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Abstract. We investigate stable intersections of conformal Cantor sets and their conse-
quences to dynamical systems. First we define this type of Cantor set and relate it to
horseshoes appearing in automorphisms of C

2. Then we study limit geometries, that
is, objects related to the asymptotic shape of the Cantor sets, to obtain a criterion that
guarantees stable intersection between some configurations. Finally, we show that the
Buzzard construction of a Newhouse region on Aut(C2) can be seen as a case of stable
intersection of Cantor sets in our sense and give some (not optimal) estimate on how ‘thick’
those sets have to be.
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1. Introduction
The theory of regular Cantor sets in the real line has played a central role in the study
of dynamical systems, especially in relation to their uniform hyperbolicity, that is, the
existence of a decomposition of the tangent bundle over the non-wandering set of some
map into two sub-bundles, one uniformly contracted by the action of the tangent map and
the other one uniformly expanded. A diffeomorphism is called Axiom A when, additionally,
the periodic points are dense in its non-wandering set. Some of the first results from the
theory were the works of Newhouse [11–13], where he showed that there is an open set
U in the space of C2 diffeomorphisms of a compact surface (Diff 2(M2)) such that any
diffeomorphism in U is not hyperbolic. More than that, he observed that diffeomorphisms
exhibiting a homoclinic tangency belonged to the closure of the set U.

In those works, he associated the presence of a tangency between the stable and
unstable manifolds of a horseshoe, that is, a homoclinic tangency, to an intersection
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between two Cantor sets (constructed from the dynamical system). Then, an open set
in Diff 2(M2) with persistence of homoclinic tangencies was constructed via a pair of
Cantor sets (K1, K2) that had stable intersections, that is, K̃1 ∩ K̃2 was non-empty for any
small perturbations K̃1 and K̃2 of K1 and K2. To construct such a pair, he developed a
sufficient criterion for this phenomenon: the gap lemma. Precisely, he defined τ(K), the
thickness of a Cantor set K, which is a positive real number associated to the geometry of
the gaps of K, and showed that if the product τ(K1) · τ(K2) is larger than one for a pair
of Cantor sets K1 and K2, then the pair (K1, K2 + t) has stable intersection for certain
values of t.

Similar results were obtained in other contexts, such as in the works of Palis and
Viana on larger dimensions [16] and of Duarte [6] on conservative systems. We are
more interested however in the work of Buzzard [4], who found an open region in the
space of automorphisms of C

2, that is, holomorphic diffeomorphisms, with persistent
homoclinic tangencies. His strategy was very similar to the first work of Newhouse [11],
where he constructed a ‘very thick’ horseshoe, such that the Cantor sets, this time living
in the complex plane, associated to it would also be ‘very thick’. However, the concept of
thickness does not have a simple extension to this complex setting and so the argument to
guarantee intersections between the Cantor sets after a small perturbation is different. It is
worth noticing that a version of the gap lemma for holomorphic Cantor sets was recently
discovered, in 2018, by Biebler (see [1]).

The objective of this paper is to present a criterion for stable intersection of Cantor
sets that works for the Cantor sets derived from horseshoes appearing in automorphisms
of C2. We begin by defining conformal Cantor sets. These sets are, roughly speaking, the
maximal invariant set of a C1+ε expanding map g defined on a subset of R2 (satisfying
some properties, see §2.1 up to Definition 2.1 for details) with the key hypothesis being its
derivative is conformal over the invariant set, that is, the Cantor set itself. Throughout this
article, we will freely identify a conformal operator over R2 with the operator over C given
by a multiplication by a complex number. Precisely, if

A =
[
α −β

β α

]
, α, β ∈ R,

we identify it with the operator over C given by the multiplication by α + β · i. Also, a
map between two open sets of Cn is said to be Cr , for some r ∈ R, if it is Cr when seen
as a map between two open subsets of R2n.

We then proceed to show that this is the appropriate concept to study horseshoes
appearing in automorphisms of C2, which we call complex horseshoes. In this text, they
are nothing more than totally disconnected non-trivial basic sets of saddle type (see §2.2
for the corresponding definitions). It is necessary to observe that this nomenclature already
appears in the literature and was introduced in the thesis of Oberste-Vorth [14] as a complex
version of the Smale horseshoe. These complex horseshoes are a particular case of the
concept of a horseshoe presented in this text. Also, the work of Oberste-Vorth shows the
existence of complex horseshoes whenever there is a transversal homoclinic intersection
for an automorphism of C2, a fact that justifies our interest in these kinds of objects. The
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details regarding these objects are given in the second section of this paper, and its main
theorem is copied as follows.

THEOREM 1.1. (Theorem 2.5) Let � be a complex horseshoe for an automorphism G ∈
Aut(C2) and p be a periodic point in �. Then, if ε is sufficiently small, there are an open
set U ⊂ C, an open set V ⊂ Wu

ε (p) containing p, and a holomorphic parameterization
π : U → V such that π−1(V ∩ �) is a conformal Cantor set in the complex plane.

In §3, we extend the recurrent compact criterion created by Moreira and Yoccoz in [10]
to this type of Cantor set. Here we see the importance of the conformality of our sets. It
allows us to construct limit geometries, which are, roughly speaking, approximations of the
asymptotic shape of small pieces of the Cantor sets (see the beginning of §3.1 and Lemma
3.1). The set of all limit geometries (for a given Cantor set) is a compact set. Because of
that, we can prove the recurrent compact criterion: if, for some pair of Cantor sets, we can
find a compact set of relative affine configurations of limit geometries (see Definition 3.4)
that is carried to its own interior by renormalization operators, that is, a recurrent compact
set (see Definition 3.5), then the original pair of Cantor sets, after an affine transformation
on one of its entries, has stable intersection.

The concept of stable intersection is very similar to that in the real line setting. We
say that two Cantor sets K and K ′ are close to each other when the maps defining them
are close to each other and so are the connected pieces of their domains G(a) and G′(a)

(see Definition 2.2 and the paragraph below it). Also, we define a configuration of a piece
G(a) as a C1+ε embedding h : G(a) → C (see Definition 3.1). That way, given a pair of
configurations (h, h′), also referred to as a configuration pair or a relative positioning, we
say it has stable intersections whenever, for any pair (h̃, h̃′) close to (h, h′) and any pair of
Cantor sets (K̃ , K̃ ′) on a small neighborhood of (K , K ′), the intersection between h̃(K̃)

and h̃′(K̃ ′) is non-empty (see §3.3 for the details). The main result of §3 is the following.

THEOREM 1.2. (Theorem 3.12) The following properties are true.
(1) Every recurrent compact set is contained in an immediately recurrent compact set.
(2) Given a recurrent compact set L (respectively immediately recurrent) for g, g′, for

any (g̃, g̃′) in a small neighborhood of (g, g′) ∈ �	 × �	′ , we can choose base
points c̃a ∈ G̃(a) ∩ K̃ and c̃a′ ∈ G̃(a′) ∩ K̃ ′ respectively close to the pre-fixed ca

and ca′ , for all a ∈ A and a′ ∈ A
′, in a manner that L is also a recurrent compact

set for g̃ and g̃′.
(3) Any relative configuration contained in a recurrent compact set has stable

intersections.

It is important to observe that the work of Moreira and Yoccoz [10] was done to solve
a conjecture of Palis: for generic pairs of Cantor sets in the real line K1 and K2, the
arithmetic difference between K1 and K2, K1 − K2, contains an interval or has Lebesgue
measure zero. This conjecture was inspired by the work of Palis and Takens [15], where
they proved a theorem that assured full density of hyperbolicity on a parameter family
that generically unfolds a homoclinic tangency, provided that the Hausdorff dimension of
the horseshoe is less than one. The recurrent compact criterion was one of the tools used
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by them to show that for generic pairs K1, K2 of Cantor sets whose sum of Hausdorff
dimension is larger than one (if the sum of Hausdorff dimensions is less than one, the
arithmetic difference K2 − K1 has Hausdorff dimension less than one and so Lebesgue
measure zero), there is a real number t such that K1 and K2 + t have a stable intersection,
which implies in particular that K2 − K1 contains an interval around t.

Another motivation is the work of Dujardin and Lyubich [8], who showed that
homoclinic tangencies are the main obstruction to weak J ∗-stability, a concept related
to the absence of bifurcation on the type of periodic points (saddle, node, repeller, or
indifferent). Results regarding families unfolding homoclinic tangencies are also possible
with our techniques and will appear in another paper. The general dichotomy that the
arithmetic difference of conformal Cantor sets on the complex plane generically has zero
measure or contains an open set is under development in a joint work with Zamudio, who
has developed the scale recurrence lemma [20], another important tool.

