any
𝑎1, . . . , 𝑎𝑚 > 0, one has

B+(𝑎1𝐷1 + · · · + 𝑎𝑚𝐷𝑚) = B+(𝐷1 + · · · + 𝐷𝑚).

2.3. Weil height and canonical height

We refer to [HS00, Part B] for an introduction to Weil’s height theory. Among others, we collect some
important facts from there.
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Theorem 2.6 (cf. [HS00, Theorems B.3.2, B.3.6, and B.5.9] and [Kaw06b, Theorem 1.1.1]). Let X be
a smooth projective variety over Q. Then there exists a unique homomorphism

ℎ𝑋 : Pic(𝑋)R → {functions 𝑋 (Q) → R}
/
{bounded functions 𝑋 (Q) → R}

satisfying the following properties.

(i) (Normalization) Let D be a very ample divisor on X and 𝜙𝐷 : 𝑋 ↩→ P𝑁 the associated embedding.
Then we have

ℎ𝑋,𝐷 = ℎ ◦ 𝜙𝐷 +𝑂 (1),

where h is the absolute logarithmic height on P𝑁 (see [HS00, Definition, Page 176]).
(ii) (Functoriality) Let 𝜋 : 𝑋 → 𝑌 be a morphism of smooth projective varieties and 𝐷𝑌 ∈ Pic(𝑌 )R.

Then we have

ℎ𝑋,𝜋∗𝐷𝑌 = ℎ𝑌 ,𝐷𝑌 ◦ 𝜋 +𝑂 (1).

(iii) (Additivity) Let 𝐷1, 𝐷2 be R-divisors on X. Then we have

ℎ𝑋,𝐷1+𝐷2 = ℎ𝑋,𝐷1 + ℎ𝑋,𝐷2 +𝑂 (1).

(iv) (Positivity) Let D be an effective integral divisor on X. Then ℎ𝑋,𝐷 ≥ 𝑂 (1) outside the base locus
Bs(𝐷) of D.

(v) (Algebraic equivalence) Let 𝐻𝑋 , 𝐷 ∈ Pic(𝑋)R be R-divisors with 𝐻𝑋 ample and D algebraically
equivalent to zero. Then there is a constant 𝐶 > 0 such that

ℎ𝑋,𝐷 ≤ 𝐶
√
ℎ+𝑋,𝐻𝑋

,

where ℎ+𝑋,𝐻𝑋
� max(1, ℎ𝑋,𝐻𝑋 ).

Remark 2.7. (1) It is worth mentioning that the terms 𝑂 (1) only depend on varieties, divisors and
morphisms but are independent of rational points of varieties. This is why we omit the points 𝑥 ∈ 𝑋 (Q)

in various height equations. See [HS00, Remarks B.3.2.1(ii)].
(2) When the ambient variety X is clear, we often use ℎ𝐷 to stand for ℎ𝑋,𝐷 for simplicity.

The following finiteness property, originally established by Northcott for integral ample divisors,
becomes a fundamental tool in Weil’s height theory (see [HS00, Theorem B.3.2(g)] and [Kaw06b,
Theorem 1.1.2]). Lesieutre and Satriano proved a version for big R-divisors (see [LS21, Lemma 2.26]).
For the reader’s convenience, we restate it here.

Theorem 2.8 (Northcott finiteness property). Let X be a smooth projective variety over a number field
K and D a big R-divisor on X. Then for any 𝑑 ∈ Z>0 and 𝑇 ∈ R, the set{

𝑥 ∈ (𝑋\B+(𝐷)) (Q) : [𝐾 (𝑥) : 𝐾] ≤ 𝑑, ℎ𝐷 (𝑥) ≤ 𝑇
}

is finite, where B+(𝐷) denotes the augmented base locus of D. In particular, if D is an ample R-divisor,
then B+(𝐷) = ∅, and this is the usual Northcott finiteness property.

Definition 2.9 (Bounded height). Fix an ample divisor 𝐻𝑋 on a smooth projective variety X over Q. A
subset 𝑆 ⊆ 𝑋 (Q) is called a set of bounded height if there is a constant C such that ℎ𝐻𝑋 (𝑠) ≤ 𝐶 for all
𝑠 ∈ 𝑆. This property is independent of the choice of the ample divisor 𝐻𝑋 .

The Northcott finiteness property Theorem 2.8 implies that if X is a smooth projective variety over
a number field K and 𝑆 ⊆ 𝑋 (Q) is a set of bounded height, then {𝑠 ∈ 𝑆 : [𝐾 (𝑠) : 𝐾] ≤ 𝑑} is finite for
any positive integer d.
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In what follows, we recall a classical result on the canonical height associated with a single endo-
morphism due to Call and Silverman [CS93, Theorem 1.1], though in the book [HS00] the authors still
attributed it to Néron and Tate.

Theorem 2.10 (cf. [HS00, Theorem B.4.1]). Let 𝑓 : 𝑋 → 𝑋 be an endomorphism of a smooth projective
variety X over Q. Let D be an R-divisor on X such that 𝑓 ∗𝐷 ∼R 𝛼𝐷 for some 𝛼 > 1. Then there is a
unique function ℎ̂𝐷, 𝑓 : 𝑋 (Q) → R, called the canonical height on X with respect to f and D, satisfying
the following properties:

(1) ℎ̂𝐷, 𝑓 = ℎ𝐷 +𝑂 (1);
(2) ℎ̂𝐷, 𝑓 ◦ 𝑓 = 𝛼 ℎ̂𝐷, 𝑓 .

Moreover, the function ℎ̂𝐷, 𝑓 is constructed by the limit

ℎ̂𝐷, 𝑓 (𝑥) � lim
𝑚→∞

ℎ𝐷 ( 𝑓 𝑚(𝑥))

𝛼𝑚
.

Remark 2.11. In the above Theorem 2.10, if we replace R-linear equivalence with algebraic or numerical
equivalence – often more practical to verify – Kawaguchi and Silverman introduced a ‘canonical height’
in a similar manner. Specifically, they showed that given 𝑓 ∗𝐷 ′ ≡ 𝛽𝐷 ′ for some R-divisor 𝐷 ′ and some
𝛽 >

√
𝜆1( 𝑓 ), the limit

ℎ̂𝐷′, 𝑓 (𝑥) � lim
𝑚→∞

ℎ𝐷′ ( 𝑓 𝑚(𝑥))

𝛽𝑚

exists and satisfies the following properties:

(1) ℎ̂𝐷′, 𝑓 = ℎ𝐷′ +𝑂
(√

ℎ+𝐻
)
;

(2) ℎ̂𝐷′, 𝑓 ◦ 𝑓 = 𝛽 ℎ̂𝐷′, 𝑓 .

See [KS16b, Theorem 5]. Its proof relies on their height estimate [KS16b, Theorem 24]. Yet, the correct
proof of this height estimate is due to Matsuzawa (see [Mat20b, Theorem 1.4]). Further, we remark
that if one needs to control the term 𝑂 (

√
ℎ+𝐻 ), this height estimate is inevitable (see, for example,

Lemmas 3.13 and 4.1).

2.4. Dynamical degrees and arithmetic degrees

In this subsection, we let 𝑓 : 𝑋 → 𝑋 be a surjective endomorphism of a smooth projective variety X
of dimension n over Q and 𝐻𝑋 an ample divisor on X. We recall the definitions of dynamical degrees
and arithmetic degrees of this algebraic dynamical system (𝑋, 𝑓 ), as well as the Kawaguchi–Silverman
conjecture which reveals the relationship between these two dynamical invariants.

Definition 2.12 (Dynamical degrees). For each 0 ≤ 𝑘 ≤ 𝑛, the k-th dynamical degree of f is defined by

𝜆𝑘 ( 𝑓 ) � lim
𝑚→∞

(( 𝑓 𝑚)∗𝐻𝑘
𝑋 · 𝐻𝑛−𝑘

𝑋 )1/𝑚 ∈ R≥1.

It is well known that this definition is equivalent to the one given in the introduction. Dynamical degrees
are invariant under generically finite rational maps and independent of the choice of the ample 𝐻𝑋 .
They also satisfy the log-concavity property as follows:

𝜆𝑘 ( 𝑓 )
2 ≥ 𝜆𝑘−1( 𝑓 )𝜆𝑘+1( 𝑓 ) for 1 ≤ 𝑘 ≤ 𝑛 − 1.
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We refer to [DS05, Tru20, Dan20, HT21] for more detailed discussions on dynamical degrees. The
algebraic entropy of f is defined by

ℎalg( 𝑓 ) � log max
0≤𝑘≤𝑛

𝜆𝑘 ( 𝑓 ).

Definition 2.13 (Arithmetic degrees). Let ℎ𝐻𝑋 be an absolute logarithmic Weil height function associ-
ated with 𝐻𝑋 . Set ℎ+𝐻𝑋 = max(1, ℎ𝐻𝑋 ). For each 𝑥 ∈ 𝑋 (Q), we define the arithmetic degree of f at x by

𝛼 𝑓 (𝑥) � lim
𝑚→∞

ℎ+𝐻𝑋 ( 𝑓
𝑚(𝑥))1/𝑚 ∈ R≥1.

It is known that the limit always exists and is also independent of the choice of the ample divisor 𝐻𝑋

(see [KS16a, Theorem 3] and [KS16b, Proposition 12], respectively).

The following conjecture due to Kawaguchi and Silverman asserts the properties of arithmetic
degrees. Throughout this paper, we shall only consider this conjecture for automorphisms. We refer to
[KS16b, Conjecture 6] for a general version of dominant rational self-maps.

Conjecture 2.14 (cf. [KS16b, Conjecture 6]). Let 𝑓 : 𝑋 → 𝑋 be a surjective endomorphism of a smooth
projective variety X over Q. Then for any point 𝑥 ∈ 𝑋 (Q), if the forward f-orbit O 𝑓 (𝑥) � { 𝑓 𝑚(𝑥) :
𝑚 ∈ Z≥0} of x is Zariski dense in X, then

𝛼 𝑓 (𝑥) = 𝜆1( 𝑓 ).

3. Construction of distinguished automorphisms and divisors

This section is devoted to the construction of n distinguished automorphisms in the rank 𝑛 − 1 free
abelian subgroup 𝐺 ≤ Aut(𝑋) of positive entropy and n common nef R-divisors whose sum is a big
R-divisor (see Theorem 3.6). Hinging on them, we shall define a canonical height function in Section 4.
As a by-product, we prove Corollary 1.6 at the end of this section.

