
Ergod. Th. & Dynam. Sys., (2024), 44, 749–768 © The Author(s), 2023. Published by Cambridge
University Press.
doi:10.1017/etds.2023.34

749

Dynamics of iteration operators on self-maps
of locally compact Hausdorff spaces

CHAITANYA GOPALAKRISHNA†, MURUGAN VEERAPAZHAM‡ and
WEINIAN ZHANG§

† Statistics and Mathematics Unit, Indian Statistical Institute, R.V. College Post,
Bengaluru-560059, India

(e-mail: cberbalaje@gmail.com)
‡ Department of Mathematical and Computational Sciences,

National Institute of Technology Karnataka, Surathkal, Mangalore-575 025, India
(e-mail: murugan@nitk.edu.in)

§ School of Mathematics, Sichuan University, Chengdu, Sichuan 610064, P. R. China
(e-mail: matzwn@126.com)

(Received 15 March 2022 and accepted in revised form 26 March 2023)

Abstract. In this paper, we prove the continuity of iteration operators Jn on the space of
all continuous self-maps of a locally compact Hausdorff space X and generally discuss
dynamical behaviors of them. We characterize their fixed points and periodic points for
X = R and the unit circle S1. Then we indicate that all orbits of Jn are bounded; however,
we prove that for X = R and S1, every fixed point of Jn which is non-constant and equals
the identity on its range is not Lyapunov stable. The boundedness and the instability exhibit
the complexity of the system, but we show that the complicated behavior is not Devaney
chaotic. We give a sufficient condition to classify the systems generated by iteration
operators up to topological conjugacy.
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1. Introduction
Iteration of a map is a composition of the map and itself. More precisely, the nth order
iterate of a map f : X → X on a non-empty set X, denoted by f n, is defined inductively
by f n = f ◦ f n−1 and f 0 = id, the identity map. As known in [5, 20], iteration is one of
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the most important operations in contemporary mathematics because the dynamical system
theory is based on iteration, numerical computation needs iteration, and all computer loop
programs are iteration. Thus, iteration has attracted interests of research for a long time
(see e.g. [2, 5, 6, 9, 11, 13, 14, 20, 27]).

Consider iteration of function f in a space X of functions and let Jn denote the
correspondence

Jn : f ∈ X �→ f n, (1.1)

called the nth order iteration operator. This operator was proved to be continuous on
X := C([a, b]), the space of continuous self-maps of a compact interval, in [28], and later
on C(X) with a general compact metric space X in [23]. Furthermore, the authors [23]
considered the semi-dynamical system (C(X), Jn) generated by Jn, which is the iteration
semigroup {J k

n : k = 0, 1, . . .}, and discussed its periodic points. They computed periodic
points for X = [a, b], gave boundedness of orbits and instability of the fixed points which
are identity on their range in C([a, b]), and proved that Jn is not topologically transitive
in C(X) with a compact metric space X. They showed that Jn is not chaotic in Devaney’s
sense although boundedness with instability exhibits a complicated behavior.

In addition to the case that X is a compact interval, it is also interesting to discuss
dynamics of iteration operators for X = S1 (the unit circle in C), a compact space
without boundary, X = R without compactness, and more generally a locally compact
Hausdorff space X, which can be a space of p-adic numbers (metrizable) or a manifold (not
necessarily metrizable). So, we will generally consider X to be a locally compact Hausdorff
space (not necessarily metrizable) and let C(X) := C0(X, X) consist of all continuous
self-maps of X, which is not necessarily a metric space but a topological space in the
compact-open topology as shown in §2. We want to know what dynamical behaviors of an
iteration operator are common for a general locally compact Hausdorff space X and what
properties of an iteration operator in a specified X are not shared in another.

In this paper, we discuss dynamical behaviors of the semi-dynamical system (C(X), Jn)

for X to be a locally compact Hausdorff space. After making preliminaries on locally
compact Hausdorff spaces X in §2, we prove continuity of the iteration operator Jn on
C(X), which is the same as given in [23] for compact metric spaces X but for which we
use a different tool ‘iterated evaluation map’ in the proof, and investigate periodic points
of Jn in C(R) and C(S1) in §3. We characterize all fixed points and periodic points of the
system by discussing the Babbage equation, part of which looks similar to those of [23] but
their applicability is enhanced to a larger extent. We show that in C(S1), each Jn may have
periodic points of period k ≥ 2, whereas in C(R), each Jn only has fixed points. In §4,
we discuss the stability for Jn. First, we generally note that all orbits of Jn are bounded.
Then we prove that in C(R) and C(S1), every fixed point of Jn which is non-constant and
equals the identity on its range is not Lyapunov stable. The boundedness and the instability
exhibit the complexity of the system, but we observe that the complicated behavior is not
Devaney chaotic. In §5, we give a sufficient condition to classify the systems generated by
iteration operators up to topological conjugacy and prove that (C(X), J2) is not conjugate
to (C(Y ), Jm) for every locally compact Hausdorff space Y and odd positive integer
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m whenever C(X) contains an involutory map different from id. Finally, we give some
remarks and leave some questions for future discussion in §6.

2. Preliminaries
In this section, we give some preliminaries for locally compact Hausdorff spaces, which we
will work on in this paper. Unless mentioned particularly, let X, Y , Z denote topological
spaces and C(X, Y ) the set of all continuous maps of X into Y. Define on C(X, Y ) the
compact-open topology (see [21, p. 285]), that is, the topology generated by the collection
of all finite intersections of sets in

{F(K , U) : K is a compact subset of X and U is open in Y },
where F(K , U) := {f ∈ C(X, Y ) : f (K) ⊆ U}. When Y is a metric space equipped with
metric d, we have another topology on C(X, Y ), viz. the topology of compact convergence
generated by

{BK(f , ε) : f ∈ C(X, Y ), K is a compact subset of X, and ε > 0},
where BK(f , ε) := {g ∈ C(X, Y ) : sup{d(f (x), g(x)) : x ∈ K} < ε}.

LEMMA 1
(i) [21, Theorem 46.7, p. 285] If X is a compact space and Y a metric space with

metric d, then on C(X, Y ), the uniform topology induced by the metric ρ(f , g) :=
sup{d(f (x), g(x)) : x ∈ X} and the topology of compact convergence coincide.

(ii) [21, Theorem 46.8, p. 285] If Y is a metric space with metric d, then on C(X, Y ), the
compact-open topology and the topology of compact convergence coincide.

LEMMA 2. [21, Theorem 46.10, p. 286] If X is locally compact Hausdorff and C(X, Y )

have the compact-open topology, then the evaluation map E : X × C(X, Y ) → Y defined
by E(x, f ) = f (x) is continuous.

LEMMA 3. [21, Theorem 46.11, p. 287] Let C(X, Y ) have the compact-open topology. If
h : X × Z → Y is continuous, then so is its induced map F : Z → C(X, Y ) defined by
F(z)(x) = h(x, z).

As defined in [1], a topological space X is said to be hemicompact if there exists a
sequence (Kj )j∈N of compact sets of X such that if K is any compact subset of X, then
K ⊆ ⋃k

i=1 Kmi
for some finitely many Km1 , Km2 , . . . , Kmk

.