We end this paper in §4 by showing that Buzzard’s construction can be interpreted as
a case of stable intersection of conformal Cantor sets derived from the recurrent compact
criterion. We also give (non-optimal) estimates on how ‘thick’ the Cantor sets have to be.
The main result of it is the following.

THEOREM 1.3. (Theorem 4.1) There is δ sufficiently small for which the pair of Cantor
sets (K , K) defined for Buzzard’s example has a recurrent compact set of affine configu-
rations of limit geometries L such that [Id, Id] ∈ L.

We did not aim for an optimal estimate on δ because that would complicate the argument
and it may be better to work with other constructions. It may also be possible to use
the recurrent compact criterion to construct other families of Cantor sets (considering
Buzzard’s example as a family parameterized by δ, the space between the pieces) that
would have stable intersection with any other sufficiently general Cantor set. This could
be useful when tackling the question whether automorphisms displaying a homoclinic
tangency lie in the closure of the open set of persistent tangencies, as shown by Newhouse
in [13] for the real case.

Before the main part of the text, we fix some notation. The space of affine complex
transformations is denoted by Aff(C) := {A : C → C; A(z) = α · z + β, α ∈ C

∗, β ∈
C} and the space of affine transformations over R2 is denoted by Aff(R2) := {A : R2 →
R

2; A(z) = DA · z + β, DA ∈ GL(R2), β ∈ R
2}. The δ-neighborhood of a set X ⊂

R
2 is denoted by Vδ(X) := {z ∈ R

2; there exists x ∈ X, |z − x| < δ}. The norm of any
vector will be denoted by | · | and the vector space where it lives will be clear by the
context. The uniform norm of functions f : X → Y , where X and Y are subsets of normed
vector spaces, will be denoted by ‖f ‖ := supx∈X|f (x)|. For k ∈ R greater than 1, we
denote by 	k
 the greatest integer smaller than or equal to k and if k /∈ N, we denote the
Ck norm of a function f : X → R

2 by

‖f ‖Ck = ‖f ‖C	k
 + sup
x �=y∈X

|D	k
f (x) − D	k
f (y)|
|x − y|k−	k
 .

Whenever we say a function is C1+ε, we mean that ε is a real number such that 0 < ε < 1.

https://doi.org/10.1017/etds.2021.97 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.97


Stable intersections of conformal Cantor sets 5

2. Dynamically defined conformal Cantor sets in the complex plane and their relation to
horseshoes
In this section, we define conformal (or, equivalently, asymptotically holomorphic) Cantor
sets and establish some basic properties as well as their relation to complex horseshoes,
which are important invariant hyperbolic sets of automorphisms of C2.

2.1. Dynamically defined conformal Cantor sets. A regular (also called dynamically
defined) Cantor set in C is given by the following data.
• A finite set A of letters and a set B ⊂ A × A of admissible pairs.
• For each a ∈ A, a compact connected set G(a) ⊂ C.
• A C1+ε map g : V → C defined on an open neighborhood V of

⊔
a∈A G(a).

These data must verify the following assumptions.
• The sets G(a), a ∈ A, are pairwise disjoint.
• (a, b) ∈ B implies G(b) ⊂ g(G(a)), otherwise G(b) ∩ g(G(a)) = ∅.
• For each a ∈ A, the restriction g|G(a) can be extended to a C1+ε embedding (with

C1+ε inverse) from an open neighborhood of G(a) onto its image such that m(Dg) >

μ for some constant μ > 1, where m(A) := infv∈R2≡C |Av|/|v|, A being a linear
operator on R

2.
• The subshift (	, σ) induced by B, called the type of the Cantor set

	 = {a = (a0, a1, a2, . . .) ∈ A
N : (ai , ai+1) ∈ B, for all i ≥ 0},

σ(a0, a1, a2, . . .) = (a1, a2, a3, . . .) is topologically mixing.
Once we have all these data, we can define a Cantor set (that is, a totally disconnected,

perfect compact set) on the complex plane:

K =
⋂
n≥0

g−n

( ⊔
a∈A

G(a)

)
.

We will usually write only K to represent all the data that define a particular dynamically
defined Cantor set. Of course, the compact set K can be described in multiple ways as a
Cantor set constructed with the objects above, but whenever we say that K is a Cantor set,
we assume that one particular set of data as above is fixed. In this spirit, we may represent
the Cantor set K by the map g that defines it as described above, because all the data can
be inferred if we know g. Also, when we are working with two Cantor sets K and K ′, we
denote all the defining data related to the second accordingly. In other words, K ′ is given
by a finite set A′, a set B ′ of admissible pairs, a function g′ defined on a neighborhood of
compact connected sets G(a′), etc. We use the same convention for future objects that will
be defined related to Cantor sets, such as limit geometries and configurations.

Definition 2.1. (Conformal regular Cantor set) We say that a regular Cantor set is confor-
mal whenever the map g is conformal at the Cantor set K, that is, for all x ∈ K , Dg(x) :
C ≡ R

2 → C ≡ R
2 is a linear transformation that preserves angles or, equivalently, a

multiplication by a non-zero complex number.

There is a natural topological conjugation between the dynamical systems (K , g|K)

and (	, σ), the subshift 	 induced by B. It is given by a homeomorphism
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H : K → 	 that carries each point x ∈ K to the sequence {an}n≥0 that satisfies
gn(x) ∈ G(an).

Associated to a Cantor set K, we define the sets

	f in = {(a0, . . . , an) : (ai , ai+1) ∈ B for all i, 0 ≤ i < n},
	− = {(. . . , a−n, a−n+1, . . . , a−1, a0) : (ai−1, ai) ∈ B for all i ≤ 0}.

Given a = (a0, . . . , an), b = (b0, . . . , bm), θ1 = (. . . , θ1−2, θ1−1, θ1
0 ), and θ2 =

(. . . , θ2−2, θ2−1, θ2
0 ), we denote:

• if an = b0, ab = (a0, . . . , an, b1, . . . , bm);
• if θ1

0 = a0, θ1a = (. . . , θ1−2, θ1−1, a0, . . . , an);
• if θ1 �= θ2 and θ1

0 = θ2
0 , θ1 ∧ θ2 = (θ−j , θ−j+1, . . . , θ0), in which θ−i = θ1−i = θ2−i

for all i = 0, . . . , j and θ1−j−1 �= θ2−j−1.

For a = (a0, a1, . . . , an) ∈ 	f in, we say that it has size n and define

G(a) =
{
x ∈

⊔
a∈A

G(a), gj (x) ∈ G(aj ), j = 0, 1, . . . , n

}

and the function fa : G(an) → G(a) by

fa = g|−1
G(a0)

◦ g|−1
G(a1)

◦ · · · ◦ (g|−1
G(an−1)

)|G(an).

Notice that f(ai ,ai+1) = g|−1
G(ai)

.
In our definition, we did not require the pieces G(a) to have non-empty interior.

However, if this is not the case, it is easy to see that we can choose δ sufficiently small
such that the sets G∗(a) = Vδ(G(a)) satisfy the following.

(i) G∗(a) is open and connected.
(ii) G(a) ⊂ G∗(a) and g|G(a) can be extended to an open neighborhood of G∗(a), such

that it is a C1+ε embedding (with C1+ε inverse) from this neighborhood to its image
and m(Dg) > μ.

(iii) The sets G∗(a), a ∈ A, are pairwise disjoint.
(iv) (a, b) ∈ B implies G∗(b) ⊂ g(G∗(a)), and (a, b) /∈ B implies G∗(b) ∩

g(G∗(a)) = ∅.
With this notation, we have the following lemma.

LEMMA 2.1. Let K be a dynamically defined Cantor set and G∗(a) the sets defined above.
Let G∗(a) be defined in the same way as G(a). There exist a constant C > 0 such that

diam(G∗(a)) < Cμ−n,

where μ > 1 is such that m(Dg) > μ in �a∈AG∗(a).