3.1. Commuting families of linear maps preserving cones

Throughout this subsection, V is a finite-dimensional topological R-vector space, and C is a salient
closed convex cone in V of full dimension (i.e., 𝐶 ∩ (−𝐶) = {0} and C spans V, respectively). We
recall a few facts on them from linear algebra which are crucial to the construction in the next §3.2. The
following is Garrett Birkhoff’s generalization of the classical Perron–Frobenius theorem.

Theorem 3.1 (cf. [Bir67]). Let 𝜑 ∈ End(𝑉) be an R-linear endomorphism of V such that C is 𝜑-invariant
(i.e., 𝜑(𝐶) ⊆ 𝐶). Then the spectral radius 𝜌(𝜑) is an eigenvalue of 𝜑, and there is an eigenvector 𝑣𝜑 ∈ 𝐶
of 𝜑 associated with 𝜌(𝜑).

It is well known that a commuting family F ⊆ M𝑛 (C) of complex matrices possesses a nonzero
common eigenvector 𝑣 ∈ C𝑛. Below is its analog when F is a family of real matrices preserving a
salient closed convex cone of full dimension. It is essentially due to Dinh and Sibony (see [DS04,
Proposition 4.1]).

Proposition 3.2. Let F ⊆ End(𝑉) be a commuting family of R-linear endomorphisms of V such that
C is F-invariant (i.e., 𝜓(𝐶) ⊆ 𝐶 for any 𝜓 ∈ F). Then for any 𝜑 ∈ F , there exists a nonzero vector
𝑣𝜑 ∈ 𝐶 such that

(1) for any 𝜓 ∈ F , 𝜓(𝑣𝜑) ∈ R≥0 · 𝑣𝜑 (i.e., 𝑣𝜑 is a common eigenvector for all 𝜓 ∈ F associated with
some nonnegative eigenvalues); and moreover,

(2) 𝜑(𝑣𝜑) = 𝜌(𝜑)𝑣𝜑 .
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Proof. Let 𝜑 ∈ F be fixed. By Birkhoff’s Theorem 3.1, the spectral radius 𝜌(𝜑) of 𝜑 is an eigenvalue
of 𝜑, and the corresponding eigenvector can be chosen to lie in C. In particular,

𝐶𝜑 � {𝑣 ∈ 𝐶 : 𝜑(𝑣) = 𝜌(𝜑)𝑣}

is a nonzero salient closed convex cone in V. It is easy to see that 𝐶𝜑 is F-invariant. Indeed, for any
𝜓 ∈ F and any 𝑣 ∈ 𝐶𝜑 ⊆ 𝐶, by assumption that C is F-invariant, we have 𝜓(𝑣) ∈ 𝐶. Then it follows
from the commutativity of F that

𝜑(𝜓(𝑣)) = 𝜓(𝜑(𝑣)) = 𝜓(𝜌(𝜑)𝑣) = 𝜌(𝜑)𝜓(𝑣).

Hence 𝜓(𝑣) ∈ 𝐶𝜑 by the definition of 𝐶𝜑 .
Denote by 𝑉𝜑 the R-vector subspace of V spanned by 𝐶𝜑 . Clearly, 𝑉𝜑 is nonzero, contained in the

eigenspace of 𝜑 associated with the eigenvalue 𝜌(𝜑), and F-invariant, since so is 𝐶𝜑 . It suffices to show
that there exists a common eigenvector 𝑣𝜑 ∈ 𝐶𝜑 for any 𝜓 ∈ F . In other words, let 𝜓 be arbitrary in F
and denote

𝐶𝜓 � {𝑣 ∈ 𝐶𝜑 : 𝜓(𝑣) = 𝜒𝜓𝑣, 𝜒𝜓 ∈ R≥0},

which is a nonzero salient closed (possibly nonconvex) cone in 𝑉𝜑 . Then it remains to show that⋂
𝜓∈F

𝐶𝜓 ≠ {0}, (3.1)

or equivalently, in the quotient space P+(𝑉𝜑) � (𝑉𝜑\{0})/R>0 (think of R>0 as the multiplicative
subgroup of R∗ � R\{0}), ⋂

𝜓∈F
P+(𝐶𝜓) ≠ ∅, (3.2)

where each P+(𝐶𝜓) denotes the image of 𝐶𝜓\{0} under the natural quotient map

𝜋 : 𝑉𝜑\{0} → P+(𝑉𝜑).

Note that P+(𝑉𝜑) endowed with the quotient topology is homeomorphic with the (dim𝑉𝜑 − 1)-sphere
and hence compact. Moreover, P+(𝐶𝜓) is closed in P+(𝑉𝜑) since so is 𝐶𝜓\{0} in 𝑉𝜑\{0}. We are thus
reduced to show Equation (3.2) or Equation (3.1) for any finite F ′ ⊆ F .

Suppose now that F ′ = {𝜓0, 𝜓1, . . . , 𝜓𝑚} is any fixed finite subset of F . By adding the fixed
endomorphism 𝜑 to F ′, if necessary, we may assume that 𝜓0 = 𝜑. Let𝑉0 � 𝑉𝜑 and 𝐶0 � 𝐶𝜑 . We shall
inductively construct pairs (𝑉𝑘 , 𝐶𝑘 ), 0 ≤ 𝑘 ≤ 𝑚, satisfying the following properties:

(i) 𝑉0 ⊇ 𝑉1 ⊇ · · · ⊇ 𝑉𝑚 ≠ {0} is a decreasing sequence of nonzero F-invariant R-vector subspaces
of V;

(ii) 𝐶0 ⊇ 𝐶1 ⊇ · · · ⊇ 𝐶𝑚 ≠ {0} is a decreasing sequence of nonzero F-invariant salient closed convex
cones in V;

(iii) for each 0 ≤ 𝑘 ≤ 𝑚, 𝐶𝑘 spans 𝑉𝑘 and

𝐶𝑘 ⊆

𝑘⋂
𝑖=0

𝐶𝜓𝑖 .

As an immediate consequence of this construction, one gets
⋂𝑚

𝑖=0 𝐶𝜓𝑖 ≠ {0} since it contains the nonzero
cone 𝐶𝑚, which completes the proof of Proposition 3.2.
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By the definition of 𝐶𝜑 , one has 𝐶𝜑 = 𝐶𝜑 = 𝐶𝜓0 . The assertion for (𝑉0, 𝐶0) is hence true. By
the inductive hypothesis, suppose that we have constructed pairs (𝑉𝑖 , 𝐶𝑖) for all 0 ≤ 𝑖 ≤ 𝑘 − 1 with
1 ≤ 𝑘 ≤ 𝑚. We then construct (𝑉𝑘 , 𝐶𝑘 ) satisfying all properties i to iii. Note that 𝑉𝑘−1 and the spanning
cone 𝐶𝑘−1 are both F-invariant and hence 𝜓𝑘 -invariant. It follows from Theorem 3.1, applied to the
triplet (𝑉𝑘−1, 𝜓𝑘 |𝑉𝑘−1 , 𝐶𝑘−1), that

𝐶𝑘 � {𝑣 ∈ 𝐶𝑘−1 : 𝜓𝑘 (𝑣) = 𝜌(𝜓𝑘 |𝑉𝑘−1 )𝑣}

is a nonzero salient closed convex cone in 𝑉𝑘−1. Again by the commutativity of F and the F-invariance
of 𝐶𝑘−1, we see that 𝐶𝑘 is F-invariant. Let 𝑉𝑘 denote the R-vector subspace of 𝑉𝑘−1 spanned by 𝐶𝑘 .
Then 𝑉𝑘 is also F-invariant. Moreover, as 𝐶𝑘 ⊆ 𝐶𝑘−1 ∩ 𝐶𝜓𝑘 by construction, the property iii for 𝐶𝑘

follows by inductive hypothesis. �

Remark 3.3. Note that in the above Proposition 3.2, if we replaceF ⊆ End(𝑉) with an abelian subgroup
G of the R-linear automorphism group GL(𝑉) of V, then for any 𝜑 ∈ G, there is a common eigenvector
𝑣𝜑 ∈ 𝐶 such that for any 𝜓 ∈ G, 𝜓(𝑣𝜑) ∈ R>0 · 𝑣𝜑 and 𝜑(𝑣𝜑) = 𝜌(𝜑)𝑣𝜑 . It gives rise to a multiplicative
group character 𝜒𝜑 : G → (R>0,×) defined by 𝜓(𝑣𝜑) = 𝜒𝜑 (𝜓)𝑣𝜑 for any 𝜓 ∈ G; the character 𝜒𝜑 also
satisfies that 𝜒𝜑 (𝜑) = 𝜌(𝜑).

A priori, it is still unknown that for different 𝜑 and 𝜑′, the above characters 𝜒𝜑 and 𝜒𝜑′ are distinct,
neither the uniqueness of 𝜒𝜑 for each 𝜑. Nonetheless, the following lemma shows that there are at most
dimR 𝑉 distinct characters of G constructed via common eigenvectors in C.

Lemma 3.4. Let G be an abelian subgroup of GL(𝑉) such that C is G-invariant. As in Remark 3.3,
let {𝜒1, . . . , 𝜒𝑚} denote the set of all distinct multiplicative group characters of G, where each 𝜒𝑖 is
associated with some (mutually noncolinear) common eigenvectors 𝑣𝑖 ∈ 𝐶; that is, for any 𝜓 ∈ G and
any 1 ≤ 𝑖 ≤ 𝑚,

𝜓(𝑣𝑖) = 𝜒𝑖 (𝜓)𝑣𝑖 .

Then the above 𝑣1, . . . , 𝑣𝑚 are linearly independent; in particular, 𝑚 ≤ dimR 𝑉 holds. Moreover, for
any 𝜑 ∈ G, there exists some 1 ≤ 𝑖 ≤ 𝑚 such that 𝜒𝑖 (𝜑) = 𝜌(𝜑), i.e., 𝜑(𝑣𝑖) = 𝜌(𝜑)𝑣𝑖 .