LEMMA 4
(i) [1, Theorem 7] If X is hemicompact and Y is metrizable, then C(X, Y ) in the

compact-open topology is metrizable with metric D given by

D(f , g) :=
∞∑

j=1

μj (f , g), (2.2)
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where

μj (f , g) := min
{

1
2j

, ρj (f , g)

}
for all j ∈ N, (2.3)

ρj (f , g) := sup{d(f (x), g(x)) : x ∈ Kj } for all j ∈ N, (2.4)

with d inducing the topology of Y.
(ii) [17, Problem 1, p. 68] If C(X, Y ) in the compact-open topology is metrizable, then

X is hemicompact and Y is metrizable.

3. Continuity and periodic points
Let X be a locally compact Hausdorff space. In this section, we prove (C(X), Jn) to be a
discrete semi-dynamical system indeed by showing the continuity of Jn on C(X).

THEOREM 1. Jn is continuous on C(X) for each n ∈ N.

Proof. First, we prove by induction that the iterated evaluation map En : X × C(X) → X

defined by

En(x, f ) = f n(x) (3.5)

is continuous on X × C(X) for each n ∈ N. The case n = 1 follows by Lemma 2, where
Y = X and E1 = E . Suppose that En is continuous for certain n ≥ 2. To prove En+1

is continuous on X × C(X), consider the map Hn : X × C(X) → X × C(X) defined by
Hn = (En, p), where p : X×C(X) → C(X) is the projection map defined by p(x, f ) = f .
Since En and p are continuous, so is Hn. Now,

(E ◦ Hn)(x, f ) = E(En(x, f ), p(x, f )) = E(f n(x), f ) = f n+1(x) = En+1(x, f )

for each (x, f ) ∈ X × C(X), implying that En+1 = E ◦ Hn. Therefore, En+1 is continuous,
being the composition of continuous maps E and Hn. Hence, the continuity of En is proved
for all n ∈ N.

In fact, by putting Y = X, Z = C(X), and h = En in Lemma 3, we get F : C(X) →
C(X) and F(f )(x) = h(x, f ) = En(x, f ) = Jn(f )(x) for all f ∈ C(X) and x ∈ X,
implying that F = Jn. Thus, by Lemma 3, we see that Jn is continuous on C(X) for
each n ∈ N.

Theorem 1 looks the same, but is more general than [23, Theorem 2.1]. Unlike [23],
Theorem 1 does not assume X to be metrizable, which causes more difficulties in its proof.
In the special case that X is a compact metric space with a metric d, the uniform topology
induced by the metric ρ gives the compact-open topology on C(X) because of Lemma 1.

As indicated in §1, Jn defines a discrete semi-dynamical system on the space C(X) of
continuous functions with its iteration semigroup {J k

n : k ≥ 0}. Remark that Jn usually
does not define a dynamical system because a homeomorphism f of a compact interval
may have infinitely many iterative roots as indicated in [14].

3.1. Periodic points in general case. One of the most fundamental problems on
dynamical systems or semi-dynamical systems concerns fixed points and periodic points.
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To emphasize the dependence on the space X, we use Fix(f ; X) and Per(f ; X) to denote
the set of all fixed points and the set of all periodic points of f in X, respectively. Since
J k

n f = f nk
by equation (1.1), we see that f ∈ C(X) is a fixed point of Jn if and only if f

satisfies the functional equation

f n = f , (3.6)

and f ∈ C(X) is a k-periodic point of Jn if and only if f satisfies

f nk = f , f nk−1 	= f and f ni 	= f for all i = 2, . . . , k − 2 with i � (k − 1).
(3.7)

So, the fixed points and periodic points of Jn are related to solutions of the Babbage
equation [14]

φm = id, (3.8)

where m > 0 is a certain integer. The functional equations in equations (3.6) and (3.7)
cannot be simply treated as the Babbage equation (3.8) because the range of f may not be
the whole X. In what follows, we need to consider restriction of maps. For any f ∈ C(X)

and A ⊆ X, let Ā denote the closure of A, R(f ) the range of f, and f |A the restriction of f
to A. As in [21], a space X is said to be first countable if each point has a countable local
basis, that is, for each x ∈ X, there exists a countable collection Bx of neighborhoods of x
such that each open set U containing x contains an element B of Bx .

LEMMA 5. Let n ∈ N and suppose that X is first countable. Then f ∈ C(X) is a solution
of the equation

φn = φ (3.9)

on X if and only if R(f ) is closed and there exists g ∈ C(X) such that R(g) = R(f ), g|R(g)

satisfies the Babbage equation

φn−1 = id

on R(g), and f |R(g) = g|R(f ).

Proof. If f ∈ C(X) is a solution of equation (3.9), then f n−1(f (x)) = f (x) for all x ∈ X,
that is, f n−1(y) = y for all y ∈ R(f ). Also, since X is first countable, for each y ∈ R(f ),
there exists a sequence (yn) in R(f ) such that yk → y, implying by continuity of f that
f (yk) → f (y) as k → ∞. However, yk = f n−1(yk) → f n−1(y) as k → ∞. Therefore,
as X is Hausdorff, we have f (y) = y. Thus, y ∈ R(f ), and so R(f ) = R(f ). Let g := f .
Then f is a continuous extension of the solution g|R(g) on R(g) to X such that R(f ) is
closed, R(g) = R(f ), and f |R(g) = g|R(f ). The proof of the converse is trivial, since for
every g ∈ C(X), whose restriction g|R(g) satisfies φn−1 = id on R(f ), we have f n(x) =
f n−1(f (x)) = gn−1(f (x)) = f (x) for all x ∈ X.

Usually, a solution φ of equation (3.8) is referred to as an mth order unit iterative root
if m is the smallest positive integer such that equation (3.8) is satisfied. Clearly, each unit
iterative root is invertible. As in [14, p. 290], for m = 2, every solution of equation (3.8),
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whose inverse is itself, is called an involutory function. In general, if f is an mth order unit
iterative root and f k = id, then m divides k clearly. On a general set E, the mth order unit
iterative roots are formulated below.

LEMMA 6. [14, Theorem 15.1] Let {m0, . . . , mr}, where 1 = m0 < m1 < · · · <

mr = m, be the complete set of divisors of m and let E = ⋃r
i=0

⋃mi

j=1 Ui
j be a

decomposition of E into disjoint sets such that the sets Ui
1, Ui

m1
, . . . , Ui

mi
have the same

cardinality for each 1 ≤ i ≤ r . For 1 ≤ i ≤ r and 1 ≤ j ≤ mi − 1, let fij be an arbitrary
one-to-one map of Ui

j onto Ui
j+1. Then the formula

f (x) :=

⎧⎪⎪⎨
⎪⎪⎩

x for x ∈ U0
1 ,

fij (x) for x ∈ Ui
j , j = 1, 2, . . . , mi − 1, i ≥ 1,

f −1
i1 (· · · (f −1

i,mi−1(x)) · · · ) for x ∈ Ui
mi

, i ≥ 1

defines the general solution of φm = id on E.