Proof. The proof is essentially the same as in [20]. For a ∈ 	f in, let da be the metric

da(x, y) = inf
α

l(α),

where α runs through all smooth curves inside G∗(a) that connect x to y and l(α) denotes
the lengths of such curves. Because g sends G∗(a0, a1, . . . , an) diffeomorphically onto
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G∗(a1, . . . , an) and m(Dg) > μ, then

d(a1,...,an)(g(x), g(y)) ≥ μ · da0,...,an(x, y)

for all x, y ∈ G∗(a0, . . . an). Therefore,

diam(a0,...an)(G
∗(a0, . . . an)) ≤ μ−1 · diam(a1,...an)(G

∗(a1, . . . an)),

where diama is the diameter with respect to da . We conclude that, by induction,

diam(G∗(a)) ≤ diama(G
∗(a)) ≤ μ−n · diaman(G

∗(an)).

Taking any C larger than maxa∈A diam(G∗(a)) yields the result.

As a consequence of this lemma, we can see that

K =
⋂
n≥0

g−n

( ⊔
a∈A

G∗(a)

)
,

because G(a) ⊂ G∗(a) and diam(G∗(a)) → 0.
In this manner, the sets G(a) can be substituted by the sets G∗(a) in the definition

of K. So in what follows, additional to the properties in the definition of Cantor sets, we
suppose that G(a) = ˚(G(a)) and that g can always be extended to a neighborhood Va

of G(a) such that it is a C1+ε embedding (with C1+ε inverse) and m(Dg) > μ over Va ,
which by Lemma 2.1 implies that diam(G(a)) < Cμ−n, if a = (a0, . . . an). The most
important examples of conformal Cantor sets come from intersections between compact
parts of stable and unstable manifolds of periodic points and basic sets of saddle type of
an automorphism of C2 and, as we will see, we can construct them from sets G(a) with
these properties already.

Finally, we have the following definition.

Definition 2.2. (The space �	) The set of all conformal regular Cantor sets K with the
type 	 is defined as the set of all conformal Cantor sets described as above, whose set of
data includes an alphabet A and the set B of admissible pairs used in the construction of
	. We denote it by �	 .

We are also interested in how limit geometries vary related to the map g in the case
where it has higher regularity. Thus, given any real number r > 1, we define �r

	 in the
same way as above only requiring the maps g to be Cr for this fixed r.

These spaces will be seen as topological spaces. The topology on �r
	 is generated

by a basis of neighborhoods UK ,δ ⊂ �	 , K ∈ �	 , δ > 0, where UK ,δ is the set of all
conformal regular Cantor sets K ′ given by g′ : V ′ → C, V ′ ⊃ ⊔

a∈A G′(a) such that
G(a) ⊂ Vδ(G

′(a)), G′(a) ⊂ Vδ(G(a)) (that is, the pieces are close in the Hausdorff
topology), and the restrictions of g′ and g to V ∩ V ′ are δ close in the Cr metric. Because
�	 = ∪r>1�

r
	 , we equip it with the inductive limit topology, that is, the finest topology

such that the inclusions �r
	 ⊂ �	 are continuous maps. See [7] for more details.

2.2. Semi-invariant foliations in a neighborhood of a horseshoe. As pointed out in §1,
complex horseshoes are important hyperbolic invariant sets appearing in automorphisms
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of C
2, mainly because they are present whenever there is a transversal homoclinic

intersection, as shown by [14]. We now give a quick review of these concepts and explain
how to construct semi-invariant foliations on the neighborhood of a complex horseshoe.

Given a diffeomorphism F : M → M of class Ck on a Riemannian manifold M, we say
that a compact invariant set � ⊂ M (by invariant, we mean that F(�) = �) is hyperbolic
when there are constants C > 0, λ < 1, and a continuous splitting T M|� = Es ⊕ Eu such
that:
• it is invariant, that is, DFx(E

s(x)) = Es(F (x)) and DFx(E
u(x)) = Eu(F (x));

• and for any x ∈ �, vs ∈ Es(x), and vu ∈ Eu(x), we have

|DFj(vs)|Fj (x) < Cλj |vs |x and |DF−j (vu)|F−j (x) < Cλj |vu|x , for all j ∈ N,

where | · |x is the norm on TxM associated to the Riemannian metric, which we will call
d. The bundle Es above is called the stable sub-bundle and the bundle Eu is called the
unstable sub-bundle.

Hyperbolic sets are useful because we have a good control on the sets of points that
asymptotically converge to them. For any ε > 0 and any point x in a hyperbolic set �, we
define the stable manifold and the local stable manifold by

Ws(x) = {y ∈ M , lim
n→+∞ d(Fn(y), Fn(x)) = 0}

and

Ws
ε (x) = {y ∈ M , d(Fn(y), Fn(x)) < ε, for all n ≥ 0},

respectively. It is a classical result that Ws(x) is a Ck-immersed manifold and, if ε is
sufficiently small, independently of x, Ws

ε (x) is a Ck-embedded disk tangent to Es(x).
The same results remain true for the unstable versions of the objects above, defined by
considering backwards iterates F−n instead of the forwards ones above. We denote the
unstable manifold and the local unstable manifold by Wu(x) and Wu

ε (x), respectively.
Also, it is important to observe that they vary continuously with x ∈ � in the Ck topology
and are invariant in the sense that F(Ws,u(x)) = Ws,u(F (x)).

In the special case that F is an automorphism of C2, that is, a holomorphic diffeomor-
phism of C2, the manifolds above are complex manifolds. Also, the sub-bundles Es and
Eu are such that Es,u(x) is a complex linear subspace of TxC

2 ≡ C
2.

Going back to the general setting, we say that the hyperbolic set � on M has a local
product structure if there exists ε > 0 such that, for any x, y ∈ � sufficiently close,
Ws

ε (x) ∩ Wu
ε (y) consists of a single point z that also belongs to �. This structure makes

the neighborhood (in �) of a point x ∈ � homeomorphic to the product (Ws
ε (x) ∩ �) ×

(Wu
ε (x) ∩ �). Also, this condition is equivalent to � being locally maximal, that is, there

is an open set U (� ⊂ U ) such that � = ⋂
n∈Z Fn(U). We say that the hyperbolic set is

transitive when there is an x ∈ � such that {Fn(x), n ∈ Z} is dense in �. A hyperbolic set
with these two properties is called a basic set.

A horseshoe is a particular type of basic set. It has the additional properties:
• it is infinite;
• it is of saddle-type, that is, the bundles Es and Eu are non-trivial; and
• it is totally disconnected.
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The dynamics of F over a horseshoe � is conjugated to a Markov shift of finite type,
similarly to the Smale horseshoe, which is conjugated to {0, 1}Z. The last hypothesis
implies that, in particular, a horseshoe is a zero-dimensional set and so it is topologically
a Cantor set. We observe that, because of Smale’s Spectral Decomposition Theorem, any
horseshoe for a diffeomorphism F can be decomposed into finitely many components,
each of them being topologically mixing for some iterate Fm of F. Thus, from now on, we
assume that all horseshoes are topologically mixing.

Horseshoes appearing in automorphisms of C2 will be called complex horseshoes in
this paper. As pointed out in §1, this nomenclature does not conflict with that used by
Oberste-Vorth in [14], that is, the horseshoes constructed there are horseshoes in our sense.
Another important example, to which we will refer many times in this paper, is the one
constructed by Buzzard in [4] to study Newhouse regions in Aut(C2). The objective of
this section is to show that a complex horseshoe is, locally, close to the product of two
conformal Cantor sets, as defined in the previous subsection. To do so, we will first need
to construct stable and unstable foliations in some neighborhood of it, which is the other
objective of this subsection.

This is done in the next theorem, which is just a small adaptation of a theorem of Pixton
[17] used by Buzzard in [4]. The only difference is that we require the foliations to be
C1+ε instead of just C1. However, before stating it, some remarks. For a foliation F, we
will denote the leaf though a point p in its domain (which is an open set) by L(p), and we
will denote the stable and unstable foliations by F s and Fu, respectively. In the statement,
we will deal only with the unstable foliation, but the analogous result for the stable version
can be done by exchanging G with G−1 and Es with Eu. The norm ‖DG|Es ,Eu‖ is equal to
supx∈� |DG|Es(x),Eu(x)| and this last norm is the one coming from the Riemannian metric
of choice that we fix on C

2. Finally, the whole concept of a horseshoe works for local
diffeomorphisms, or injective holomorphisms as follows.

THEOREM 2.2. Let U ⊂ C
2. Let � ⊆ U be a horseshoe for an injective holomorphism

G0 : U → M , with � = ⋂
n∈Z Gn

0(U), and let Es ⊕ Eu be the associated splitting of
T�C

2.
Suppose that ‖DG0|Es ‖ · ‖DG−1

0 |Eu‖ · ‖DG−1
0 |Es ‖1+ε < 1.