Proof. We prove the first half by induction. Suppose by inductive hypothesis that 𝑣1, . . . , 𝑣𝑘 are linearly
independent for 1 ≤ 𝑘 ≤ 𝑚 − 1. Suppose that we have

𝑘+1∑
𝑖=1

𝑎𝑖𝑣𝑖 = 0 (3.3)

for some 𝑎𝑖 ∈ R. Fix an arbitrary index j with 1 ≤ 𝑗 ≤ 𝑘 . Since 𝜒𝑘+1 ≠ 𝜒 𝑗 , there is some 𝜓◦ ∈ G such
that 𝜒𝑘+1(𝜓◦) ≠ 𝜒 𝑗 (𝜓◦). Note that for any 1 ≤ 𝑖 ≤ 𝑘 + 1, one has 𝜓◦(𝑣𝑖) = 𝜒𝑖 (𝜓◦)𝑣𝑖 by definition.
Hence, applying the above 𝜓◦ to Equation (3.3) yields that

𝑘+1∑
𝑖=1

𝑎𝑖𝜒𝑖 (𝜓◦)𝑣𝑖 = 0. (3.4)

Using the above two Equations (3.3) and (3.4) to cancel the coefficient of 𝑣𝑘+1, we obtain that

𝑘∑
𝑖=1

𝑎𝑖 (𝜒𝑘+1(𝜓◦) − 𝜒𝑖 (𝜓◦))𝑣𝑖 = 0.

Since 𝑣1, . . . , 𝑣𝑘 are linearly independent, 𝑎𝑖 (𝜒𝑘+1(𝜓◦) − 𝜒𝑖 (𝜓◦)) = 0 for all 1 ≤ 𝑖 ≤ 𝑘 . In particular,
𝑎 𝑗 (𝜒𝑘+1(𝜓◦) − 𝜒 𝑗 (𝜓◦)) = 0, and hence, 𝑎 𝑗 = 0. We thus prove the linear independence of 𝑣1, . . . , 𝑣𝑚
by induction.
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For the second half, suppose to the contrary that there exists some 𝜑◦ ∈ G such that 𝜒𝑖 (𝜑◦) ≠ 𝜌(𝜑◦)

for all 1 ≤ 𝑖 ≤ 𝑚. Then by Proposition 3.2, there is a group character 𝜒𝜑◦
of G associated with some

common eigenvector 𝑣𝜑◦
∈ 𝐶 such that 𝜒𝜑◦

(𝜑◦) = 𝜌(𝜑◦), i.e., 𝜑◦(𝑣𝜑◦
) = 𝜌(𝜑◦)𝑣𝜑◦

. Clearly, this new
character 𝜒𝜑◦

is different from any other 𝜒𝑖 , a contradiction. �

At the end of this subsection, we provide an auxiliary module-theoretic result that will be used in
the proof of Lemma 3.13 to strengthen eigenequations of R-divisors modulo numerical equivalence to
equations modulo R-linear equivalence.

Lemma 3.5. Let 𝑅 ⊆ 𝑆 be integral domains, M an (unnecessarily finitely generated) R-module and
𝜑 : 𝑀 → 𝑀 an R-linear map such that 𝑃(𝜑) = 0 for some polynomial 𝑃(𝑡) ∈ 𝑅[𝑡]. Denote the field of
fractions of S by K. Let 𝑀𝐾 � 𝑀 ⊗𝑅 𝐾 be the vector space over K and 𝜑𝐾 � 𝜑 ⊗𝑅 id𝐾 the induced
K-linear map on 𝑀𝐾 . Let 𝑠 ∈ 𝑆 such that 𝑃(𝑠) ≠ 0 in S. Then 𝜑𝐾 − 𝑠 id𝑀𝐾 is an isomorphism of 𝑀𝐾 .

Proof. We first prove that 𝜑𝐾 − 𝑠 id𝑀𝐾 is injective. Let 𝑣 ∈ 𝑀𝐾 such that (𝜑𝐾 − 𝑠 id𝑀𝐾 ) (𝑣) = 0, i.e.,
𝜑𝐾 (𝑣) = 𝑠𝑣. It is easy to verify that 𝑃(𝜑𝐾 ) = (𝑃(𝜑))𝐾 = 0. Then we have

0 = 𝑃(𝜑𝐾 ) (𝑣) = 𝑃(𝑠)𝑣.

As 𝑃(𝑠) ≠ 0 is invertible in K, it follows that 𝑣 = 0.
We next show that 𝜑𝐾 − 𝑠 id𝑀𝐾 is also surjective. Denote the degree of the polynomial 𝑃(𝑡) by n.

Let 𝑤 ∈ 𝑀𝐾 be arbitrary. As 𝑃(𝜑𝐾 ) (𝑤) = 0, there exist 𝑐0, . . . , 𝑐𝑛−1 ∈ 𝐾 (or rather, in the field of
fractions of R), such that

𝜑𝑛
𝐾 (𝑤) = 𝑐𝑛−1𝜑

𝑛−1
𝐾 (𝑤) + · · · + 𝑐1𝜑𝐾 (𝑤) + 𝑐0𝑤.

In other words, the vector space 𝐵𝑤 generated by {𝑤, 𝜑𝐾 (𝑤), 𝜑2
𝐾 (𝑤), . . . } over K is a finite-dimensional

𝜑𝐾 -invariant subspace of 𝑀𝐾 . It follows that the restriction map (𝜑𝐾 − 𝑠 id𝑀𝐾 ) |𝐵𝑤 of 𝜑𝐾 − 𝑠 id𝑀𝐾 on
𝐵𝑤 is also injective. As 𝐵𝑤 is of finite dimension, (𝜑𝐾 − 𝑠 id𝑀𝐾 ) |𝐵𝑤 is surjective. Since 𝑤 ∈ 𝑀𝐾 is
arbitrary, we see that 𝜑𝐾 − 𝑠 id𝑀𝐾 itself is surjective. �

3.2. Automorphisms and divisors associated with abelian groups of maximal dynamical rank

Below is the main result of this section. Given an abelian subgroup Z𝑛−1 � 𝐺 ≤ Aut(𝑋) of positive
entropy, we construct n distinguished automorphisms in G and a nef and big R-divisor associated
with G. This construction forms a crucial ingredient for defining a canonical height in Section 4 (see
Theorem 4.2).

Theorem 3.6. Let X be a smooth projective variety of dimension 𝑛 ≥ 2 defined over Q and 𝐺 � Z𝑛−1 a
free abelian group of automorphisms of X of positive entropy. Then the following assertions hold.

(1) The set {
𝜒 : 𝐺 → (R>0,×)

���� 𝜒 is a group homomorphism and there is a nef R-divisor
𝐷 � 0 such that 𝑔∗𝐷 ≡ 𝜒(𝑔)𝐷 for any 𝑔 ∈ 𝐺

}
has n elements 𝜒𝑖 with 1 ≤ 𝑖 ≤ 𝑛, where each 𝜒𝑖 is associated with some common nef eigendivisor
𝐷𝑖 (i.e., 𝑔∗𝐷𝑖 ≡ 𝜒𝑖 (𝑔)𝐷𝑖 for any 𝑔 ∈ 𝐺).

(2) 𝐷1 · · ·𝐷𝑛 ∈ R>0; in particular, 𝐷 �
∑𝑛

𝑖=1 𝐷𝑖 is a nef and big R-divisor on X.
(3) For any 𝑔 ∈ 𝐺, there is some 1 ≤ 𝑖 ≤ 𝑛 such that 𝜒𝑖 (𝑔) = 𝜆1(𝑔).
(4) There exist n automorphisms 𝑔1, . . . , 𝑔𝑛 ∈ 𝐺 such that for any 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑛, we have 𝜒 𝑗 (𝑔𝑖) < 1,

and moreover,

𝑔∗𝑖 𝐷𝑖 ∼R 𝜒𝑖 (𝑔𝑖)𝐷𝑖 = 𝜆1(𝑔𝑖)𝐷𝑖 .

https://doi.org/10.1017/fms.2024.158 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.158


Forum of Mathematics, Sigma 13

Remark 3.7. The construction of the common nef eigendivisors 𝐷𝑖 is essentially attributed to Dinh
and Sibony, who initially constructed 𝑛− 1 of them and then separately constructed the last one (see the
last paragraph of the proof of [DS04, Théorème 4.4]). This separateness is a crucial aspect, preventing
a direct use of their construction to define a canonical height in an appropriate way. Upon revisiting
[DS04] and examining each character 𝜒𝑖 : 𝐺 → (R>0,×), we demonstrate that there exist n distinguished
automorphisms 𝑔1, . . . , 𝑔𝑛 in the rank 𝑛 − 1 abelian group G such that 𝜒𝑖 (𝑔𝑖) = 𝜆1(𝑔𝑖) and 𝜒 𝑗 (𝑔𝑖) < 1
for all 𝑗 ≠ 𝑖. Consequently, all n nef eigendivisors 𝐷𝑖 share the same status as in Theorem 3.6. It is worth
mentioning that the automorphisms 𝑔1, . . . , 𝑔𝑛 we constructed may not necessarily be the generators of
G. Instead, any 𝑛 − 1 of them generate a finite index subgroup of G (see Remark 3.15).

Before proving the above Theorem 3.6 at the end of this subsection, we prepare all necessary
ingredients. Recall that N1(𝑋)R is the real Néron–Severi space of R-divisors on X modulo numerical
equivalence ≡; its real dimension dimR N1 (𝑋)R is called the Picard number of X, denoted by 𝜌(𝑋).
The nef cone Nef(𝑋), consisting of the classes of all nef R-divisors on X, is a salient closed convex
cone in N1 (𝑋)R of full dimension. The pullback action of automorphisms on N1(𝑋)R induces a natural
representation of Aut(𝑋):

Aut(𝑋) → GL(N1 (𝑋)R), 𝑔 ↦→ 𝑔∗ |N1 (𝑋 )R .

Note that any automorphism preserves the nef cone Nef(𝑋) ⊆ N1(𝑋)R. For any subgroup G of Aut(𝑋),
denote by 𝐺 |N1 (𝑋 )R ≤ GL(N1 (𝑋)R) the image of the above representation.

First of all, as a straightforward application of the previous discussion in §3.1 to the triplet
(N1 (𝑋)R, 𝐺 |N1 (𝑋 )R ,Nef(𝑋)), we get some nonzero common nef eigendivisors 𝐷𝑖 that naturally de-
fine multiplicative group characters 𝜒𝑖 of 𝐺 |N1 (𝑋 )R . Composing them with the group homomorphism
𝐺 → 𝐺 |N1 (𝑋 )R yields group characters of G itself, still denoted by 𝜒𝑖 . In summary, we obtain the
following.