Having Lemma 6, we are ready to define

Um
E := {f ∈ C(X) : f |E is an mth order unit iterative root on E and R(f ) = E}

for any subset E of X and m ∈ N. Since Fix(J1; X) = C(X), that is, the problem of fixed
points of J1 is trivial, we focus on Jn with n ≥ 2. We give the following results on fixed
points and periodic points, whose proof is similar to that of [23, Theorem 2.4].

THEOREM 2. Let n, k ≥ 2 be integers and suppose that X is first countable. Then: (i)
f ∈ C(X) is a fixed point of Jn if and only if f ∈ Um

E for a closed subset E of X and an
integer m ≥ 1 dividing n − 1 exactly; (ii) f ∈ C(X) is a k-periodic point of Jn if and only
if f ∈ Um

E for a closed subset E of X and an integer m > 1 satisfying that

m | (nk − 1) and m � (nj − 1) for 1 ≤ j ≤ k − 1. (3.10)

Remark that we were able to infer that E is compact in [23] because E is indeed R(f )

and domain X was assumed to be compact, but in Theorem 2, we can only conclude that E
is closed because of using Lemma 5.

Example 1. Consider f (x) = |x|. Then f ∈ C(R). Clearly, f ∈ U1
[0,∞). By result (i) of

Theorem 2, f is a fixed point of Jn for each n ≥ 2.

Example 2. The doubling map f ∈ C(S1) defined by f (eit ) = e2it is not a k-periodic

point of Jn for n, k ≥ 2. In fact, if f nk = f for some n, k ≥ 2, then eit (2nk −2) = 0 for all
t ∈ [0, 2π), which is a contradiction.

Example 3. The rotation map R2π/(nk−1) : S1 → S1 defined by R2π/(nk−1)(e
it ) =

ei(t+(2π/(nk−1))) is a k-periodic point of Jn in C(S1) for n ≥ 2 and k ≥ 1.

3.2. Periodic points in C(R). For more detailed results, in this section, we focus on the
case X = R, the real line in the usual topology. For a, b ∈ R with a < b, let |a, b| denote
either an open interval (a, b), a semi-closed interval [a, b) or (a, b], or a closed interval
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[a, b], where one or both of the endpoints may be infinite. We have the following result,
which can also be deduced from Lemma 6.

LEMMA 7. [18, 24] If f ∈ C(|a, b|) is a solution of equation (3.8), then either f = id or
f is a decreasing involutory function on |a, b|. More precisely, any solution of equation
(3.8) on |a, b| for general m is also a second-order unit iterative root. If m is odd, then
the solution is uniquely the identity id; if m is even, then the solution is either id or a
decreasing involutory function on |a, b|.

In the following theorem, the proof of which is similar to that of [23, Theorem 3.2] on a
compact interval, we refer to monotonically increasing (or decreasing) functions satisfying
equation (3.9) as monotonically increasing (or decreasing) fixed point of Jn.

THEOREM 3. Every monotonic fixed point f of J2 in C(R) is of the first form in equation
(3.11). Every monotonic fixed point f of J3 in C(R) is of one of the following two forms:

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

a if x ∈ (−∞, a|,
x if x ∈ |a, b|,
b if x ∈ |b, ∞),

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

b if x ∈ (−∞, a|,
g(x) if x ∈ |a, b|,
a if x ∈ |b, ∞),

(3.11)

where |a, b| is a closed interval in R satisfying that a ≤ b and g ∈ C(|a, b|) is a decreasing
involutory map.

The above theorem is only applicable to monotonic fixed points. There exist fixed points
of J2 or J3 which are not monotonic. For example, as considered in Example 1, the
function f (x) = |x| on R is not a monotonic map on R but a fixed point of J2.

The ‘monotone’ in Theorem 3 need not mean ‘strict monotone’. In fact, if a ∈ R in the
first form of equation (3.11), then we have f (x) = a for x ∈ (−∞, a], implying that f is
not strictly monotone. For strictly monotonic ones, we have the following result, the proof
of which is similar to that of [23, Corollary 3.3] on a compact interval.

COROLLARY 1. If f is a strictly monotonic fixed point of J3 in C(R), then either f = id
or f is a strictly decreasing involutory function on R.

Theorem 3 gives results only for J2 and J3, but not for the generic Jn. In what follows,
we show that those monotonic fixed points of J2 and J3 are important representatives for
the generic Jn. Let Cid(R) and Cinv(R) consist of all continuous self-maps of R which
are the identity and decreasing involutions on their range, respectively. By Theorem 3,
monotonic fixed points of J3 are in both classes Cid(R) and Cinv(R) but monotonic fixed
points of J2 are all in the same class Cid(R). The following theorem, the proof of which is
similar to that of [23, Theorem 3.4] on a compact interval, describes all fixed points of Jn

for any n ≥ 2.

THEOREM 4. The following statements are true for system (C(R), Jn):
(i) Fix(Jm; C(R)) = Fix(Jn; C(R)) if integers m, n ≥ 2 satisfy m ≡ n(mod 2);

(ii) Fix(J2; C(R)) � Fix(J3; C(R)). More concretely,
Fix(J2; C(R)) = Cid(R) and Fix(J3; C(R)) = Cid(R) ∪ Cinv(R).
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Theorem 3 together with result (i) of Theorem 4 shows that Theorem 3 is indeed true
for every integer n ≥ 2. More precisely, monotonic fixed points of Jn coincide with those
of J2 and J3 accordingly as n is even and odd, respectively. So, Theorem 3 actually gives
results for the representatives.

Although we can find many fixed points of Jn, there are no non-trivial periodic points
as seen from the following result, the proof of which is similar to that of [23, Theorem 3.5]
on a compact interval.

THEOREM 5. For each n ∈ N, Jn does not have periodic points of period k ≥ 2 in C(R).

As observed earlier, every element of C(R) is a fixed point for J1. So, J1 has a dense
set of periodic points in C(R). However, since C(R) is metrizable with metric D by result
(i) of Lemma 4 and Jn is not the identity operator on C(R), it follows that Fix(Jn; C(R))

is not dense in C(R) for n ≥ 2. This implies by Theorem 5 that Per(Jn; C(R)) is not dense
in C(R) for n ≥ 2.

3.3. Periodic points in C(S1). As illustrated in Example 3, Jn may have periodic points
of period k ≥ 2 in C(S1) but, in contrast, Jn only has fixed points, that is, trivial periodic
points of period 1, in C(R) as shown in Theorem 5. In this section, we investigate all
periodic points of Jn in C(S1).

Given z0, z1, . . . , zm−1 ∈ S1 with m ≥ 2, we write z0 ≺ z1 ≺ · · · ≺ zm−1 if there exist
t1, t2, . . . , tm−1 ∈ R such that 0 < t1 < t2 < · · · < tm−1 < 1 and zj = z0e

2πitj for 1 ≤
j ≤ m − 1. In this case, we have

zj (mod m) ≺ zj+1(mod m) ≺ · · · ≺ zj+m−1(mod m) for all j ∈ N,

so that ‘≺’ is indeed a cyclic order on S1.
For any two distinct points z1, z2 ∈ S1, define the arcs (z1, z2), [z1, z2), and (z1, z2] by

(z1, z2) := {z ∈ S1 : z1 ≺ z ≺ z2}, [z1, z2) := (z1, z2) ∪ {z1}, and (z1, z2] := (z1, z2) ∪
{z2}. Then we have (z1, z2) = {e2πit ∈ S1 : t ∈ (t1, t2)}, where t1, t2 are unique real such
that z1 = e2πit1 , z2 = e2πit2 , and 0 ≤ t1 < t2 < t1 + 1 < 2.