Then, there is a compact set L and δ > 0 such that for any holomorphism G : U → C
2

with ‖G − G0‖ < δ, we can construct a C1+ε foliation Fu
G defined on a open set V ⊂ U

such that:
• the horseshoe �G = ⋂

n∈Z Gn(U) satisfies �G ⊂ int L ⊂ L ⊂ Fu
G;

• if p ∈ �G, then the leaf Lu
G(p) agrees with Wu

loc(p);
• if p ∈ G−1(L) ∩ L, then G(Lu

G(p)) ⊇ Lu
G(G(p)), that is, it is semi-invariant;

• the tangent space TpLu
G(p) varies C1+ε with p and continuously with G;

• the association G → Fu
G is continuous on the C1+ε topology.

The proof of this theorem is provided in Appendix A. It contains a brief review of the
argument by Pixton and then proceeds to the small changes necessary for our context.

Remark 2.3. The condition ‖DG0|Es ‖ · ‖DG−1
0 |Eu‖ · ‖DG−1

0 |Es ‖1+ε < 1 is automat-
ically satisfied, for ε sufficiently small, for the horseshoe of Buzzard’s example (see
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Example 2.7). For general complex horseshoes, we cannot guarantee it. Nevertheless, the
condition can be weakened to a pointwise one so that the theorem is still true. In fact,
checking the proof presented in the appendix, including the particular version of the Cr

section theorem, we see that it is sufficient that

|DG0|Es(x)| · |DG−1
0 |Eu(x)| · |DG−1

0 |Es(G0(x))|1+ε < C < 1

for every x ∈ �, where C < 1 is a constant uniform for all x. Observe that
because Es(x) and Eu(x) are complex lines in C

2 and G is holomorphic, then
|DG−1

0 |Es(G0(x))| = |DG0|Es(x)|−1, and hence this condition can be simplified to
‖DG0|Es ‖−ε · ‖DG−1

0 |Eu‖ < 1.

Remember that whenever we have a hyperbolic set �, there is an adapted metric ‖ · ‖′
such that the constant C in the definition of the hyperbolic set is equal to 1. In this
metric, the condition ‖DG0|Es ‖−ε · ‖DG−1

0 |Eu‖ < 1 will be automatically satisfied, for
some ε sufficiently small, with ‖ · ‖′ instead of ‖ · ‖. Because such metrics are uniformly
equivalent in a compact set containing both the foliations above, it follows that close to
a complex horseshoe, we can always construct stable and unstable foliations with the
properties listed in Theorem 2.2.

Remark 2.4. Each leaf of the foliation obtained in Theorem 2.2 can be chosen to be a
holomorphic curve. This only depends on being able to consider the foliation F1 (see
the proof in Appendix A) consisting of leaves that are holomorphic curves. The local
construction of F1 in [17] involves only an isotopy and a bump function applied to create
disk families along compact (and possibly very small) parts of Ws . Checking the details in
the original, we observe that such construction can be done in a way that makes those disk
families be holomorphic embedded curves. This is mentioned in [4]; see the appendix of
[3] for further details.

2.3. Conformal Cantor sets locally describe horseshoes. To end this section, we show
that a horseshoe is, locally, close to the product of two conformal Cantor sets. Having in
mind the local product structure, this fact is a consequence of the following theorem.

THEOREM 2.5. Let � be a complex horseshoe for an automorphism G ∈ Aut(C2) and p
be a periodic point in �. Then, if ε is sufficiently small, there are an open set U ⊂ C, an
open set V ⊂ Wu

ε (p) containing p, and a holomorphic parameterization π : U → V such
that π−1(V ∩ �) is a conformal Cantor set in the complex plane.

Of course an analogous version is true for the stable manifold. The main ingredient is
the following lemma.

LEMMA 2.6. Let �G be a complex horseshoe for an automorphism G ∈ Aut(C2) together
with its unstable foliation Fu

G. Additionally, let N1 and N2 be two C1+ε transversal sections
to Fu

G. Suppose that for some periodic point p ∈ �G, the tangent planes of N1 and N2

to the points of intersection N1 ∩ Lu
G(p) = q1 and respectively N2 ∩ Lu

G(p) = q2 are
complex lines of C2. Then the projection along unstable leaves �u : N1 → N2 is a C1+ε

map conformal at q1.
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Proof. Observe that, because p ∈ �G, every backwards iterate of the segment in Lu
G(p)

that connects q1 and q2 stays on the domain of the foliation. So, for every n ∈ N, we can
define small neighborhoods Nn

i ⊂ Ni of qi , i = 1, 2, such that G−n(Nn
i ) is also on the

domain of the foliation. Furthermore, this restriction can be done in such manner that,
because p is periodic and, by the inclination lemma, G−n(Nn

1 ) and G−n(Nn
2 ) are δ close

to each other on the C1 metric for every n > nδ . Also, we can assume that their tangent
directions at qn

i = G−n(qi) are bounded away from Tqn
i
Wu

G, i = 1, 2. Let �n
u : Nn

1 → Nn
2

be the projection along the unstable foliation.
There is a small neighborhood Ũ ⊂ C

2 of qn
1 and qn

2 , and a C1+ε map f : Ũ → D × D

such that the unstable leaves are taken onto the horizontal levels D × {z}, z ∈ D, and Nn
1

and Nn
2 are taken onto graphs (h1(z), z) and (h2(z), z) of C1+ε embeddings h1 and h2

with the domain being a small disk D too. Under this identification, �n
u is a C1+ε map that

carries (h1(z), z) to (h2(z), z), and, because G−n(Nn
1 ) and G−n(Nn

2 ) are δ close to each
other on the C1 metric, has a derivative δ close to the identity.

Now, the projection along unstable foliations commute with G. Therefore, �u = Gn ◦
�n

u ◦ G−n. Using the chain rule to calculate the derivative of D�u at q1, we obtain an
expression of the form

A1 · A2 · · · An · D�n
u · Bn · · · B1,

where Bi represents the restriction of (DG)−1 to T
qi−1

1
Ni−1

1 and Ai the restriction of DG

to Tqi
2
Ni

2, for i from 1 to n (q0
1 = q1 and N0

1 = N1). However, all of these tangent spaces

are, by induction, complex lines in C
2, so all the Ai and Bi are conformal. This way, the

derivative of �u is at most δ distant from being conformal. Making δ → 0 (or equivalently,
n → ∞), we have the desired conformality.

The proof of Theorem 2.5 will be done using the Buzzard’s horseshoe [4] because it
makes the comprehension easier and we will need this example later. For the general case,
one need just to use Markov neighborhoods as in [17], but the proof is easily deduced from
the proof for this example. So now we proceed to a brief recapitulation of this example.

Example 2.7. (Buzzard) Let S(p; l) ⊂ C denote the open square centered at p of sides
parallel to the real and imaginary axis of side length equal to l. Consider the nine points
set:

P = {x + yi ∈ C; (x, y) ∈ {−1, 0, 1}2}
and a positive real number δ < 1. Define c0 = 1 − δ and

K0 :=
⋃
a∈P

S(a; c0) and K1 := K0 × K0 ⊂ C
2.

We identify each connected component of K1, S(a; c0) × S(b; c0), as the pair (a, b) ∈ P 2.
Consider now some positive real number c1 ∈ (c0 = 1 − δ, 3c0/(2 + c0) = (3 − 3δ)/

(3 − δ)) and the map f : K0 → C defined as

f (w) :=
∑
a∈P

3a

c1
χS(a;c0)

(w).
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F3

F1

F2

FIGURE 1. A copy of the diagram in Buzzard’s paper explaining the behavior of F. The grid of nine squares
actually represents K0 × K0 and not the set K0 itself. Each square represents a connected component of K0 × K0.
Although there are 81 of them, the diagram only presents nine, so it is a simplification of the exact situation.

Moreover, each subset of C is represented by an interval.

Notice that its image is composed of nine points as is P. Analogously, we can define Kg :=⋃
a∈P S(3a/c1; 3) and define

g(z) :=
∑
a∈P

−a · χS(3a/c1;3)(z).