Proposition 3.8. Let X be a smooth projective variety of dimension 𝑛 ≥ 2 defined over Q and G
an abelian subgroup of Aut(𝑋). Let m be the number of all distinct multiplicative group characters
𝜒𝑖 : 𝐺 → (R>0,×) (1 ≤ 𝑖 ≤ 𝑚), where 𝜒𝑖 is associated with some common nef eigendivisor 𝐷𝑖 (i.e.,
𝑔∗𝐷𝑖 ≡ 𝜒𝑖 (𝑔)𝐷𝑖 for any 𝑔 ∈ 𝐺). Then 1 ≤ 𝑚 ≤ 𝜌(𝑋) holds. Further, for any 𝑔 ∈ 𝐺, there is some
1 ≤ 𝑖 ≤ 𝑚 such that 𝜒𝑖 (𝑔) = 𝜌(𝑔∗ |N1 (𝑋 )R ) = 𝜆1(𝑔).

Proof. It follows readily from Proposition 3.2, Remark 3.3 and Lemma 3.4. �

By the above Proposition 3.8, following [DS04], we define a group homomorphism

𝜋 : 𝐺 → (R𝑚, +)

𝑔 ↦→ (log 𝜒1(𝑔), . . . , log 𝜒𝑚(𝑔)).

Lemma 3.9 (cf. [DS04, Corollaire 2.2]). Let X be a smooth projective variety of dimension 𝑛 ≥ 2
defined over Q. Then the set of the first dynamical degrees of surjective endomorphisms of X is discrete
in [1, +∞).

Proof. It suffices to show that for any 𝑀 > 1, the following set

𝑆𝑀 � {𝜆1( 𝑓 ) : 𝑓 a surjective endomorphism of𝑋 with 𝜆1( 𝑓 ) ≤ 𝑀}

is finite. We note that the first dynamical degree 𝜆1( 𝑓 ) of a surjective endomorphism 𝑓 : 𝑋 → 𝑋
is the spectral radius of 𝑓 ∗ |N1 (𝑋 )R , which is induced from 𝑓 ∗ |N1 (𝑋 ) . Since N1 (𝑋) is a free abelian
group of rank 𝜌 � 𝜌(𝑋), all the eigenvalues of 𝑓 ∗ |N1 (𝑋 )R are algebraic integers. That is, every 𝜆1( 𝑓 )
is the maximal modulus of the roots of a monic polynomial of degree 𝜌 with integer coefficients. Let
𝑃(𝑡) = 𝑡𝜌+𝑐1𝑡

𝜌−1+· · ·+𝑐𝜌 ∈ Z[𝑡] be such a polynomial that the maximal modulus of all roots𝛼1, . . . , 𝛼𝜌,
counting with multiplicities, is no more than M. It is well known that each 𝑐𝑖 = (−1)𝑖𝑠𝑖 (𝛼1, . . . , 𝛼𝜌),
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where 𝑠𝑖 is the i-th elementary symmetric polynomial. Since the |𝛼𝑖 | are bounded and 𝜌 is fixed, the |𝑐𝑖 |
are also bounded. In particular, #𝑆𝑀 is finite. We finish the proof of the lemma. �

From now on, we consider abelian groups G of automorphisms of positive entropy. Recall that a
lattice Γ in an R-vector space V is a (possibly non-cocompact) discrete free subgroup. It is called
complete if its rank equals the dimension of V.

Proposition 3.10 (cf. [DS04, Proposition 4.2]). Let 𝐺 ≤ Aut(𝑋) be an abelian group of automorphisms
of positive entropy. Then 𝜋 is injective, and its image 𝜋(𝐺) is discrete in R𝑚. In particular, G is free
abelian, and 𝜋(𝐺) is a lattice in R𝑚 of rank 𝑟 ≤ 𝑚.

Proof. For any 𝑔 ∈ 𝐺\{id}, it follows from Proposition 3.8 that one of the coordinates of 𝜋(𝑔) coincides
with log𝜆1(𝑔) which is positive; hence, 𝜋 is injective. As 𝜋 is a group homomorphism, to show that the
image 𝜋(𝐺) is discrete, it is sufficient to show that 𝜋(id) = 0 is an isolated point in the image 𝜋(𝐺).
Applying Lemma 3.9, we see for each 𝑔 ∈ 𝐺\{id} that log𝜆1(𝑔) has a uniform lower bound (which is
independent of g) and hence {0} is an isolated point in 𝜋(𝐺). Note that the image 𝜋(𝐺) is an additive
subgroup which is also discrete in R𝑚. Hence, 𝜋(𝐺) is a lattice in R𝑚. Because 𝜋 is injective, G is free
abelian of rank 𝑟 ≤ 𝑚. �

The lemma below provides a more accurate range of the number m of all distinct multiplicative group
characters 𝜒𝑖 of G (cf. Proposition 3.8).

Lemma 3.11. Let 𝐺 ≤ Aut(𝑋) be a free abelian group of rank r of positive entropy. Let 𝜒1, . . . , 𝜒𝑚
and 𝐷1, . . . , 𝐷𝑚 be in Proposition 3.8. Then we have

𝐷1 · · ·𝐷𝑚 �w 0 and 𝑟 + 1 ≤ 𝑚 ≤ min(𝑛, 𝜌(𝑋)).

Proof. We first prove that 𝐷𝑖1 · · ·𝐷𝑖𝑘 �w 0 for any multi-index 1 ≤ 𝑖1 < · · · < 𝑖𝑘 ≤ min(𝑚, 𝑛) by
induction. By the higher-dimensional Hodge index theorem (see, for example, [Zha16, Lemma 3.2]),
we have 𝐷𝑖 �w 0 for each 1 ≤ 𝑖 ≤ 𝑚. Suppose that the intersection product of any 𝑗 ≤ 𝑘 − 1
different divisors choosing from 𝐷1, . . . , 𝐷𝑚 is not weakly numerically trivial. Fix a multi-index
1 ≤ 𝑖1 < · · · < 𝑖 𝑗 < 𝑖 𝑗+1 ≤ min(𝑚, 𝑛). By inductive hypothesis, we have

𝐷𝑖1 · · ·𝐷𝑖 𝑗−1 · 𝐷𝑖 𝑗 �w 0 and 𝐷𝑖1 · · ·𝐷𝑖 𝑗−1 · 𝐷𝑖 𝑗+1 �w 0.

Since the 𝜒𝑖 are distinct, one has 𝜒𝑖 𝑗 ≠ 𝜒𝑖 𝑗+1 , i.e., there is some 𝑔◦ ∈ 𝐺 such that 𝜒𝑖 𝑗 (𝑔◦) ≠ 𝜒𝑖 𝑗+1 (𝑔◦). It
follows from G-invariance of the 𝐷𝑖 that

𝑔∗◦(𝐷𝑖1 · · ·𝐷𝑖 𝑗−1 · 𝐷𝑖 𝑗 ) ≡w 𝜒𝑖1 (𝑔◦) · · · 𝜒𝑖 𝑗−1 (𝑔◦) 𝜒𝑖 𝑗 (𝑔◦)(𝐷𝑖1 · · ·𝐷𝑖 𝑗−1 · 𝐷𝑖 𝑗 ) and
𝑔∗◦(𝐷𝑖1 · · ·𝐷𝑖 𝑗−1 · 𝐷𝑖 𝑗+1 ) ≡w 𝜒𝑖1 (𝑔◦) · · · 𝜒𝑖 𝑗−1 (𝑔◦) 𝜒𝑖 𝑗+1 (𝑔◦)(𝐷𝑖1 · · ·𝐷𝑖 𝑗−1 · 𝐷𝑖 𝑗+1 ).

Noting that 𝑗 ≤ 𝑘 − 1 ≤ 𝑛 − 1 by assumption, one has 𝐷𝑖1 · · ·𝐷𝑖 𝑗 · 𝐷𝑖 𝑗+1 �w 0, thanks to Lemma 2.2.
In other words, we have proved by induction that the product of any 𝑘 ≤ min(𝑚, 𝑛) different divisors
from 𝐷1, . . . , 𝐷𝑚 is not weakly numerically trivial.

By Proposition 3.10 and Lemma 3.4, we already know that 𝑟 ≤ 𝑚 ≤ 𝜌(𝑋). Suppose to the
contrary that there are 𝑚 ≥ 𝑛 + 1 distinct group characters 𝜒1, . . . , 𝜒𝑛+1, . . . , 𝜒𝑚 of G associated with
some common nef eigendivisors 𝐷1, . . . , 𝐷𝑚. By what we just proved, one has 𝐷1 · · ·𝐷𝑛 > 0 and
𝐷2 · · ·𝐷𝑛+1 > 0. Then by the projection formula, we have for any 𝑔 ∈ 𝐺,

0 ≠ 𝐷1 · · ·𝐷𝑛 = deg(𝑔) (𝐷1 · · ·𝐷𝑛) = 𝑔∗𝐷1 · · · 𝑔
∗𝐷𝑛 = 𝜒1(𝑔) · · · 𝜒𝑛 (𝑔) (𝐷1 · · ·𝐷𝑛),

and hence, 𝜒1(𝑔) · · · 𝜒𝑛 (𝑔) = 1. Similarly, we also have 𝜒2(𝑔) · · · 𝜒𝑛+1(𝑔) = 1, so that 𝜒1(𝑔) = 𝜒𝑛+1(𝑔),
a contradiction. So we get 𝑚 ≤ 𝑛, and hence, 𝐷1 · · ·𝐷𝑚 �w 0, as desired.