It is known (cf. [4, 25]) that for every homeomorphism F : S1 → S1, there exists a
homeomorphism f : R → R satisfying one of the Abel equations:

f (t + 1) = f (t) + 1 if f is strictly increasing;

f (t + 1) = f (t) − 1 if f is strictly decreasing

such that F(e2πit ) = e2πif (t) for all t ∈ R. Every such f is called a lift of F. We say that
F preserves (or reverses) orientation accordingly as f is strictly increasing (or decreasing)
on R.

The following two lemmas together describe the general solution of equation (3.8)
on S1, each of which can also be deduced from Lemma 6.

LEMMA 8. [12] Let φ ∈ C(S1) be a solution of equation (3.8) and have a fixed point in S1.
Then: (i) φ is the identity map if φ is orientation-preserving; or (ii) φ is an involution if φ

is orientation-reversing.
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LEMMA 9. [12] All mth-order iterative roots of identity in C(S1) having no fixed points in
S1 are given by

f (z) =
{

φ0(z) if z ∈ [z0, zm−1),

(φ1 ◦ φ2 ◦ · · · ◦ φm−1)
−1(z) if z ∈ [zm−1, z0)

(3.12)

with φj := φ0|[zj (m−k)−1,zj (m−k)) for 1 ≤ j ≤ m − 1, where k is an integer in {1, 2, . . . ,
m − 1} relatively prime to m and z0, z1, . . . , zm−1 are some points in S1 such that z0 ≺
z1 ≺ · · · ≺ zm−1, and φ0 : [z0, zm−1) → [zk , zk−1) is any arbitrary homeomorphism such
that φ0([zj−1, zj )) = [zj−1+k , zj+k) for 1 ≤ j ≤ m − 1 with zj := zj (mod m) for j ≥ m.

The following two theorems characterize fixed points and periodic points of Jn

in C(S1).

THEOREM 6. Let n ∈ N. Then f ∈ C(S1) is a fixed point of Jn if and only if one of
the following conditions is satisfied: (i) f |R(f ) is the identity map; (ii) f |R(f ) is an
orientation-reversing involution; or (iii) f is of the form equation (3.12) for a divisor m
of n − 1.

Proof. Let n ∈ N. To find all fixed points of Jn in C(S1), in view of Lemma 5, it suffices
to find all f ∈ C(S1) satisfying the equation φn−1 = id on R(f ). So let f ∈ C(S1) be such
that f n−1 = id on R(f ). Since S1 is connected and compact, R(f ) is either a singleton
set, an arc, or the whole of S1.

Suppose R(f ) = S1. If f has a fixed point, then by Lemma 8, f is either the identity
map or an involution according as f is orientation-preserving or orientation-reversing.
If f has no fixed points, then by Lemma 9, f is of the form in equation (3.12) for some
divisor m of n − 1.

Now suppose that R(f ) � S1. Then R(f ) is either a singleton set or an arc in S1. If
R(f ) is a singleton set, then f is a constant map on S1. If R(f ) is an arc, say [z1, z2] for
some z1, z2 ∈ S1, then consider a homeomorphism hf : R(f ) → [t1, t2], where t1, t2 are
unique reals satisfying the conditions z1 = e2πit1 , z2 = e2πit2 and 0 ≤ t1 < t2 < t1 +1 < 2.
Define a map Hf : C(R(f )) → C([t1, t2]) by

Hf (g) := hf ◦ g ◦ h−1
f for all g ∈ C(R(f )).

Then Hf is a bijective, bi-continuous map such that Hf ◦ Jn = Jn ◦ Hf (that is,
(C(R(f )), Jn) is topologically conjugate to (C([t1, t2]), Jn)). Now since f n−1 = id on
R(f ), we have Hf (f n−1) = Hf (id) = id on [t1, t2], that is, (hf ◦ f ◦ h−1

f )n−1 = id on

[t1, t2]. Therefore, by Lemma 7, hf ◦ f ◦ h−1
f is either the identity map or a decreasing

involutory map on [t1, t2]. This implies that f |R(f ) is either an identity map or an
orientation-reversing involutory map.

Conversely, if f ∈ C(S1) satisfies either of the conditions (i) or (ii), then f n = f on S1

implying that f is a fixed point of Jn. If f satisfies condition (iii), then by Lemma 9, we
have f m = id on S1, and therefore f n−1 = id on S1 as m divides n − 1. Therefore, f is a
fixed point of Jn.
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THEOREM 7. Let n, k ≥ 2. Then f ∈ C(S1) is a k-periodic point of Jn if and only if f is
of the form in equation (3.12) for some m > 1 such that m | (nk − 1) and m � (nj − 1) for
1 ≤ j ≤ k − 1.

Proof. Let f ∈ C(S1) be a k-periodic point of Jn. Then f satisfies

f nk = f and f nj 	= f for 1 ≤ j ≤ k − 1 (3.13)

on S1 and also by result (ii) of Theorem 2, f ∈ Um
E for some compact subset E of K and

m > 1 satisfying equation (3.10). In fact, here E = R(f ). We assert that E = S1. Note that
E, being the image of connected and compact set S1 under f, is either a singleton set, an
arc, or S1. If E is a singleton, then f is a constant map on S1, and therefore f n = f , which
is a contradiction to equation (3.13). If E is an arc, then f |E is either the identity map or
an orientation-reversing involution. In any case, we arrive at a contradiction to equation
(3.13). Therefore, E = S1 so that f ∈ Um

S1 . This implies by Lemma 9 that f is of the form
in equation (3.12).

Conversely, if f is of the form in equation (3.12) for some m > 1 such that m | (nk − 1)

and m � (nj − 1) for 1 ≤ j ≤ k − 1, then clearly f ∈ Um
S1 with m > 1 satisfying equation

(3.10) so that by result (ii) of Theorem 2, f is a k-periodic point of Jn.

4. Stability in Jn

In this section, we study the (Lyapunov) stability of fixed points of the iteration operator
Jn. In view of Lemma 4, to investigate boundedness of orbits, in the following, we
consider X to be a hemicompact metrizable space. Clearly, all the orbits of Jn are
bounded because D(f , g) = ∑∞

j=1 μj (f , g) ≤ ∑∞
j=1 1/2j = 1 for all f , g ∈ C(X). In

particular, when X is a compact metric space with metric d, we can let X = ⋃∞
j=1 Kj

such that K1 = X and Kj = ∅ for all j ≥ 2, implying that the metric D of C(X) is
D(f , g) = μ(f , g) = min{ 1

2 , ρ(f , g)}, which is also equivalent to the uniform metric ρ

on it. Further, the boundedness of orbits of Jn in C(X) can also be proved as follows.
Since X is compact, there exist y ∈ X and M > 0 such that d(x, y) ≤ M/2, implying
that d(f nk

(x), f nl
(x)) ≤ d(f nk

(x), y) + d(y, f nl
(x)) ≤ M for all x ∈ X and k, l ∈ N.