Then, defining the maps:

F1(z, w) := (z + f (w), w);

F2(z, w) := (z, w + g(z));

F3(z, w) :=
(

c1

3
z,

3
c1

w

)
;

and making F : K0 × Kg → C
2, F := F3 ◦ F2 ◦ F1, we have that in a connected compo-

nent (a, b) of K1,

F(z, w) =
(

c1

3
z + b,

3
c1

(w − b)

)
.

Figure 1 was presented in [4] and represents the map F.
The maximal invariant set of F over K1, � = ⋂

n∈Z Fn(K1), is a hyperbolic set with
0 as a fixed saddle point. It is easy to see that Wu

F ,loc((0, 0)) := {0} × {S(0; c0)} is the
connected component that contains (0, 0) of the intersection between Wu

F ((0, 0)) and
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the connected component (0, 0) of K1. Also, the set Wu
F ,loc((0, 0)) ∩ � can be seen as

a conformal Cantor set KF on the complex plane (in this case, 0 × C) given by the maps:

ga : S(a; c0) → S(0; 3);

z �→ 3
c1

(z − a).

Likewise, we can write Ws
F ,loc((0, 0)) ∩ � as the same Cantor set K. The condition c1 <

(3c0/(2 + c0)) is necessary for the image of each ga to cover the union of their domains.
Now we work with automorphisms of C2 that are sufficiently close to this model F.

First, we use Runge’s theorem to approximate f and g on K0 and Kg respectively by poly-
nomials pf and pg , obtaining a map G0 = F3 ◦ F ′

2 ◦ F ′
1 ∈ Aut(C2), where F ′

1(z, w) :=
(z + pf (w), w) and F ′

2(z, w) := (z, w + pg(z)). Then, we fix K ′ ⊂ K ′ ⊂ int(K1) such
that, considering �G the maximal invariant set by G of the open set K1, it is contained
in K ′ whenever ‖G − G0‖ on K0 × Kg is sufficiently small. Furthermore, there is a fixed
point pG that is the analytic continuation of the fixed point (0, 0) of F. Because ‖G − F‖
is small, we can also show that the projection onto the first coordinate � : Ws(pG; loc) →
S(0; 3) is a biholomorphic map close to the identity, where Ws(pG; loc) is the connected
component that contains pG of Ws(pG) ∩ U , where U = S(0; 3) × S(0; (2 + c0)/c0)

(notice it is a larger portion of the stable manifold than previously defined for F).
Observe that G−1(Ws(pG; loc)) ∩ (S(0; (3/c1)c0) × K0) is made of nine different

connected components, W1, W2, W3, . . . , W9, each of them holomorphic curves close to
being horizontal, because of the continuous dependence of the foliations on G (so, as
long as f and g are well approximated by pf and pg and ‖G − G0‖ is sufficiently small).
Consider now Vi = G(Wi), i = 1, 2, . . . , 9. Notice that all the Vi are disjoint subsets of
Ws(pG; loc).

According to Theorem 2.2 and Remark 2.4, Fu
G can be defined whenever G is

sufficiently close to F and we can consider its leaves to be holomorphic lines very close to
the vertical lines. However, its domain may be only a small neighborhood of �G. We now
show a way of constructing it that covers a large subset of U.

First, consider the foliation by vertical leaves {z} × S(0; 3) defined for z on a small
neighborhood of S(0; 3). For any real number k > 1 sufficiently close to 1, if G is
sufficiently close to F, then

S(a; k−1c1) × S(0; (2 + c0)k) ⊂ G(S(0; 3) × S(a; c0))

⊂ S(a; kc1) × S(0; 3) for all a ∈ P ,

because the inclusions are true for F. Let V−1(a) = S(a; k−1c1) and V1(a) = S(a; kc1)

as above. Observe that if k is sufficiently close to 1, for each Vi , there is a ∈ P such that
�(Vi) ⊂ V−1(a), again because it is true for F. Also, let

V (a) = �(G(S(0; 3) × S(a; c0)) ∩ {w = 0}) ⊂ C.

Then V−1(a) ⊂ V (a) ⊂ V1(a). The image of the vertical foliation restricted to
S(0; 3) × S(a; c0) by G is a foliation of G(S(0; 3) × S(a; c0)) described as (u, v) �→
(u + �a(u, v), v) for u ∈ V (a) and v ∈ S(0; (2 + c0)k) (after an obvious shrinking), with
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�a small in the C1 metric as ‖G − F‖ is small, once more, because it is true for F if we
make �a ≡ 0. Notice that �a(u, v) is always holomorphic on v, which is equivalent to the
fact that the leaves, given by (u0 + �a(u0, v), v) for u0 fixed, are holomorphic curves.

For each a ∈ P , fix λa : C → [0, 1] a bump function with support contained in V (a)

and such that V−1(a) ⊂ {λa(z) = 1} ⊂ V (a). It is easy to see that λa with these properties
can be chosen independently of G. We can now extend each of the foliations above to
V1(a) × S(0; 2 + c0) by

(u, v) ∈ V1(a) × S(0; 2 + c0) �→
{

(u + λa(u) · �a(u, v), v) for u ∈ V (a),

(u, v) for u ∈ V1(a) \ V (a),

which yields a foliation that is C∞ with holomorphic leaves (for each fixed u0). This
foliation is C∞ but observe that it is not yet invariant in a neighborhood of the invariant
set �. The resultant invariant foliation Fu

G that is constructed from it, at the end of the
argument, is only C1+ε in general. This resultant foliation is however still C∞ away from
the set �. By choosing ‖�a‖C1 sufficiently small (relatively to ‖λa‖C1 ), which can be done
by making G very close to F, we can guarantee that the map above is injective. To guarantee
that it is surjective onto V1(a) × S(0; 2 + c0), we observe that it is clearly surjective
outside of supp λa × S(0; 2 + c0). Let Ṽ (a) be a set homeomorphic to the closed ball
such that supp λa ⊂ Ṽ (a) ⊂ V (a). For u′ ∈ supp λa and v ∈ S(0; 2 + c0) fixed, if ‖�a‖
is sufficiently small, the map

u ∈ Ṽ (a) → C

u �→ u′ − λa(u) · �a(u, v)

maps Ṽ (a) inside itself, hence has a fixed point. It follows that the association is indeed
surjective.

Finally we can consider a foliation given by

(u, v) �→
(

u +
∑
a∈P

λa(u) · �a(u, v), v

)

for (u, v) ∈ S(0; 3) × S(0; (2 + c0)k) considering �a(u, v) = 0 outside of the sets V (a).
Restricting it to an open subset V = S(0; r) × S(0; (2 + c0)k) with r close to k−1 · 3 but
a bit smaller (depending on G), we get a foliation with the same properties of F1 in the
proof of Theorem 2.2, and repeat the construction to obtain the foliation Fu

G.
Observe that this foliation is not semi-invariant as described in the theorem in the

whole set S(0; r) × S(0; (2 + c0)k), as we cannot control G on S(0; r) × (S(0; 2 + c0) \⋃
a∈P S(a; c0)). Nonetheless, by definition, G−1 carries each leaf of Fu

G passing though
a point of Vi , i = 1, 2, . . . , 9 to a leaf of the same foliation, and this is all the
semi-invariance that we will need.

In view of the continuous dependence of the foliation on G, and maybe by restricting
the foliation to an open set, we can assume that the leaves of Fu

G are almost vertical. Thus,
we can define the projections along unstable leaves �i : Wi → Ws(pG; loc).
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Proof of Theorem 2.5. We need to show that we can express KG = �(Ws(pG; loc) ∩
�G) as a dynamically defined conformal Cantor set through the maps fi : �(Vi) →
S((0, 0); 3), where fi = � ◦ �i ◦ G−1 ◦ �−1. Let us show that KG is the maximal
invariant set of these maps. Take x ∈ Ws(pG; loc) ∩ �G. Thus, G−1(x) ∈ �G ⊂ U , so
there exists i ∈ {1, 2, 3, . . . , 9} such that G−1(x) ∈ Wi , which implies x ∈ Vi . Likewise,
y = �i(G

−1(x)) ∈ �G. To show this, we see that Gn(y) ∈ Ws(pG; c0) ∩ U , for all n ≥
0, as this set is carried into itself by forward iteration of G. Additionally, G−n(y) ∈
U for all n > 0 because y ∈ Wu(G(x)) and backwards iterations of unstable leaves always
remain inside U by construction. So, y ∈ ⋂

n∈Z Gn(U) = �G, and in particular y ∈
Ws(pG; c0) ∩ U . Hence, as we have already shown, y ∈ Vi for some i ∈ {1, 2, 3, . . . , 9}.
Repeating this argument inductively, we obtain that the orbit by the maps fi of �(x)

always remains on
⋃9

i=1 Vi .
However, if x ∈ Ws(pG; c0) ∩ U is such that the forward orbit of �(x) by the maps

fi is always in
⋃9

i=1 Vi , then, using that projections along the unstable leaves commute
with the map G and denoting by xn the nth term of the orbit of x by the fi , we can
show, inductively, that G−n(x) = �u ◦ �−1(xn), (n > 0), �u being a projection along
unstable leaves between two components of Ws(pG) ∩ U . This implies that G−n(x) ∈
U , for all n > 0, and as Gn(x) ∈ U , for all n ≥ 0, then x ∈ �G.