It remains to show that 𝑚 ≥ 𝑟 + 1. Suppose to the contrary that 𝑚 = 𝑟 . Then 𝜋(𝐺) is a complete
lattice in R𝑚 (see Proposition 3.10). Namely, 𝜋(𝐺) spans R𝑚. Therefore, there is some 𝑔� ∈ 𝐺\{id}
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such that all m coordinates of 𝜋(𝑔�) are negative (i.e., 𝜒𝑖 (𝑔�) < 1 for all 1 ≤ 𝑖 ≤ 𝑚). On the other hand,
Proposition 3.8 asserts that for such 𝑔�, there is some 1 ≤ 𝑖� ≤ 𝑚 such that 𝜒𝑖� (𝑔�) = 𝜆1(𝑔�) > 1, since
𝑔� is of positive entropy. This is a contradiction. �

Remark 3.12. Note that all these common nef eigendivisors 𝐷𝑖 in Proposition 3.8 are constructed
numerically. Namely, they only satisfy eigenequations modulo numerical equivalence. Though it is
enough to define nef canonical height functions in the sense of [KS16b, Theorem 5(a)], the difference
may not be bounded (see [KS16b, Theorem 5(b)]). In dimension two, Kawaguchi [Kaw08, Lemma 3.8]
managed to improve them to eigenequations modulo R-linear equivalence so that the difference is indeed
bounded. Such an eigenequation modulo linear equivalence also appears in [Zha06, Proposition 1.1.3],
[NZ10, Lemma 2.3] and [MMS+22, Theorem 6.4(1)].

Below is a higher-dimensional analog of [Kaw08, Lemma 3.8], which will be used in the proof of
Theorem 3.6(4) shortly.

Lemma 3.13. Let X be a smooth projective variety of dimension n over Q and f a surjective endomor-
phism of X of positive entropy (i.e., 𝜆1( 𝑓 ) > 1). Then the following assertions hold:

(1) there is a nef R-divisor 𝐷 𝑓 on X such that 𝑓 ∗𝐷 𝑓 ≡ 𝜆1( 𝑓 )𝐷 𝑓 ; further,
(2) for any 𝐷 𝑓 in the assertion (1), there is a unique nef R-divisor 𝐷 ′

𝑓 on X, up to R-linear equivalence,
such that 𝐷 ′

𝑓 ≡ 𝐷 𝑓 and 𝑓 ∗𝐷 ′
𝑓 ∼R 𝜆1( 𝑓 )𝐷

′
𝑓 .

Proof. It is well known that the assertion (1) follows from Birkhoff’s Theorem 3.1. Fix such a nef R-
divisor 𝐷 𝑓 ∈ Nef(𝑋) such that 𝑓 ∗𝐷 𝑓 ≡ 𝜆1( 𝑓 )𝐷 𝑓 . Let Pic0 (𝑋) denote the subgroup of the Picard group
Pic(𝑋) consisting of integral divisors on X algebraically equivalent to zero (modulo linear equivalence),
which has the structure of an abelian variety. Consider the exact sequence of R-vector spaces:

0 → Pic0(𝑋)R → Pic(𝑋)R → NS(𝑋)R � N1 (𝑋)R → 0.

If the irregularity 𝑞(𝑋) � ℎ1 (𝑋,𝒪𝑋 ) = 0, then N1 (𝑋)R � Pic(𝑋)R, and hence, the assertion (2) follows.
So let us consider the case 𝑞(𝑋) > 0. Note that 𝑓 ∗𝐷 𝑓 − 𝜆1( 𝑓 )𝐷 𝑓 ∈ Pic0(𝑋)R.

Claim 3.14. The R-linear map

𝑓 ∗ ⊗Z 1R − 𝜆1( 𝑓 ) id : Pic0(𝑋)R → Pic0(𝑋)R

on the (possibly infinite-dimensional) R-vector space Pic0(𝑋)R is bijective.

Assuming Claim 3.14 for the time being, up to R-linear equivalence, there is a unique R-divisor
𝐸 ∈ Pic0 (𝑋)R such that 𝑓 ∗𝐸 − 𝜆1( 𝑓 )𝐸 ∼R 𝑓 ∗𝐷 𝑓 − 𝜆1( 𝑓 )𝐷 𝑓 , which yields that 𝑓 ∗(𝐷 𝑓 − 𝐸) ∼R
𝜆1( 𝑓 ) (𝐷 𝑓 − 𝐸). Hence, 𝐷 ′

𝑓 � 𝐷 𝑓 − 𝐸 suffices to conclude the assertion (2). �

Proof of Claim 3.14. Let Pic0
𝑋/Q

denote the Picard variety of X. The pullback 𝑓 ∗ of divisors on X

induces an isogeny g of Pic0
𝑋/Q

. Denote by 𝑃𝑔 (𝑡) ∈ Z[𝑡] the characteristic polynomial of g, which has
degree 2𝑞(𝑋) and satisfies that

𝑃𝑔 (𝑡) = det(𝑡 id−𝑔∗

�

𝐻1(Pic0
𝑋/Q

,Q))

= det(𝑡 id− 𝑓∗

�

𝐻2𝑛−1(𝑋,Q))

= det(𝑡 id− 𝑓 ∗

�

𝐻1 (𝑋,Q)),

where 𝐻2𝑛−1 (𝑋,Q) is canonically isomorphic to 𝐻1 (Pic0
𝑋/Q

,Q) via the Poincaré divisor on 𝑋 ×Pic0
𝑋/Q

and the last equality follows from Poincaré duality. Thanks to [Din05, Proposition 5.8], all roots of 𝑃𝑔 (𝑡)

have moduli at most
√
𝜆1( 𝑓 ). In particular, 𝑃𝑔 (𝜆1( 𝑓 )) ≠ 0 since 𝜆1( 𝑓 ) > 1 by assumption. Besides,
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since the rational representation End(Pic0
𝑋/Q

) → EndQ(𝐻
1(Pic0

𝑋/Q
,Q)) is an injective homomorphism,

𝑃𝑔 (𝑔) = 0 as an endomorphism of Pic0
𝑋/Q

. It follows that 𝑃𝑔 ( 𝑓
∗) = 0 as a group homomorphism of

Pic0 (𝑋) = Pic0
𝑋/Q

(Q). Now by applying Lemma 3.5 to the Z-module Pic0(𝑋), Claim 3.14 follows. �

Now we are ready to prove Theorem 3.6.

Proof of Theorem 3.6. Assertions 1 to 3 follow readily from Proposition 3.8, Lemma 3.11 and the
assumption that rank𝐺 = 𝑛 − 1. We are left to construct n automorphisms 𝑔1, . . . , 𝑔𝑛 ∈ 𝐺 satisfying
Assertion (4).

Let 1 ≤ 𝑖 ≤ 𝑛 be fixed. Let 𝑝𝑖 denote the natural projection from R𝑛 to R𝑛−1 by omitting the i-th
coordinate 𝑥𝑖 . Recall that the group homomorphism 𝜋 : 𝐺 → (R𝑛, +), defined by sending 𝑔 ∈ 𝐺 to
(log 𝜒1(𝑔), . . . , log 𝜒𝑛 (𝑔)), is injective and 𝜋(𝐺) is a lattice in R𝑛 of rank 𝑛 − 1 (see Proposition 3.10).
Besides, by the projection formula, we have for any 𝑔 ∈ 𝐺,

𝐷1 · · ·𝐷𝑛 = deg(𝑔) (𝐷1 · · ·𝐷𝑛) = 𝑔∗𝐷1 · · · 𝑔
∗𝐷𝑛 = 𝜒1(𝑔) · · · 𝜒𝑛 (𝑔) (𝐷1 · · ·𝐷𝑛).

Since 𝐷1 · · ·𝐷𝑛 > 0 by Assertion (2), one has 𝜒1(𝑔) · · · 𝜒𝑛 (𝑔) = 1. Hence, the image 𝜋(𝐺) of G is
actually contained in the hyperplane 𝐻 � {(𝑥1, . . . , 𝑥𝑛) ∈ R𝑛 :

∑𝑛
𝑗=1 𝑥 𝑗 = 0}.

Consider the following commutative diagram:

𝐺 � Z𝑛−1 R𝑛

𝐻 R𝑛−1.

𝜋

𝜏 𝑝𝑖

𝑝𝑖◦ 𝜄

𝜄

Clearly, 𝑝𝑖 ◦ 𝜄 : 𝐻 → R𝑛−1 is an isomorphism of R-vector spaces. By the open mapping theorem, it is
also an isomorphism of topological vector spaces. Denote 𝑝𝑖 ◦ 𝜋 by 𝜋𝑖 . Since 𝜏(𝐺) is a lattice in H
of rank 𝑛 − 1 and 𝑝𝑖 ◦ 𝜄 is a topological isomorphism, 𝜋𝑖 (𝐺) = (𝑝𝑖 ◦ 𝜄) (𝜏(𝐺)) is a lattice in R𝑛−1 of
rank 𝑛 − 1. Therefore, there is some 𝑔𝑖 ∈ 𝐺\{id} such that all 𝑛 − 1 coordinates of 𝜋𝑖 (𝑔𝑖) are negative
(i.e., 𝜒 𝑗 (𝑔𝑖) < 1 for all 𝑗 ≠ 𝑖). Further, by Proposition 3.8, for such 𝑔𝑖 , there is some 1 ≤ 𝑡𝑖 ≤ 𝑛 such
that 𝜒𝑡𝑖 (𝑔𝑖) = 𝜆1(𝑔𝑖) > 1. Clearly, 𝑡𝑖 has to be i. We thus prove that 𝑔∗𝑖 𝐷𝑖 ≡ 𝜒𝑖 (𝑔𝑖)𝐷𝑖 = 𝜆1(𝑔𝑖)𝐷𝑖 . By
Lemma 3.13(2), there is a nef R-divisor 𝐷 ′

𝑖 ≡ 𝐷𝑖 such that 𝑔∗𝑖 𝐷
′
𝑖 ∼R 𝜆1(𝑔𝑖)𝐷

′
𝑖 .

In the end, we replace 𝐷𝑖 with 𝐷 ′
𝑖 for all i. Since 𝐷 ′

𝑖 ≡ 𝐷𝑖 , this does not affect Assertions (1) and
(2). We thus complete the proof of Theorem 3.6. �

Remark 3.15. In the above Theorem 3.6, denote by M the matrix (log 𝜒𝑖 (𝑔 𝑗 ))1≤𝑖, 𝑗≤𝑛. Clearly, the rank
of M is at most 𝑛−1 since

∑𝑛
𝑖=1 log 𝜒𝑖 = 0. On the other hand, as log 𝜒𝑖 (𝑔 𝑗 ) < 0 for all 𝑖 ≠ 𝑗 , one can see

that any submatrix 𝑀𝑖 of M obtained by deleting the i-th row and the i-th column is strictly diagonally
dominant and hence nonsingular (see [HJ13, Theorem 6.1.10]). It follows that rank 𝑀 = 𝑛 − 1. Hence,
𝑔1, . . . , 𝑔𝑛 generate a free abelian subgroup of G of full rank 𝑛− 1; moreover, by the same argument, so
do any 𝑛 − 1 automorphisms from 𝑔1, . . . , 𝑔𝑛.