So, we can work with metric ρ of C(X) instead of D whenever X is compact.
As defined in [19], the orbit (f n(x))n∈N∪{0} of a discrete semi-dynamical system

(X, f ), where X is a metric space equipped with the metric d, is said to be (Lyapunov)
stable if for every ε > 0, there exists δ > 0 such that d(f k(x), f k(y)) < ε for all k ∈ N

whenever y ∈ X satisfies d(x, y) < δ. We say that a point x ∈ X is (Lyapunov) stable
for f if its orbit (f n(x))n∈N∪{0} is (Lyapunov) stable. The following two theorems
prove that most fixed points of Jn in C(X) are not stable for X = R and X = S1,
respectively.

THEOREM 8. Let n ∈ N. If f ∈ Cid(R) is non-constant, then f is not stable for Jn.

Proof. Let f ∈ Cid(R) be a non-constant map. Then there exist a, b ∈ R with a < b

such that [a, b] ⊆ R(f ) and f |[a,b] = id. For each η > 0, let gη : R → R be the map
defined by
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gη(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f (x) if x ∈ (−∞, a] ∪ [b, ∞),

a + (x − a)(1 − η) if x ∈
[
a,

a + b

2

]
,

x(1 + η) − bη if x ∈
[
a + b

2
, b

]
.

Then gη ∈ C(R) for each η > 0. Consider the metric D on C(R) defined as in equations
(2.2)–(2.4) with the partition R = ⋃∞

j=1 Kj , where

Kj :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[a, b] if j = 1,[
b + j − 3

2
, b + j − 1

2

]
if j = 3, 5, . . . ,[

a − j

2
, a − j − 2

2

]
if j = 2, 4, . . . .

Let ε = min{(b − a)/8, 1
2 } and for any δ > 0, choose ηδ > 0 such that ηδ < min{δ0/

(b − a), 1
2 } for some 0 < δ0 < min{δ, 1

2 }.

Claim. D(f , gηδ ) < δ and D(f , gnk0
ηδ

) ≥ ε for some k0 ∈ N.
Consider any x ∈ R. If x ∈ K1 with x ≤ (a + b)/2, then

|f (x) − gηδ (x)| = |x − (a + (x − a)(1 − ηδ))| = (x − a)ηδ < (x − a)
δ0

b − a
< δ0.

If x ∈ K1 with x > (a + b)/2, then

|f (x) − gηδ (x)| = |x − (x(1 + ηδ) − bηδ)| = (b − x)ηδ < (b − x)
δ0

b − a
< δ0.

If x ∈ Kj with j > 1, then

|f (x) − gηδ (x)| = |f (x) − f (x)| = 0.

Therefore, ρ1(f , gηδ ) ≤ δ0 and ρj (f , gηδ ) = 0 for all j > 1, implying that
μ1(f , gηδ ) ≤ δ0 and μj (f , gηδ ) = 0 for all j > 1. Hence, D(f , gηδ ) ≤ δ0 < δ.

Now for any x ∈ [a, (a + b)/2], we have

gηδ (x) = x(1 − ηδ) + aηδ ≥ a(1 − ηδ) + aηδ = a,

gηδ (x) ≤ a + b

2
(1 − ηδ) + aηδ = a + b

2
− b − a

2
ηδ <

a + b

2
,

implying that gηδ (x) ∈ [a, (a + b)/2]. Therefore, gηδ ([a, (a + b)/2]) ⊆ [a, (a + b)/2],
and hence by induction,

gk
ηδ

(x) = a + (x − a)(1 − ηδ)
k (4.14)

for every x ∈ [a, (a + b)/2] and k ∈ N. Let y = (a + b)/2. Since ηδ ∈ (0, 1),
equation (4.14) implies that gk

ηδ
(y) → a as k → ∞. So there exists N ∈ N such

that |gk
ηδ

(y) − a| < ε for all k ≥ N . Choose k0 ∈ N so large that nk0 > N . Then
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gnk0
ηδ

(y) − a < (b − a)/8, that is, −gnk0
ηδ

(y) > −(7a + b)/8. Thus,

f nk0
(y) − gnk0

ηδ
(y) = b − a

2
(1 − (1 − ηδ)

nk0
) > 0,

and therefore

|f nk0
(y) − gnk0

ηδ
(y)| = f nk0

(y) − gnk0
ηδ

(y) >
a + b

2
− 7a + b

8
= 3(b − a)

8
>

b − a

8
,

implying that

ρ1(f , gnk0
ηδ

) = ρ1(f
nk0 , gnk0

ηδ
) ≥ |f nk0

(y) − gnk0
ηδ

(y)| >
b − a

8
.

This proves that

μ1(f , gnk0
ηδ

) = min
{

1
2

, ρ1(f , gnk0
ηδ

)

}
≥ min

{
1
2

,
b − a

8

}
= ε.

Therefore, the claim holds, and hence f is not stable for Jn.

THEOREM 9. Let n ∈ N and f ∈ Cid(S
1), consisting of all continuous self-maps of S1

which are the identity on their range. Then f is stable for Jn if and only if f is a constant
map on S1.

Proof. Let n ∈ N and f ∈ Cid(S
1) be a constant map on S1. For given ε > 0, choose

δ = ε. Then for every k ∈ N and g ∈ C(S1) with ρ(f , g) < δ, we have

|f (x) − gk(x)| = |f (gk−1(x)) − g(gk−1(x))| ≤ ρ(f , g) < ε for all x ∈ S1,

implying ρ(f , gk) < ε, and hence in particular ρ(f nk
, gnk

) < ε. Therefore, f is stable.
Conversely, suppose that f ∈ Cid(S

1) is a non-constant map on S1. Then f |R(f ) = id
such that either R(f ) = S1 or R(f ) = [z1, z2] for some z1 = eit1 , z2 = eit2 ∈ S1 with
0 ≤ t1 < t2 < 2π . For each η > 0, let gη : S1 → S1 be the map defined by

gη(e
it ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f (eit ) if t ∈ [0, 2π) \ [t1, t2],

ei[t1+(t−t1)(1−η)] if t ∈
[
t1,

t1 + t2

2

]
,

ei[t (1+η)−t2η] if t ∈
[
t1 + t2

2
, t2

]
.

Then gη ∈ C(S1) for each η > 0. Let ε = (t2 − t1)/2
√

2π and for any δ > 0, choose
ηδ > 0 such that ηδ < min{2δ0/(t2 − t1), 1} for some 0 < δ0 < δ.

Claim. ρ(f , gηδ ) < δ and ρ(f , gnk0
ηδ

) ≥ ε for some k0 ∈ N.

Consider any t ∈ [0, 2π). If t ∈ [0, 2π) \ [t1, t2], then

|f (eit ) − gηδ (e
it )| = |f (eit ) − f (eit )| = 0 < δ0.