It is clear that the manifolds Ws
G(pG, loc) and Wi satisfy the properties of the transversal

sections on Lemma 2.6. It is then clear that the maps fi are C1+ε and conformal at K,
because of the density of periodic points (notice that � is a parameterization of a complex
line).

The general case of a complex horseshoe can be done using Markov neighborhoods,
as described in [17]. The improvement from the work of Bowen [2] is that the boxes are
compact sets of the ambient space filled with our stable and unstable foliations. Given G ∈
Aut(C2), � and p as in the statement of Theorem 2.5, let Rj , j = 1, . . . , m be the boxes
of a Markov neighborhood of �. We consider Wu

part, a large compact part of the unstable
manifold Wu

G(p) such that its intersection with each one of the boxes Rj , j = 1, . . . , m,
is equal to exactly one connected component of the intersection between Wu

G(p) and Rj .
We also assume p ∈ Wu

part ∩ Rj for some value of j. This compact part exists because the
horseshoe is mixing.

Then, define the sets G(i, j) as G−1(Rj ) ∩ Ri ∩ Wu
part and the maps

g(i,j) : G(i, j) → Wu
part

q �→ �s
j (G(q))

for all i, j = 1, . . . , n, where �s
j denotes the projection along the stable leaves inside

Rj into Wu
part. Notice that, in this case, there is no need to extend the foliations, given the

existence of the Markov partition.
Verifying that this set of data defines a dynamically defined Cantor set (up to a

parameterization) and that it is equal to � ∩ V for some neighborhood V of p follows
from the arguments on the example above almost ‘ipsis literis’. If the boxes Rj are
sufficiently small, then one can extend the maps g(i,j) to an C1+ε expanding map g defined
in a small neighborhood of the union of the pieces G(i, j), as the projections cannot
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contract distances by much. The mixing property comes from the mixing dynamics of
the horseshoe. To make this conformal Cantor set to be contained in Wu

ε (p), all one needs
to do is to apply G−N(p) a sufficient amount of times, where N(p) is the period of p. This
finishes the proof.

Remark 2.8. One can also observe that taking pf and pg as sufficiently good approxima-
tions and requiring ‖G − G0|U‖ to be sufficiently small, the Cantor set obtained above,
identified as KG, is in a small open neighborhood V of KF in �PN . This will be important
in §4.

3. A sufficient criterion for the stability of conformal Cantor sets
In this section, we explore the consequences of the conformality on the structure of the
Cantor sets. The first result is the existence of limit geometries and some consequences
of them. In §3.2, we define renormalization operators and verify that the limit geometries
are attractors with respect to their actions. In §3.3, we use this last fact to show that the
concept of recurrent compact gives a sufficient criterion for the stability of intersections
between Cantor sets. All of these concepts and techniques are natural extensions from the
real case.

3.1. Limit geometries. Given a conformal Cantor set K, we define K(a) = K ∩
G(a) and fix a base point c(a) ∈ K(a) for all a ∈ A. Additionally, given θ =
(. . . , θ−n, . . . , θ0) ∈ 	−, we write θn = (θ−n, . . . , θ0) and rθn

:= diam(G∗(θn)).
As previously mentioned, we can extend g and its inverses to a neighborhood of⊔
a∈A G(a), so we may consider, in the case that (ai , ai+1) ∈ B, f(ai ,ai+1) defined from

G∗(ai+1) to G∗(ai); and hence also consider fa : G∗(a0) → G∗(a) when a ∈ 	f in. With
this in mind, we can define, for any θ ∈ 	− and n ≥ 1:

cθn
= fθn

(cθ0),

k
θ
n = �θn

◦ fθn
,

where k
θ
n : G∗(θ0) → C and �θn

is the affine transformation over C, �θn
(z) = α · z +

β, α ∈ C
∗, β ∈ C, such that �θn

(cθn
) = 0 and D(�θn

◦ fθn
)(cθ0) = 1 ∈ C. A transfor-

mation with these properties exists because the map g and thus its inverse branches are
conformal on the set K, so Dfθn

(cθ0) is a conformal matrix that can be seen as a linear
operator over C, or precisely, a multiplication by a complex number. We denote the space
of affine transformations over C by Aff(C) and consider it equipped with the C1 topology.

Define 	−
a = {θ ∈ 	−, θ0 = a} and consider in this set the topology given by the

metric d(θ1, θ2) = diam(G∗(θ1 ∧ θ2)). Likewise, let the space Emb1+ε(G
∗(a), C) of

C1+ε embeddings from G∗(a) to C with C1+ε inverse be equipped with the C1+ε metric.
We are also interested in the case the map g is Cr , with r ≥ 2, so in what follows, we

consider r to be a real number larger than 1. With these notation and considerations, we
have the following lemma.

LEMMA 3.1. (Limit geometries) For each θ ∈ 	−, the sequence of Cr embeddings k
θ
n :

G∗(θ0) → C converges in the Cr topology to an embedding kθ : G∗(θ0) → C. Moreover,
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the convergence is uniform over all θ ∈ 	− and in a small neighborhood of g in �r
	 (see

paragraph after Definition 2.2). The map k : 	−
a → Emb(G∗(a), C), θ �→ kθ is Hölder,

if we consider the metrics described above for both spaces. The kθ : G∗(θ0) → C defined
for any θ ∈ 	− are called the limit geometries of K.

Proof. We will first prove the result for 1 ≤ r < 2. Consider for each n ≥ 2 (and θ ∈ 	−),
the functions �

θ
n : Im(k

θ

n−1) → C:

�
θ
n = �θn

◦ f(θ−n,θ−n+1) ◦ �−1
θn−1

.

Notice that

k
θ
n = �

θ
n ◦ �

θ

n−1 ◦ · · · ◦ �
θ

2 ◦ k
θ

1 . (3.1)

We proceed by controlling the functions �
θ
n and showing that they are exponentially close

to the identity.
First, the domain of f(θ−n,θ−n+1) in the definition of �

θ
n is G∗(θn−1). Denoting its

diameter by rθn
, we know that rθn

≤ C · μ−n for some constant C > 0, as shown in Lemma
2.1. However, we can do better. In what follows, all the C terms (with subscript, superscript,
or without them) will always denote a positive real constant that will, in some way, depend
on the other constants previously appearing in this proof, but never on n ∈ N or θ . If a map
f is C1+ε on an open set U ⊂ C, then, for any point z ∈ U and h ∈ C small enough so that
the segment joining z and z + h is in U:

|f (z + h) − (f (z) + Df (z) · h)| < C̃|h|1+ε,

for some constant C̃ > 0. Consequently, f(θ−n,θ−n+1) : G∗(θn−1) → G∗(θn) is Cf · r1+ε
θn−1

close to the map Aθn
∈ Aff(C) described by

Aθn
(cθn−1

) = cθn
and DAθn

= Df(θ−n,θ−n+1)(cθn−1
),

and thus, if n is large enough:

rθn
≤ |Df(θ−n,θ−n+1)(cθn−1

)| · rθn−1
+ Cf · r1+ε

θn−1

≤ rθn−1
· (|Df(θ−n,θ−n+1)(cθn−1

)| + C1 · μ(−n+1)ε).