At the end of this section, we quote a lemma of Zhang [Zha16], who essentially proved the existence
of Zariski dense G-orbits (though he did not write it down explicitly). We will also use it later in the
proof of Theorem 1.1 (or rather, proofs of Theorem 4.2 and its corollaries). For the sake of completeness,
we present a proof. Recall that for a nef R-divisor D on X, the null locus Null(𝐷) of D is the union of
all subvarieties V of X of positive dimension such that the restriction 𝐷 |𝑉 is not big, i.e., 𝐷dim𝑉 ·𝑉 = 0.

Lemma 3.16 (cf. [Zha16, Lemma 3.9]). With the notation as in Theorem 3.6, the augmented base locus
B+(𝐷) of the nef and big R-divisor D is a G-invariant Zariski closed proper subset of X equal to⋃

𝐺-periodic 𝑉 �𝑋
𝑉, (3.5)
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where V runs over all G-periodic proper subvarieties of X of positive dimension. In particular, B+(𝐷)

is g-invariant for any 𝑔 ∈ 𝐺, and hence, for any 𝑥 ∈ (𝑋\B+(𝐷)) (Q), one has O𝑔 (𝑥) ∩ B+(𝐷) = ∅ for
any 𝑔 ∈ 𝐺.

Proof. It is well known that B+(𝐷) is a Zariski closed proper subset of X, as D is big; see Proposi-
tion 2.4(1). We shall first show that B+(𝐷) is G-invariant. Let 𝑔 ∈ 𝐺 be an arbitrary fixed automorphism
of X. Thanks to an observation by Lesieutre and Satriano (see Lemma 2.5), for any positive numbers
𝑎1, . . . , 𝑎𝑛, we have

B+(𝑎1𝐷1 + · · · + 𝑎𝑛𝐷𝑛) = B+(𝐷1 + · · · + 𝐷𝑛).

It thus follows from Proposition 2.4(2) that

𝑔(B+(𝐷)) = B+((𝑔
−1)∗(𝐷1 + · · · + 𝐷𝑛)) = B+

( 𝑛∑
𝑖=1

𝜒𝑖 (𝑔)
−1𝐷𝑖

)
= B+(𝐷).

Therefore, B+(𝐷) is g-invariant and hence G-invariant.
We then prove that B+(𝐷) equals the union (3.5). First, by G-invariance of B+(𝐷), every irreducible

component of the closed B+(𝐷) is G-periodic. It is also known that B+(𝐷) has no isolated points (see
[ELM+09, Proposition 1.1]). Hence, B+(𝐷) is contained in the union (3.5). On the other hand, thanks
to [ELM+09, Corollary 5.6], B+(𝐷) coincides with the null locus Null(𝐷) of D. It remains to show that
Null(𝐷) contains the union (3.5). Suppose that 𝑉 � 𝑋 is a G-periodic proper subvariety of dimension k
with 1 ≤ 𝑘 < 𝑛. We shall prove that 𝐷 |𝑉 is not big or, equivalently, 𝐷𝑘 ·𝑉 = 0. Since D is the sum of nef
divisors 𝐷𝑖 , it suffices to show that 𝐷𝑖1 · · ·𝐷𝑖𝑘 · 𝑉 = 0 for any multi-index 1 ≤ 𝑖1 ≤ · · · ≤ 𝑖𝑘 ≤ 𝑛. Fix
such a multi-index 1 ≤ 𝑖1 ≤ · · · ≤ 𝑖𝑘 ≤ 𝑛. Then there always exists an 𝑖◦ with 1 ≤ 𝑖◦ ≤ 𝑛 different from
all 𝑖 𝑗 with 1 ≤ 𝑗 ≤ 𝑘 . Hence, by Theorem 3.6(4) , one has 𝜒𝑖 𝑗 (𝑔𝑖◦ ) < 1 for any 1 ≤ 𝑗 ≤ 𝑘 . Suppose that
𝑔𝑒𝑖◦ (𝑉) = 𝑉 for some 𝑒 ≥ 1 (depending on 𝑔𝑖◦). Then it follows from Theorem 3.6(1) and the projection
formula that

𝐷𝑖1 · · ·𝐷𝑖𝑘 · 𝑉 = (𝑔𝑒𝑖◦ )
∗𝐷𝑖1 · · · (𝑔

𝑒
𝑖◦
)∗𝐷𝑖𝑘 · (𝑔

𝑒
𝑖◦
)∗𝑉 =

𝑘∏
𝑗=1

𝜒𝑖 𝑗 (𝑔𝑖◦ )
𝑒 (𝐷𝑖1 · · ·𝐷𝑖𝑘 · 𝑉).

This implies that 𝐷𝑖1 · · ·𝐷𝑖𝑘 · 𝑉 = 0 and hence concludes the proof of Lemma 3.16. �

We are now in the position to prove the existence of Zariski dense G-orbits.

Proof of Corollary 1.6. According to Theorem 3.6 and Lemma 3.16, the augmented base locus B+(𝐷)

of the nef and big R-divisor D is a G-invariant Zariski closed proper subset of X. Thanks to [Ame11,
Corollary 9 and the paragraph after it], there is a closed point 𝑥 ∈ 𝑋 (Q) away from B+(𝐷) such that
the G-orbit O𝐺 (𝑥) of x is infinite. Let Z be the Zariski closure of O𝐺 (𝑥) in X. Then Z is a positive-
dimensional G-invariant Zariski closed subset of X. Suppose that 𝑍 ≠ 𝑋 . Then by Lemma 3.16, Z is
contained in B+(𝐷), contradicting the choice of x. Therefore, the G-orbit O𝐺 (𝑥) of x is Zariski dense
in X. The first assertion is thus verified.

Let us prove the second assertion on the potential density of Y. By assumption, Y is defined over a
number field K, and 𝑋 = 𝑌 ×Spec 𝐾 Spec Q. By the first assertion, there is a closed point 𝑥 ∈ 𝑋 (Q) such
that its G-orbit O𝐺 (𝑥) is Zariski dense in X. On the other hand, such a closed point 𝑥 ∈ 𝑋 (Q) is in fact
defined over a number field L, which is a finite extension of the defining field K. Similarly, we denote
by 𝑌𝐿 the base extension of Y and let 𝜑 : 𝑋 → 𝑌𝐿 be the natural projection. Then 𝜑(𝑥) is an L-rational
point of𝑌𝐿 , and the 𝜑-image 𝜑(O𝐺 (𝑥)) of the G-orbit O𝐺 (𝑥) is Zariski dense in𝑌𝐿 by noting that 𝜑 is a
finite surjective morphism. It follows that the set 𝑌𝐿 (𝐿) of all L-points of 𝑌𝐿 is also Zariski dense in 𝑌𝐿 ,
as we have a natural inclusion 𝜑(O𝐺 (𝑥)) ⊆ 𝑌𝐿 (𝐿). We thus finish the proof of our Corollary 1.6. �
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4. Canonical heights for abelian group actions

Throughout this section, X is a smooth projective variety of dimension 𝑛 ≥ 2 defined over Q, and
𝐺 � Z𝑛−1 is a free abelian group of automorphisms of X of positive entropy. Thanks to Theorem 3.6,
we can choose n automorphisms 𝑔1, . . . , 𝑔𝑛 ∈ 𝐺 and n common nef R-eigendivisors 𝐷1, . . . , 𝐷𝑛 on X
such that

(1) for any 1 ≤ 𝑖 ≤ 𝑛 and any 𝑔 ∈ 𝐺, one has 𝑔∗𝐷𝑖 ≡ 𝜒𝑖 (𝑔)𝐷𝑖 , which defines the group characters 𝜒𝑖
of G;

(2) 𝐷 � 𝐷1 + · · · + 𝐷𝑛 is a nef and big R-divisor on X;
(3) for any 𝑔 ∈ 𝐺, there is some 1 ≤ 𝑖 ≤ 𝑛 such that 𝜒𝑖 (𝑔) = 𝜆1(𝑔);
(4) for any 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑛, one has 𝜒 𝑗 (𝑔𝑖) < 1 and 𝑔∗𝑖 𝐷𝑖 ∼R 𝜆1(𝑔𝑖)𝐷𝑖 .

We shall stick to the above notations throughout and construct a height function ℎ̂𝐺 associated with
G as the sum of the following individual canonical heights.

Lemma 4.1. For any 1 ≤ 𝑖 ≤ 𝑛 and any 𝑥 ∈ 𝑋 (Q), the limit

ℎ̂𝐷𝑖 ,𝑔𝑖 (𝑥) � lim
𝑚→∞

ℎ𝐷𝑖 (𝑔
𝑚
𝑖 (𝑥))

𝜆1(𝑔𝑖)𝑚

exists and satisfies the following properties:

(1) ℎ̂𝐷𝑖 ,𝑔𝑖 = ℎ𝐷𝑖 +𝑂 (1).
(2) ℎ̂𝐷𝑖 ,𝑔𝑖 ◦ 𝑔 = 𝜒𝑖 (𝑔) ℎ̂𝐷𝑖 ,𝑔𝑖 for any 𝑔 ∈ 𝐺; in particular, ℎ̂𝐷𝑖 ,𝑔𝑖 ◦ 𝑔𝑖 = 𝜆1(𝑔𝑖) ℎ̂𝐷𝑖 ,𝑔𝑖 .

Proof. Note that 𝑔∗𝑖 𝐷𝑖 ∼R 𝜆1(𝑔𝑖)𝐷𝑖 by Theorem 3.6(4). Hence, the existence of each ℎ̂𝐷𝑖 ,𝑔𝑖 and the
property (1) follow immediately from Theorem 2.10. For the property (2), fix an integer i with 1 ≤ 𝑖 ≤ 𝑛,
an automorphism 𝑔 ∈ 𝐺 of positive entropy, an ample divisor 𝐻𝑋 on X, and a height function ℎ𝐻𝑋
associated with 𝐻𝑋 . Then thanks to Matsuzawa [Mat20b, Theorem 1.7(2)], there is a constant 𝐶1 > 0
such that for any rational point 𝑥 ∈ 𝑋 (Q) and any 𝑚 ≥ 1,

ℎ+𝐻𝑋 (𝑔
𝑚
𝑖 (𝑥)) ≤ 𝐶1𝑚

𝜌(𝑋 )−1𝜆1(𝑔𝑖)
𝑚ℎ+𝐻𝑋 (𝑥). (4.1)

Observe that by Theorem 3.6(1), we have 𝑔∗𝐷𝑖 ≡ 𝜒𝑖 (𝑔)𝐷𝑖 . Then according to Theorem 2.6ii (Functo-
riality) and v (Algebraic equivalence), there is a constant 𝐶2 > 0 such that

|ℎ𝑔∗𝐷𝑖 − ℎ𝐷𝑖 ◦ 𝑔 | ≤ 𝐶2,

|ℎ𝑔∗𝐷𝑖 − 𝜒𝑖 (𝑔) ℎ𝐷𝑖 | ≤ 𝐶2

√
ℎ+𝐻𝑋 .