If t ∈ (t1, (t1 + t2)/2), then
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|f (eit ) − gηδ (e
it )| = |eit − ei[t1+(t−t1)(1−ηδ)]|

= |1 − eiηδ(t1−t)|
≤ 2

∣∣∣∣ sin
(

ηδ(t1 − t)

2

)∣∣∣∣
≤ |ηδ(t1 − t)| = (t − t1)ηδ <

t2 − t1

2
2δ0

t2 − t1
= δ0.

If t ∈ [(t1 + t2)/2, t2), then by a similar argument, we have |f (eit ) − gηδ (e
it )| < δ0.

Therefore, |f (eit ) − gηδ (e
it )| < δ0 for all t ∈ [0, 2π) and hence ρ(f , gηδ ) ≤ δ0 < δ.

Now for any t ∈ [t1, (t1 + t2)/2], we have

t1 = t1(1 − ηδ) + t1ηδ ≤ t (1 − ηδ) + t1ηδ

= t1 + (t − t1)(1 − ηδ)

≤ t1 + t2

2
(1 − ηδ) + t1ηδ

= t1 + t2

2
− t2 − t1

2
ηδ <

t1 + t2

2
,

implying gηδ (e
it ) ∈ [z1, w], where w = ei(t1+t2)/2. Therefore, gηδ ([z1, w]) ⊆ [z1, w].

Hence, it can be shown by induction that gk
ηδ

(eit ) = ei[t1+(t−t1)(1−ηδ)
k] for every

t ∈ [t1, (t1 + t2)/2] and k ∈ N. Also, sin(t/2) ≥ t/π for all t ∈ [0, π ], and therefore,

|eit − 1| = √
2 sin

(
t

2

)
≥

√
2t

π
for all t ∈ [0, π ]. (4.15)

Now for each k ∈ N, we have

|f (w) − gk
ηδ

(w)| = |ei(t1+t2)/2 − ei[t1+((t1+t2)/2−t1)(1−ηδ)
k]|

= |1 − e−i[(t2−t1)/2(1−(1−ηδ)
k)]|

= |ei[(t2−t1)/2(1−(1−ηδ)
k)] − 1| (4.16)

and

0 ≤ t2 − t1

2
[1 − (1 − ηδ)

k] <
t2 − t1

2
<

t2

2
≤ 2π

2
= π ,

implying by equation (4.15) that

|ei[(t2−t1)/2(1−(1−ηδ)
k)] − 1| ≥

√
2

π
· t2 − t1

2
[1 − (1 − ηδ)

k]

= t2 − t1√
2π

[1 − (1 − ηδ)
k],

for each k ∈ N. Then equation (4.16) implies that

|f (w) − gk
ηδ

(w)| ≥ t2 − t1√
2π

[1 − (1 − ηδ)
k], (4.17)

for each k ∈ N. Since 1 − (1 − ηδ)
k → 1 as k → ∞, there exists N ∈ N such that

(1 − ηδ)
k < 1

2 for all k ≥ N . Choose k0 sufficiently large such that nk0 > N . Then
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1 − (1 − ηδ)
nk0

> 1
2 , and therefore from equation (4.17), we have

|f (w) − gnk0
ηδ

(w)| ≥ t2 − t1√
2π

· 1
2

= t2 − t1

2
√

2π
= ε,

which implies that

ρ(f , gnk0
ηδ

) = ρ(f nk0 , gnk0
ηδ

) ≥ |f nk0
(w) − gnk0

ηδ
(w)| ≥ ε.

This proves the claim, from which it follows that f is not stable, which is a contradiction.
Hence, f is a constant map on S1.

As defined in [10], a discrete semi-dynamical system (X, f ), where X is a metric
space equipped with the metric d, is said to be topologically transitive if for every pair
of open sets U , V in X, there exist x ∈ U and n ∈ N such that f n(x) ∈ V . Here, f is
said to be sensitively dependent on initial conditions if there exists δ > 0 such that for
every x ∈ X and every ε > 0, there exist y ∈ X and n ∈ N such that d(x, y) < ε and
d(f n(x), f n(y)) > δ. As defined in [8], f is said to be chaotic in Devaney’s sense if: (i)
the set of periodic points of f is dense in X; (ii) f is topologically transitive; and (iii) f
exhibits sensitive dependence on initial conditions. Since Per(Jn; C(R)) is not dense in
C(R), as seen in §3, Jn is not chaotic C(R) for n ≥ 2. Also, since S1 is compact, by [23,
Theorem 5.1], Jn is not chaotic on C(S1) for n ≥ 2. However, J1 is also not chaotic on
C(R) and C(S1) since it is not sensitively dependent on initial conditions. Thus, although
we see that all orbits of Jn in C(R) and C(S1) are bounded but most of the fixed points are
unstable, which actually exhibits a complicated behavior of Jn, the complicated behavior
is not chaotic. The following examples show how complicated an orbit of Jn can be.

Example 4. Let f : R → R be the map defined by

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x ≤ 0,

x if 0 ≤ x ≤ 1,

1 if x ≥ 0.

Let n = 2, ε = 1
8 , δ = 0.13, δ0 = 0.07, ηδ = 0.04, and g2 be the map gηδ as defined in

Theorem 8 with a = 0 and b = 1. Define the maps g1, g3 : R → R by

g1(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x ≤ 0,

0.99x if 0 ≤ x ≤ 1,

0.99 if x ≥ 1,

and g3(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x ≤ 0,

1.1x if 0 ≤ x ≤ 0.5,

x + 0.05 if 0.5 ≤ x ≤ 0.55,

−2x + 1.7 if 0.55 ≤ x ≤ 0.6,

1.25x − 0.25 if 0.6 ≤ x ≤ 1,

1 if x ≥ 1.

Then f ∈ Fix(J2; C(R)) and g1, g2, g3 ∈ C(R). Consider the metric D on C(R) defined as
in equations (2.2)–(2.4) with the partition R = ⋃∞

j=1 Kj , where
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Kj :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[0, 1] if j = 1,[
− j − 1

2
, −j − 1

2
+ 1

]
if j = 3, 5, . . . ,[

j

2
,
j

2
+ 1

]
if j = 2, 4, . . . .

An easy computation shows that D(gj , f ) < δ for all j = 1, 2, 3. However, g26

1 (0.4) =
0.2102, g24

2 (0.4) = 0.2082, and g23

3 (0.4) = 0.5796, implying that D(g26

1 f ) > ε,
D(g24

2 f ) > ε, and D(g23

3 , f ) > ε. This illustrates the claim in the proof of Theorem 8 for
f for the above-mentioned specific choices of δ, δ0, and ηδ with ε = 1

8 . Indeed, f is not
stable for J2 as seen from Theorem 8.