Arguing by induction, using that log (x + y) ≤ log x + (y/x), we obtain

log rθn
≤ log |Dfθn

(cθ0)| + ‖Dg‖ ·
n−1∑
j=0

(C1 · μ−jε) ≤ log |Dfθn
(cθ0)| + C2,

so

rθn
≤ C′ · |Dfθn

(cθ0)| ≤ C′ · μ−n,

because |Df(θ−n,θ−n+1)(x)|−1 ≤ ‖Dg‖ for all x ∈ G∗(θ−n+1), where ‖Dg‖ denotes the
C0 norm of this function over its domain. In a completely analogous way, we can show,
maybe enlarging C′, that

C′−1 · |Dfθn
(cθ0)| ≤ rθn

≤ C′ · |Dfθn
(cθ0)| (3.2)
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and so the size of the G∗(θn) is controlled. This implies that

‖f(θ−n,θ−n+1) − Aθn
‖ ≤ C · |Dfθn

(cθ0)|1+ε

for some constant C, for all θ ∈ 	−. However, by construction, �θn
◦ Aθn

◦ �−1
θn−1

= Id

and D�θn
= (Dfθn

(cθ0))
−1; therefore,

‖�θ
n − Id‖ = ‖�θ

n − �θn
◦ Aθn

◦ �−1
θn−1

‖ ≤ ‖D�θn
‖ · ‖f(θ−n,θ−n+1) − Aθn

‖
≤ |Dfθn

(cθ0)|−1 · C · |Dfθn−1
(cθ0)|1+ε

≤ C3 · (μ−ε)
n

as we wished to obtain. This is enough to show that {kθ
n}n≥0 is a Cauchy sequence, at least

in C0 metric. In fact, for m, l ≥ 1,

‖kθ

m+l − k
θ
m‖ = ‖�θ

m+l ◦ · · · ◦ �
θ

2 ◦ k
θ

1 − �
θ
m ◦ · · · ◦ �

θ

2 ◦ k
θ

1‖

≤
l∑

j=1

‖�θ

m+j ◦ · · · ◦ �
θ

2 ◦ k
θ

1 −�
θ

m+j−1 ◦ · · · ◦ �
θ

2 ◦ k
θ

1‖ ≤
l∑

j=1

‖�θ

m+j− Id‖

≤
l∑

j=1

C3 · (μ−ε)
m+j ≤ C3 · (μ−ε)m

1 − μ−ε
,

which implies that ‖kθ

m+l − k
θ
m‖ → 0 as m → ∞. Further, for any point z ∈ Im(k

θ

n−1), we

can calculate D�
θ
n(z) = D�θn

· Df(θ−n,θ−n+1)(�
−1
θn−1

(z)) · D�−1
θn−1

. However, by hypothe-

sis, we have that D�
θ
n(cθ0) = Id and

d(�−1
θn−1

(z), �−1
θn−1

(cθ0)) ≤ diam(G∗(θn−1)).

Then, using that Df(θ−n,θ−n+1) is ε-Hölder, we conclude that

‖D�
θ
n − Id‖ ≤ Cf · |D�θn

| · |D�θn−1
|−1 · rε

θn−1
≤ C4μ

−nε, (3.3)

because |D�θn
| and |D�θn−1

| are comparable (because D�θn
= Dfθn

(cθ0)
−1 and so

|D�θn
| · |D�θn−1

|−1 is controlled by ‖Dg‖).

Now we can show that {‖Dk
θ
n‖}n≥1 is bounded. Indeed, ‖Dk

θ
n‖ ≤ ∏n

j≥2 ‖D�
θ

j ‖ ·
‖Dk

θ

1‖ implies that:

log(‖Dk
θ
n‖) ≤

n∑
j=2

log ‖D�
θ

j ‖ + C0

≤
n∑

j=2

log |(‖Id‖ + ‖D�
θ

j − Id‖) + C0 ≤
n∑

j=2

C4μ
−jε + C0

≤ C4μ
−2ε + C0 − C0μ

ε

1 − με
= C5.
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The same argument can be used to show that ‖(Dk
θ
n)−1‖ is bounded. It also follows

that:

‖Dk
θ

m+l − Dk
θ
m‖ ≤

l−1∑
j=0

‖Dk
θ

m+j+1 − Dk
θ

m+j‖ ≤
l−1∑
j=0

‖D�
θ

m+j+1 − Id‖ · ‖Dk
θ

m+j‖

≤ C5 ·
l−1∑
j=0

C4μ
−(m+j+1)ε ≤ C6 · μ−m,

which shows that {kθ
n}n≥0 is a Cauchy sequence also in the C1 metric, and so it converges

to a C1 map kθ . Because ‖(Dk
θ
n)−1‖ is bounded, this also implies that the inverse maps

{(kθ
n)−1

n≥0} also converge in the C1 metric to the inverse of kθ .

We need to show that kθ is C1+ε. This is true for k
θ
n for all n ≥ 0. Indeed, for a given

θ ∈ 	−, we write for n ≥ 0, x, y ∈ G∗(θ0)’:

In(x, y) = |Dk
θ
n(x) − Dk

θ
n(y)| < Hn · |x − y|ε,

for some constant Hn > 0. By equations (3.1), (3.3), and the fact that Dk
θ
n are bounded,

we have that:

In(x, y) = |D(�n ◦ k
θ

n−1)(x) − D(�n ◦ k
θ

n−1)(y)|
≤ |D�n(k

θ

n−1(x))(Dk
θ

n−1(x) − Dk
θ

n−1(y))|
+ |(D�n(k

θ

n−1(x)) − D�n(k
θ

n−1(y)))Dk
θ

n−1(y)|
≤ (1 + C4 · μ(−n+1)ε) · In−1(x, y)

+ eC5 · ‖Dg‖ · |Df(θ−n,θ−n+1)(�
−1
θn−1

(x)) − Df(θ−n,θ−n+1)(�
−1
θn−1

(y))|
≤ (1 + C4 · μ(−n+1)ε) · In−1(x, y) + eC5 · ‖Dg‖ · Cf · μ(−n+1)ε · |x − y|ε
≤ ((1 + C4 · μ(−n+1)ε) · Hn−1 + eC5 · ‖Dg‖ · Cf · μ(−n+1)ε) · |x − y|ε,

which inductively shows that these functions have Hölder continuous derivatives. Addi-
tionally, we can choose the Hölder constants satisfying the relation:

Hn ≤ (1 + C4 · μ(−n+1)ε) · Hn−1 + C7 · μ(−n+1)ε, (3.4)

and then the sequence {Hn}n≥1 is bounded. Effectively, it is crescent and if Hn−1 >

1, then Hn ≤ (1 + C4 · μ(−n+1)ε + C7 · μ(−n+1)ε) · Hn−1 ≤ (1 + C8 · μ(−n+1)ε) · Hn−1

and using the same strategy as above, we have

log Hn ≤ log Hn−1 + log(1 + C8 · μ(−n+1)ε)

≤
n−1∑
j=1

log(1 + C8 · μ−jε) ≤
n−1∑
j=1

C8 · μ−jε ≤ H ,

as stated.
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Finally, for each pair x, y ∈ G∗(θ0), there is n ≥ 0 such that ‖Dk
θ
n − Dkθ‖ is less than

|x − y|ε so, by triangle inequality, we have |Dkθ(x) − Dkθ(y)| < (H + 2) · |x − y|ε. By
maybe enlarging H a little, the same estimates are true for the inverses of kθn and kθ .

Now, because the maps kθ are C1+ε, to prove that the sequence k
θ
n converges to kθ in

the C1+ε topology, it is sufficient to show that

lim
n→∞ sup

x,y∈kθ (G∗(θ0))

|D(k
θ
n ◦ (kθ )−1)(x) − D(k

θ
n ◦ (kθ )−1)(y)|

|x − y|ε = 0. (3.5)

For a fixed value of n > 0, let θn ∈ 	− be the infinite word such that θ = θnθn.
Consequently, for m > n,

k
θ
n ◦ (k

θ
m)−1 = �θn

◦ fθn
◦ (fθm

)−1 ◦ (�θm
)−1

= �θn
◦ (fθn

m−n
)−1 ◦ (�θm

)−1

= �θn
◦ (fθn

m−n
)−1 ◦ (�θn

m−n
)−1 ◦ �θn

m−n
◦ (�θm

)−1

= �θn
◦ (kθn

m−n)−1 ◦ �θn
m−n

◦ (�θm
)−1.