Combining them together yields that

|ℎ𝐷𝑖 ◦ 𝑔 − 𝜒𝑖 (𝑔) ℎ𝐷𝑖 | ≤ 2𝐶2

√
ℎ+𝐻𝑋 .

In particular, for any 𝑚 ≥ 1, one has

|ℎ𝐷𝑖 (𝑔(𝑔
𝑚
𝑖 (𝑥))) − 𝜒𝑖 (𝑔) ℎ𝐷𝑖 (𝑔

𝑚
𝑖 (𝑥)) | ≤ 2𝐶2

√
ℎ+𝐻𝑋 (𝑔

𝑚
𝑖 (𝑥)). (4.2)

As G is abelian, it follows from Equations (4.1) and (4.2) that

���� ℎ𝐷𝑖 (𝑔𝑚𝑖 (𝑔(𝑥)))

𝜆1(𝑔𝑖)𝑚
−

𝜒𝑖 (𝑔)ℎ𝐷𝑖 (𝑔
𝑚
𝑖 (𝑥))

𝜆1(𝑔𝑖)𝑚

���� ≤ 2𝐶2
√
ℎ+𝐻𝑋 (𝑔

𝑚
𝑖 (𝑥))

𝜆1(𝑔𝑖)𝑚
≤ 𝐶3

√
𝑚𝜌(𝑋 )−1

𝜆1(𝑔𝑖)𝑚
,
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where 𝐶3 > 0 is a constant independent of 𝑚 ≥ 1. Note that both limits of the left-hand side exist (see
Theorem 2.10). So taking 𝑚 → ∞ yields that ℎ̂𝐷𝑖 ,𝑔𝑖 (𝑔(𝑥)) = 𝜒𝑖 (𝑔) ℎ̂𝐷𝑖 ,𝑔𝑖 (𝑥). �

The theorem below is a precise version of our main result Theorem 1.1. Indeed, one just takes the
Zariski closed proper subset Z to be the augmented base locus B+(𝐷) of the nef and big R-divisor D
constructed in Theorem 3.6(2). It extends [Sil91, Theorem 1.1] and [Kaw08, Theorem 5.2] to higher
dimensions (under the maximal dynamical rank assumption).

Theorem 4.2. Let X be a smooth projective variety of dimension 𝑛 ≥ 2 defined over Q and 𝐺 � Z𝑛−1 a
free abelian group of automorphisms of X of positive entropy. Define a function ℎ̂𝐺 : 𝑋 (Q) → R by

ℎ̂𝐺 �
𝑛∑
𝑖=1

ℎ̂𝐷𝑖 ,𝑔𝑖 ,

where the ℎ̂𝐷𝑖 ,𝑔𝑖 are from Lemma 4.1. Then the following assertions hold.

(1) The function ℎ̂𝐺 is a Weil height corresponding to the nef and big R-divisor D; that is,

ℎ̂𝐺 = ℎ𝐷 +𝑂 (1).

(2) For any 𝑔 ∈ 𝐺, one has

ℎ̂𝐺 ◦ 𝑔 =
𝑛∑
𝑖=1

𝜒𝑖 (𝑔) ℎ̂𝐷𝑖 ,𝑔𝑖 .

(3) For any 1 ≤ 𝑖 ≤ 𝑛 and any 𝑥 ∈ (𝑋\B+(𝐷)) (Q), one has ℎ̂𝐷𝑖 ,𝑔𝑖 (𝑥) ≥ 0, and hence, ℎ̂𝐺 (𝑥) ≥ 0,
where B+(𝐷) is the augmented base locus of D.

(4) The Weil height function ℎ̂𝐺 satisfies the Northcott finiteness property on 𝑋\B+(𝐷); in other words,
for any positive integer d and real number T, the set{

𝑥 ∈ (𝑋\B+(𝐷)) (Q) : [𝐾 (𝑥) : 𝐾] ≤ 𝑑, ℎ̂𝐺 (𝑥) ≤ 𝑇
}

is finite, where K is a defining number field of X.
(5) For any 𝑥 ∈ (𝑋\B+(𝐷)) (Q), the following statements are equivalent.

(i) ℎ̂𝐺 (𝑥) = 0.
(ii) ℎ̂𝐷𝑖 ,𝑔𝑖 (𝑥) = 0 for all 1 ≤ 𝑖 ≤ 𝑛.

(iii) x is g-periodic for any 𝑔 ∈ 𝐺.
(iv) x is g-periodic for some 𝑔 ∈ 𝐺\{id}.
(v) ℎ̂𝐷𝑖 ,𝑔𝑖 (𝑥) = 0 for some 1 ≤ 𝑖 ≤ 𝑛.

(vi) x is G-periodic (i.e., the G-orbit O𝐺 (𝑥) � {𝑔(𝑥) : 𝑔 ∈ 𝐺} of x is finite).

We call ℎ̂𝐺 a canonical height function associated with the abelian group G of maximal dynamical
rank.

Proof. Assertion (1) follows immediately from Lemma 4.1(1) and Theorem 2.6iii (Additivity). Assertion
(2) follows from Lemma 4.1(2). Since D is a big R-divisor, the height function ℎ𝐷 satisfies the
Northcott finiteness property (see Theorem 2.8), and so does ℎ̂𝐺 by Assertion (1). We have thus proved
Assertion (4).

Next, we shall show Assertion (3). Fix an index i with 1 ≤ 𝑖 ≤ 𝑛. According to Lemma 3.16,
the augmented base locus B+(𝐷) of D is a G-invariant Zariski closed proper subset of X. Fix a point
𝑥 ∈ (𝑋\B+(𝐷)) (Q); in particular, O𝑔𝑖 (𝑥) ∩ B+(𝐷) = ∅. We notice by [LS21, Lemma 2.26] that
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ℎ𝐷 ≥ 𝑂 (1) outside B+(𝐷). On the other hand, by Assertion (1), we have

ℎ𝐷 = ℎ̂𝐺 +𝑂 (1) =
𝑛∑
𝑗=1

ℎ̂𝐷 𝑗 ,𝑔 𝑗 +𝑂 (1).

It follows that for any 𝑚 ≥ 1,

𝑂 (1) ≤
𝑛∑
𝑗=1

ℎ̂𝐷 𝑗 ,𝑔 𝑗 (𝑔
𝑚
𝑖 (𝑥)) =

𝑛∑
𝑗=1

𝜒 𝑗 (𝑔𝑖)
𝑚 ℎ̂𝐷 𝑗 ,𝑔 𝑗 (𝑥), (4.3)

where the equality is from Assertion (2). Furthermore, by Theorem 3.6(4), one has 𝜒 𝑗 (𝑔𝑖) < 1 for all
𝑗 ≠ 𝑖 and 𝜒𝑖 (𝑔𝑖) = 𝜆1(𝑔𝑖) > 1. Dividing (4.3) by 𝜒𝑖 (𝑔𝑖)

𝑚 from both sides and letting m tend to infinity,
it is easy to see that ℎ̂𝐷𝑖 ,𝑔𝑖 (𝑥) has to be nonnegative. This thus shows Assertion (3).

At last, we prove Assertion (5). Fix a rational point 𝑥 ∈ (𝑋\B+(𝐷)) (Q); in particular, O𝑔 (𝑥) ∩
B+(𝐷) = ∅ for any 𝑔 ∈ 𝐺. We shall prove the equivalence in the following order:

(𝑖) (𝑖𝑖) (𝑖𝑖𝑖) (𝑣𝑖)

(𝑣) (𝑖𝑣).

By definition, 5ii ⇒5i is trivial, while 5i ⇒ 5ii follows from Assertion (3). The implications 5vi ⇒ 5iii
⇒ 5iv are also trivial.

We first show 5iii ⇒ 5vi. Let { 𝑓1, . . . , 𝑓𝑛−1} be a generating set of G and let s be the common period
of x under the 𝑓𝑖 . It follows from the commutativity of G that any point in the G-orbit O𝐺 (𝑥) of x is of
the form 𝑓 𝑎1

1 ◦ · · · ◦ 𝑓 𝑎𝑛−1
𝑛−1 (𝑥) such that 1 − 𝑠 ≤ 𝑎𝑖 ≤ 𝑠 − 1 for each 1 ≤ 𝑖 ≤ 𝑛 − 1. In particular, the set

O𝐺 (𝑥) is finite.
We next prove 5ii ⇒ 5iii. Let 𝑔 ∈ 𝐺 be fixed. By Assertion (2), for any 𝑚 ≥ 1,

ℎ̂𝐺 (𝑔𝑚(𝑥)) =
𝑛∑
𝑖=1

𝜒𝑖 (𝑔)
𝑚 ℎ̂𝐷𝑖 ,𝑔𝑖 (𝑥) = 0.

Since these rational points 𝑔𝑚(𝑥) are of bounded degree over Q, it follows from Assertion 4 that the
forward g-orbit O𝑔 (𝑥) of x is finite, that is, x is g-periodic, noting that g is an automorphism.

We now show 5iv ⇒ 5v. Suppose that x is g-periodic for some 𝑔 ∈ 𝐺\{id}. Note that by Theo-
rem 3.6(3), there is some 1 ≤ 𝑖 ≤ 𝑛 such that 𝜒𝑖 (𝑔) = 𝜆1(𝑔). Consider the growth of the function ℎ̂𝐺
along the forward g-orbit O𝑔 (𝑥) of x, which is finite by assumption. In other words, we have

𝑂 (1) = ℎ̂𝐺 (𝑔𝑚(𝑥)) ≥ 𝜆1(𝑔)
𝑚 ℎ̂𝐷𝑖 ,𝑔𝑖 (𝑥),

where the last inequality is due to Assertion (3). As 𝜆1(𝑔) > 1, we see that ℎ̂𝐷𝑖 ,𝑔𝑖 (𝑥) has to be zero by
letting m tend to infinity.