To illustrate the complexity of J2, we investigate the asymptotic behavior of the orbits
of g1, g2, and g3. We have

gk
1(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x ≤ 0,

0.99kx if 0 ≤ x ≤ 1,

0.99k if x ≥ 1,

for all k ∈ N. Therefore, the sequence of maps (gk
1)k∈N and hence the orbit (g2k

1 )k∈N∪{0}
of g1 converges uniformly to the zero map on R. As seen in the proof of Theorem 8,
gk

2(x) → 0 as k → ∞, for each x ∈ [0, 0.5]. Also, for each x ∈ [0.5, 1), there exists
kx ∈ N such that g

kx

2 (x) ∈ [0, 0.5]. Further,

gk
2(x) =

{
0 if x ≤ 0,

1 if x ≥ 1,

for all k ∈ N. Thus, the sequence of maps (gk
2)k∈N and hence the orbit (g2k

2 )k∈N∪{0} of g2

converges pointwise to the discontinuous map f2 : R → R defined by

f2(x) =
{

0 if x < 1,

1 if x ≥ 1.

The point x = 0.5 is a 3-periodic point of g3 and therefore, the orbit (g2k

3 )k∈N∪{0} of g3

does not converge. In fact, by [16, Theorem 1], g3 is chaotic in the sense of Li and Yorke.
However, g3([0, 1]) ⊆ [0, 1], implying that g3 is not topologically transitive and therefore
is not chaotic in the sense of Devaney.

Thus, although all the orbits of J2 in C(R) are bounded, it is possible that an orbit
may not converge or, even if it converges, the limit function may not be continuous.
Furthermore, the choice of δ = 0.13 is not special. Indeed, we can construct maps in C(R)

that are similar to those of g1, g2, and g3 in each δ-neighborhood of f.

Example 5. Let f be the identity map on S1. Let n = 2, ε = 1
8 , δ = 0.15, δ0 = 0.07,

ηδ = 0.05, and g2 be the map gηδ as defined in Theorem 9 with t1 = 0 and t2 = π/2.
Define the maps g1, g3 : S1 → S1 by g1(e

it ) = e0.9it for all t ∈ [0, 2π), and

g3(e
it ) = ei(t+2π/7) for all t ∈ [0, 2π).
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Then f ∈ Fix(J2; C(S1)) and g1, g2, g3 ∈ C(S1). A computation as in Theorem 9 shows
that ρ(g2, f ) < δ. However,

|g24

2 (eiπ/4) − eiπ/4| = |1 − eiπ/4(1−0.9524
)|

≥ 1

2
√

2
(1 − 0.9524

) (using equation (4.15))

≥ 1

4
√

2
> ε,

implying that ρ(g24

2 , f ) > ε. Indeed, f is not stable for J2 as seen from Theorem 9.
To illustrate the complexity of iteration operator J2, we investigate the asymp-

totic behavior of the orbits of g1, g2, and g3. We have gk
1(eit ) = e0.9kit for all

k ∈ N and for all t ∈ [0, 2π). Therefore, the sequence of maps (gk
1)k∈N and hence the

orbit (g2k

1 )k∈N∪{0} of g1 converge uniformly to the constant map f1 : S1 → S1 defined
by f2(e

it ) = 1 for all t ∈ [0, 2π). As noted in the proof of Theorem 9, gk
2(eit ) → 1 as

k → ∞, for each t ∈ [0, π/4]. Also, for each t ∈ [π/4, π/2), there exists kt ∈ N such that
arg(g

kt

2 (eit )) ∈ [0, π/4]. Moreover, gk
2(eit ) = eit for all k ∈ N and for all t ∈ [π/2, 2π).

Thus, the sequence of maps (gk
2)k∈N and hence the orbit (g2k

2 )k∈N∪{0} of g2 converge
pointwise to the discontinuous map f2 : S1 → S1 defined by

f2(e
it ) =

⎧⎨
⎩

1 if 0 ≤ t <
π

2
,

eit if
π

2
≤ t < 2π .

The map g3 is a 3-periodic point of J2 and therefore the orbit (g2k

3 )k∈N∪{0} of g3 converges
to the periodic orbit {g3, g2

3, g22

3 }.
Thus, similar to C(R), although all the orbits of J2 in C(S1) are bounded, it is possible

that an orbit may not converge or, even if it converges, the limit function may not be
continuous.

5. Classification up to conjugacy
Since R is not homeomorphic to S1, it is natural to expect that the dynamics of Jn on
C(R) is ‘different’ from that on C(S1). This is also evident from our discussion as Jn has
periodic points of all periods in C(S1) whereas it has no non-trivial periodic points in C(R)

for n ≥ 2. This leads to the question: Is the dynamics of Jn on C(X) identical to that on
C(Y ) whenever X is homeomorphic to Y? We investigate this question in this section in
locally compact spaces.

Let (X, f ) and (Y , g) be two discrete semi-dynamical systems. As defined in [10], we
say that (X, f ) is topologically conjugate (or simply conjugate) to (Y , g) if there exists a
homeomorphism h : X → Y such that h ◦ f = g ◦ h. In this case, h is called a topological
conjugacy.

THEOREM 10. Let X and Y be locally compact Hausdorff spaces. If X is homeomorphic
to Y, then (C(X), Jn) is conjugate to (C(Y ), Jn) for each n ∈ N.
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Proof. Let h be a homeomorphism of X onto Y. Define a map H : C(X) → C(Y ) as

H(f ) := h ◦ f ◦ h−1 for all f ∈ C(X).

Then H is a well-defined bijective map. To prove the continuity of H, first we claim that
the map F : Y × C(X) → Y defined by F(y, f ) := h ◦ f ◦ h−1(y) is continuous. In fact,
consider the map G : Y × C(X) → X × C(X) defined by G := (h−1 ◦ p1, p2), where the
pi are the projection maps on Y × C(X) given by p1(y, f ) := y and p2(y, f ) := f . Since
h−1 ◦ p1 and p2 are continuous, so is G. Also, by Lemma 2, the evaluation map E : X ×
C(X) → X, defined by E(x, f ) := f (x), is continuous. Now,

h ◦ E ◦ G(y, f ) = h(E(h−1 ◦ p1(y, f ), p2(y, f )))

= h(E(h−1(y), f ))

= h(f (h−1(y))) = F(y, f )

for each (y, f ) ∈ Y × C(X), implying that F = h ◦ E ◦ G. Therefore, being the composi-
tion of continuous maps h, E , and G, F is continuous, and the claim is proved.

The map H is actually the induced map of F . Therefore, since F is continuous, by
Lemma 3, we get that H is continuous on C(X). By a similar argument, it follows that
H−1 is continuous on C(Y ). Hence, H is a homeomorphism of C(X) onto C(Y ).

Finally, for each f ∈ C(X), we have

Jn ◦ H(f ) = Jn(h ◦ f ◦ h−1) = (h ◦ f ◦ h−1)n

= h ◦ f n ◦ h−1 = h ◦ Jn(f ) ◦ h−1 = H ◦ Jn(f ),

implying that Jn ◦ H = H ◦ Jn. Therefore, (C(X), Jn) is conjugate to (C(Y ), Jn).

In contrast to the above theorem, it is more interesting to see whether (C(X), Jn) is
still conjugate to (C(Y ), Jn) for some n ∈ N and some spaces X and Y which are not
homeomorphic to each other, unless we can prove the converse of the above theorem.
Concerning the converse, we need to consider the weaker converse first and ask: Does the
notion C(X) is homeomorphic to C(Y ) imply that X is homeomorphic to Y? The answer is
no in general because of the following counter-example.

Counter-example. C([a, b]) is homeomorphic to C(R), although [a, b] is not homeomor-
phic to R.

In fact, as shown in [22, pp. 116–122], a seminorm on a real vector space X is a
map p : X → R satisfying the following conditions: (i) p(x) ≥ 0 for all x ∈ X; (ii)
p(λx) = |λ|p(x) for all λ ∈ R and x ∈ X; (iii) p(x + y) ≤ p(x) + p(y) for all x, y ∈ X.
A real topological vector space X along with a family P of seminorms on it is said to
be a locally convex space. As shown in [26, pp. 175–176], a topological space X is said
to be completely metrizable if there exists a complete metric on it inducing its topology.
As seen at the end of §3.2, C(R) in the the compact-open topology is metrizable with
metric D defined as in equations (2.2)–(2.4), where d is the usual metric on R. Also,
by [7, Proposition 1.12, p. 145], D is complete. Hence, C(R) is completely metrizable.
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Further, C(R) is locally convex because the family P = {ρj : j ∈ N} of seminorms induces
the compact-open topology on it. Moreover, by of [15, Theorem 5.2, p. 694], C(R) is
separable. However, C([a, b], R), the space of all continuous functions of [a, b] into R

in the uniform topology induced by the uniform metric ρ, is also a completely metrizable
space. Further, by using the Weierstrass polynomial approximation theorem, it follows
that C([a, b], R) is also separable. Moreover, it is locally convex, being a normed linear
space. Thus, both C([a, b], R) and C(R) are infinite dimensional separable completely
metrizable locally convex linear spaces. Hence, by the Anderson–Kadec theorem (cf. [3,
Theorem 5.2, p. 189]), which states that every infinite dimensional separable Banach space
is homeomorphic to the countable product Rω of R with itself in the product topology, it
follows that they are homeomorphic as topological spaces. Moreover, by a known result (cf.
[3, Theorem 6.2 p. 190]), which states that every closed convex set of non-empty interior
in an infinite dimensional Banach space is homeomorphic to the whole space, we get that
C([a, b]) is homeomorphic to C([a, b], R). Therefore, C([a, b]) is homeomorphic to C(R).

Another concern is the question: Even if C(X) is homeomorphic to C(Y ), is (C(X), Jm)

conjugate to (C(Y ), Jn) for different m and n? As observed from Theorem 4, the existence
of decreasing involutory fixed points ensures that J3 is not conjugate to J2 on C(R). More
generally, we have the following theorem.

THEOREM 11. Let X be a locally compact Hausdorff space such that there exists an
involutory map f0 	= id in C(X). Then, (C(X), J2) is not conjugate to (C(Y ), Jm) for each
locally compact Hausdorff space Y and odd positive integer m.

Proof. Suppose that H is a conjugacy of (C(Y ), Jm) and (C(X), J2). Then H : C(Y ) →
C(X) is a homeomorphism such that

H(gm) = H(g)2 for all g ∈ C(Y ).

Let f1 = f0 and f2 = id. Then there exist g1 	= g2 ∈ C(Y ) such that f1 = H(g1) and f2 =
H(g2). We have id = f 2

1 = H(g1)
2 = H(gm

1 ) and id = f 2
2 = H(g2)

2 = H(gm
2 ), implying

that gm
1 = gm

2 , because H is one-to-one. Since m is odd, f1 is a fixed point for Jm, implying
that g1 is a fixed point for J2, that is, g2

1 = g1 and therefore gm
1 = g1. Similarly, since f2

is a fixed point for Jm, it follows that g2 is a fixed point for J2, that is, g2
2 = g2, and

therefore gm
2 = g2. Hence, we have g1 = g2, which is a contradiction. So (C(Y ), Jm) is

not conjugate to (C(X), J2) and the result follows.

6. Remarks and questions
The iteration operator J1 has no non-trivial periodic points in both C(R) and C(S1). Also,
unlike C(R), where there are no non-trivial periodic points as seen in Theorem 5, Jn has
periodic points of all periods in C(S1) for n ≥ 2 (see Example 3). Further, we have the
following result.

PROPOSITION. The Sharkovskii theorem, that is, the existence of 3-periodic points implies
that of k-periodic points for all k ≥ 1, is valid in both the systems (C(R), Jn) and
(C(S1), Jn) for all n ≥ 1.
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In fact, in the cases of (C(R), Jn) with n ≥ 1 and (C(S1), J1), the result follows
vacuously since there are no 3-periodic points. However, in the case of (C(S1), Jn) with
n ≥ 2, there are k-periodic points for all k ≥ 1 as seen from Example 3. Observe that this
proposition makes a contrast with the Sharkovskii theorem on the underlying spaces R and
S1 because the Sharkovskii theorem holds valid on R but not on S1 (see, for example, the
rotation map R2π/3 on S1 defined as in Example 3).

Additionally, from Theorem 10, we can conclude that it suffices to discuss the dynamics
of Jn on C(X) for X to be a representative of the equivalence class [X] under the
homeomorphism equivalence relation. In view of this observation, it follows that dynamics
of Jn on C(X) is identical to that on:
(i) C(R) (respectively C([a, b])) whenever X is, for example, a curve in C homeomor-

phic to R (respectively [a, b]);
(ii) C(S1) whenever X is, for example, a simple closed curve in C, or the real projective

line RP1.
Moreover, by the Hahn–Mazurkiewicz theorem [26], a Hausdorff topological space X is
a continuous image of [a, b] or S1 if and only if it is a Peano space (that is, a compact,
connected, locally connected, metric space). Therefore, the equivalence class [[a, b]] of
[a, b] (respectively [S1] of S1) also contains subspaces of some ‘complicated’ spaces in the
Euclidean plane R2 like the space filling curves—Peano curve, Hilbert curve, Sierpiński
curve (respectively like Sierpiński triangle).

Finally, we conclude the paper with some problems for future discussion. Since any
non-constant map f in Cid(R) (respectively Cid(S

1)) has a unique choice for f |R(f ), namely
id, we were indeed able to use the definition of stability to prove the instability of such
maps in Theorem 8 (respectively Theorem 9). However, if f lies in Cinv(S

1) (consisting of
all continuous self-maps of S1 which are orientation-reversing involutions on their range),
then f |R(f ) has uncountably many choices and therefore the case-wise approach used in
the proof of the above theorem is impractical. Thus, the problem of stability of fixed points
of Jn, which are in Cinv(S

1), is highly non-trivial. For the same reason, the problem of
stability of fixed points of Jn in Cinv(R) is also highly non-trivial. Additionally, although
Jn does not have a non-trivial periodic point in C(R) by Theorem 5, the problem of
stability of periodic points of Jn in C(S1) is also difficult. Further, we remind that we
did not conclude the discussion in Theorem 11 for all pairs n and m, which is interesting
to consider. We observed through the counter-example given in §5 that a weaker converse
of Theorem 10 is not true in general. However, it is interesting to investigate if the actual
converse of Theorem 10 is true, that is, does (C(X), Jn) is conjugate to (C(Y ), Jn) imply
that X is homeomorphic to Y?
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