It remains to prove 5v ⇒ 5ii. Without loss of generality, we may assume that ℎ̂𝐷1 ,𝑔1 (𝑥) = 0. Via a
similar argument in the proof of 5ii ⇒ 5iii, we claim that x is 𝑔1-periodic. Indeed, by Assertion (2) and
Theorem 3.6(4), we have for any 𝑚 ≥ 1,

ℎ̂𝐺 (𝑔𝑚1 (𝑥)) =
𝑛∑
𝑗=2

𝜒 𝑗 (𝑔1)
𝑚 ℎ̂𝐷 𝑗 (𝑥) <

𝑛∑
𝑗=2

ℎ̂𝐷 𝑗 (𝑥).
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Note that the 𝑔𝑚1 (𝑥) are of bounded degree over Q. By Assertion 4, x is 𝑔1-periodic. Denote the finite
period by 𝑒1 ∈ Z>0, i.e., 𝑔𝑒1

1 (𝑥) = 𝑥. Consider the growth of the function ℎ̂𝐺 along the orbit O𝑔
−𝑒1
1

(𝑥)

of x under the automorphism 𝑔−𝑒1
1 . Precisely, for any 𝑚 ≥ 1, we have

ℎ̂𝐺 (𝑥) = ℎ̂𝐺 (𝑔−𝑒1
1 (𝑥)) = ℎ̂𝐺 (𝑔−𝑒1𝑚

1 (𝑥)) =
𝑛∑
𝑗=2

𝜒 𝑗 (𝑔1)
−𝑒1𝑚 ℎ̂𝐷 𝑗 (𝑥),

which forces ℎ̂𝐷 𝑗 (𝑥) = 0 for all 𝑗 > 1 by noting that 𝜒 𝑗 (𝑔1) < 1. This verifies 5v ⇒ 5ii.
We thus complete the proof of Theorem 4.2. �

As a direct consequence of Theorem 4.2, we also obtain the following.

Corollary 4.3 (cf. [KS14, Proposition 7 and Proof of Theorem 2(c)]). Under the assumption of Theo-
rem 4.2, for any 𝑔 ∈ 𝐺 and any point 𝑥 ∈ (𝑋\B+(𝐷)) (Q), we have

𝛼𝑔 (𝑥) =

{
1 if 𝑥 is 𝑔-periodic,

𝜆1(𝑔) if 𝑥 is not 𝑔-periodic.

Proof. Let 𝑔 ∈ 𝐺 be fixed. First, we assume that 𝑥 ∈ (𝑋\B+(𝐷)) (Q) is a non-g-periodic point. As we
mentioned before, the limit defining 𝛼𝑔 (𝑥) exists and is independent of the choice of the ample divisor
(see [KS16a, Theorem 3] and [KS16b, Proposition 12], respectively). Choose an ample divisor 𝐻𝑋 such
that 𝐻𝑋 − 𝐷 is ample (noting that the ample cone is open). It follows from Theorem 2.6iii (Additivity)
and iv (Positivity) that for any 𝑚 ≥ 1,

ℎ𝐻𝑋 (𝑔
𝑚(𝑥)) = ℎ𝐷 (𝑔𝑚(𝑥)) + ℎ𝐻𝑋−𝐷 (𝑔𝑚(𝑥)) +𝑂 (1) ≥ ℎ𝐷 (𝑔𝑚(𝑥)) +𝑂 (1).

On the other hand, Theorem 4.2(1) asserts that

ℎ𝐷 (𝑔𝑚(𝑥)) = ℎ̂𝐺 (𝑔𝑚 (𝑥)) +𝑂 (1).

Putting them together yields that

ℎ𝐻𝑋 (𝑔
𝑚 (𝑥)) ≥ ℎ̂𝐺 (𝑔𝑚(𝑥)) +𝑂 (1) =

𝑛∑
𝑗=1

𝜒 𝑗 (𝑔)
𝑚 ℎ̂𝐷 𝑗 ,𝑔 𝑗 (𝑥) +𝑂 (1),

where the equality is from Theorem 4.2(2). Furthermore, by Theorem 3.6(3), there is some 1 ≤ 𝑖 ≤ 𝑛
such that 𝜒𝑖 (𝑔) = 𝜆1(𝑔). We thus obtain that

ℎ𝐻𝑋 (𝑔
𝑚(𝑥)) ≥ 𝜆1(𝑔)

𝑚 ℎ̂𝐷𝑖 ,𝑔𝑖 (𝑥) +𝑂 (1).

Note that the term 𝑂 (1) does not depend on x nor m. Also, according to Theorem 4.25, one has
ℎ̂𝐷𝑖 ,𝑔𝑖 (𝑥) > 0 for all 1 ≤ 𝑖 ≤ 𝑛. Now by taking m-th roots and letting 𝑚 → ∞, one easily has
𝛼𝑔 (𝑥) ≥ 𝜆1(𝑔). The reverse inequality is due to [KS16b, Theorem 4] or [Mat20b, Theorem 1.4].

Secondly, we assume that x is g-periodic. Then with the ample divisor 𝐻𝑋 chosen as above, it is clear
that (ℎ𝐻𝑋 (𝑔𝑚 (𝑥)))𝑚∈N is a finite set. Therefore,

1 ≤ 𝛼𝑔 (𝑥) = lim
𝑚→∞

(ℎ+𝐻𝑋 (𝑔
𝑚(𝑥)))1/𝑚 ≤ 1.

We finish the proof of Corollary 4.3. �
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Remark 4.4. Following [Sil91], we can also define a function

𝐻𝐺 : 𝑋 (Q) → R by 𝐻𝐺 (𝑥) =
𝑛∏
𝑖=1

ℎ̂𝐷𝑖 ,𝑔𝑖 (𝑥).

Note that by the projection formula, for any 𝑔 ∈ 𝐺, one has

0 ≠ 𝐷1 · · ·𝐷𝑛 = deg(𝑔) (𝐷1 · · ·𝐷𝑛) = 𝑔∗𝐷1 · · · 𝑔
∗𝐷𝑛 = 𝜒1(𝑔) · · · 𝜒𝑛 (𝑔) (𝐷1 · · ·𝐷𝑛);

in particular,
∏𝑛

𝑖=1 𝜒𝑖 (𝑔) = 1. It follows that

𝐻𝐺 ◦ 𝑔 =
𝑛∏
𝑖=1

ℎ̂𝐷𝑖 ,𝑔𝑖 ◦ 𝑔 =
𝑛∏
𝑖=1

𝜒𝑖 (𝑔) ℎ̂𝐷𝑖 ,𝑔𝑖 =
𝑛∏
𝑖=1

ℎ̂𝐷𝑖 ,𝑔𝑖 = 𝐻𝐺 .

In other words, the function 𝐻𝐺 is G-invariant. Let 𝑥 ∈ (𝑋\B+(𝐷)) (Q) be arbitrary. Then according to
Theorem 4.2(3), each ℎ̂𝐷𝑖 ,𝑔𝑖 (𝑥) ≥ 0. This yields that

𝑛
√
𝐻𝐺 (𝑥) ≤

ℎ̂𝐺 (𝑥)

𝑛
.

Moreover, by Theorem 4.25, 𝐻𝐺 (𝑥) = 0 if and only if x is g-periodic for any 𝑔 ∈ 𝐺.

Inspired by [Sil91, Theorem 1.3(a)], we ask the following.

Question 4.5. For any point 𝑥 ∈ (𝑋\B+(𝐷)) (Q) with infinite G-orbit, is there any lower bound of
𝐻𝐺 (𝑥) in terms of ℎ̂𝐺 (𝑥)?

Note that if the above question has an affirmative answer, then one could prove a similar result as
[Sil91, Theorem 1.2(b)] using the Northcott property for ℎ̂𝐺 (i.e., Theorem 4.24). Namely, there are
only finitely many infinite G-orbits in (𝑋\B+(𝐷)) (𝐾), where K is any number field.

4.1. Proofs of Theorem 1.1 and Corollaries 1.3 and 1.5

Proof of Theorem 1.1. By Theorem 3.6, we take Z to be the augmented base locus B+(𝐷) of D, which
is a G-invariant Zariski closed proper subset of X (see Lemma 3.16). Theorem 1.1 then follows easily
from Theorem 4.2. �

Proof of Corollary 1.3. It follows readily from Lemma 3.16 and Corollary 4.3. �

Proof of Corollary 1.5. Take Z to be the augmented base locus B+(𝐷) of D as in the proof of Theo-
rem 1.1. Fix a g-periodic point 𝑥 ∈ (𝑋\𝑍) (Q) and an ample divisor 𝐻𝑋 on X. By Theorem 4.2(1) and
(5), we have ℎ𝐷 (𝑥) = ℎ̂𝐺 (𝑥) +𝑂 (1) = 𝑂 (1). On the other hand, according to Proposition 2.4(3), there
is 𝜀 > 0 such that 𝐷 − 𝜀𝐻𝑋 is an effective Q-divisor and B+(𝐷) = B(𝐷 − 𝜀𝐻𝑋 ) = Bs(𝑀 (𝐷 − 𝜀𝐻𝑋 ))

for some 𝑀 ≥ 1. Since 𝑥 ∉ B+(𝐷), by applying Theorem 2.6iii (Additivity) and iv (Positivity) to
𝑀 (𝐷 − 𝜀𝐻𝑋 ), we obtain that ℎ𝐷−𝜀𝐻𝑋 (𝑥) ≥ 𝑂 (1). It thus follows that

𝑂 (1) = ℎ𝐷 (𝑥) = ℎ𝐷−𝜀𝐻𝑋 (𝑥) + ℎ𝜀𝐻𝑋 (𝑥) +𝑂 (1) ≥ ℎ𝜀𝐻𝑋 (𝑥) +𝑂 (1).

Therefore, ℎ𝜀𝐻𝑋 (𝑥) and ℎ𝐻𝑋 (𝑥) are both bounded. Assertion (1) is thus proved.
Assertion (2) follows easily from [KS16b, Proposition 3] and Corollary 4.3. �
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