Remember that (D�θn
m−n

)−1 = Dfθn
m−n

(cθ−n) has norm comparable to rθn
m−n

. Now,
because fθn

(cθ0) could also be chosen as the base point for the piece G(θ−n), equation
(3.2) implies that |Dfθn

m−n
(fθn

(cθ0))| is also comparable to rθn
m−n

, and so |D(�θn
m−n

◦
(�θm

)−1)| is comparable to |�−1
θn

|. Therefore, for x, y ∈ kθm(G∗(θ0)),

|D(k
θ
n ◦ (k

θ
m)−1)(x) − D(k

θ
n ◦ (k

θ
m)−1)(y)|

≤ C9|D(kθn
m−n)−1(�θn

m−n
◦ (�θm

)−1(x)) − D(kθn
m−n)−1(�θn

m−n
◦ (�θm

)−1(y))|
≤ C9(H + 2)|�θn

m−n
◦ (�θm

)−1(x) − �θn
m−n

◦ (�θm
)−1(y)|ε

≤ C10r
ε
θn

|x − y|ε ≤ C′ C10μ
−nε|x − y|ε.

Finally, making m → ∞ and then n → ∞, we prove the limit (3.5).
All the constants appearing in the estimates above depend continuously (actually, they

are simple functions) on the C1 norm of g as well as the Hölder constant and exponent
of Dg, and so, for any g′ sufficiently close to g, all of those estimates would be the same
except with a minor pre-fixed error. This implies that the convergence we just showed is
uniform not only over 	− but also on a small neighborhood of g in the Hölder topology.

The Hölder continuity of the association θ �→ kθ comes from the fact that, for some
constant C12 > 0,

‖kθ − k
θ
n‖C1+ε ≤ C12r

ε
θn

, (3.6)

from which, for any θ1, θ2 ∈ 	−,

‖kθ1 − kθ2‖C1+ε ≤ 2C12r
ε

θ1∧θ2 = 2C12d(θ1, θ2)ε.

Equation (3.6) is a consequence of the fact that for x, y ∈ kθ (G∗(θ0)),

|D(k
θ
n ◦ (kθ )−1)(x) − D(k

θ
n ◦ (kθ )−1)(y)| ≤ C10r

ε
θn

|x − y|ε
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and with just a small refinement of the estimates made above for

‖kθ

m+l − k
θ
m‖ and ‖Dk

θ

m+l − Dk
θ
m‖

for m, l > 0. Indeed, the terms in the series

l−1∑
j=0

‖�θ

m+j+1 − Id‖ and
l−1∑
j=0

‖D�
θ

m+j+1 − Id‖

decay exponentially; therefore, these series can be controlled by ‖�θ
m − Id‖ and ‖D�

θ
m −

Id‖, respectively.
If the map g defining the Cantor set is Cr , r ≥ 2, then the convergence also happens in

the Cr metric. This happens because the composition with affine maps on the definition
of �

θ
n ‘flattens’ the derivatives of f(θ−n,θ−n+1). As we have seen above, the first-order

derivatives of the maps �
θ
n are close to the identity, or close (in norm) to 1 = r0

θn
.

Analogously, the derivatives of order r ∈ N have norm less than rr−1
θn

. A formula for the
derivatives of higher order of a composition of two maps can be found in [5]. It allow us
to inductively bound the Cr norm of k

θ
n , if r is an integer, and the convergence kθn → kθ

is proved in this metric following the same type of argument in this proof. Moreover,
following the same strategy as above, one can also show that if r /∈ N is greater than 2, the
maps D	r
kθ are r − 	r
 Hölder and that the convergence also happens in the Cr metric,
which completes the proof. The key is to analyze, in the expression of D	r
(f ◦ g), the
terms involving derivatives of order 	r
 of f and g. In the end, we have expressions similar
to those in the proof, only involving many more terms.

As an immediate consequence of equation (3.2) in the previous proof, we have the
following bounded distortion property.

COROLLARY 3.2. There is a constant C > 0 such that for every pair of points c1, c2 ∈
K(a),

C−1 ≤ |Dfθn
(c1)|

|Dfθn
(c2)| ≤ C,

for all θn = (θ−n, . . . , θ0) ∈ 	f in with θ0 = a.

Notice that the limit geometries depend on the choice of the base point cθ0 , because the
maps �

θ
n depend on it. However, Corollary 3.2 shows that for different choices of base

point, the norm of the expansion factor of �θn
is bounded between |C−1 · Dfθn

(cθ0)| and
|C · Dfθn

(cθ0)| for a fixed choice of cθ0 . Because these maps also send the base point to 0,
we have that different choices of base points c1 and c2 result in different limit geometries
that are related by

k
θ

1 = A · k
θ

2 ,

where A is a map in Aff(C) whose coefficients are bounded by some constant C > 0. So,
up to (bounded) affine transformations, the limit geometries do not depend on the base
point. Every time we mention the limit geometries of a Cantor set, consider that a set
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of base points has already been fixed. Also, we could choose to define �θn
as the affine

map such that �θn
(cθn

) = 0, |D�θn
|−1 = diam(G∗(θn)), and D�θn

(cθ0)(1, 0) ∈ R
∗+ ⊂

R
2, and the resulting limit geometries would only differ from those defined as above by

bounded affine transformations. This may be the definition on some other sources.
The bounded distortion property can be improved as follows.

COROLLARY 3.3. There is a constant C > 0 such that for every pair of points x, y ∈
G∗(θ0),

|Dfa(x)|
m(Dfa(y))

≤ C and C−1 ≤ m(Dfa(x))

|Dfa(y)| ,

for all a = (a0, a1, . . . , an) ∈ 	f in. A larger value of n and the closer x, y are to each
other will result in the closer the ratios of |Dfa(x)|/|Dfa(y)| and m(Dfa(x))/m(Dfa(y))

are to 1.

Proof. Given any θ whose ending coincides with the word a, by the estimates in the proof
of Lemma 3.1, there is some constant C13 > 0 such that

log |D(k
θ
n ◦ (kθ )−1)(z)| ≤ C13 · rε

θn
and log |D(kθ ◦ (k

θ
n)−1)(z′)| ≤ C13 · rε

θn

for z ∈ kθ (G∗(θ0)) and z′ ∈ k
θ
n(G∗(θ0)). Making z = kθ (x) and z′ = k

θ
n(y), it follows that

log |Dk
θ
n(x) · (Dkθ (x))−1| + log |Dkθ(y) · (Dk

θ
n(y))−1| ≤ 2C9 · rε

θn
, (3.7)

and so, using that |A| · m(B) ≤ |A · B| and m(A) · |B| ≤ |A · B| for any two square
matrices,

log |Dk
θ
n(x)| + log m((Dkθ (x))−1) + log m(Dkθ (y)) + log |(Dk

θ
n(y))−1| ≤ 2C9 · rε

θn
.

However, by the definition of k
θ
n and the fact that m(A−1) = |A|−1 for any invertible

matrix A,

|Dfa(x)|
m(Dfa(y))

= |Dk
θ
n(x)| · |(Dk

θ
n(y))−1| ≤ |Dkθ(x)|

m(Dkθ (y))
exp (2C9 · rε

θn
), (3.8)

for any x, y ∈ G∗(θ0). As the association θ �→ kθ is continuous and 	− is compact, there
is C > 0 that bounds the right-hand side of equation (3.8) for all x, y ∈ G∗(θ0) and n ∈ N.
The second part is obtained in an analogous way, only changing the way we proceed from
equation (3.7). In the case of the operator norm, it yields

log |Dk
θ
n(x)| + log m((Dkθ (x))−1) + log |Dkθ(y)| + log m((Dk

θ
n(y))−1) ≤ 2C9 · rε

θn
,

from which

|Dfa(x)|
|Dfa(y)| ≤ |Dkθ(x)|

|Dkθ(y)| exp (2C9 · rε
θn

),

and the claim follows because of the continuity of kθ (x) on θ and x.

We also have the following result.
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COROLLARY 3.4. The diameter of the sets G∗(θn) is of order ‖Dfθn
‖.

We end this section with the following lemma, which shows continuous dependence of
limit geometries on the map g defining the Cantor set.

LEMMA 3.5. For any Cantor set K given by a map g ∈ �	 and any ε > 0, there is a small
δ > 0 satisfying the following: for any map g̃ ∈ UK ,δ , there is a choice of base points c̃a ∈
G̃(a) for all a ∈ A, each of them close to the already fixed points ca ∈ G(a), in a manner
that the resultant limit geometries associated to these choices satisfy ‖k̃θ − kθ‖C1 < ε in
the largest domain both maps are defined for all θ ∈ 	−.

Proof. First, we can consider ca ∈ int G(a). This can be done because of the additional
hypothesis on the sets G(a), described at the end of §2.1, just before Definition 2.2. By the
definition of UK ,δ′ , we can choose c̃a such that H(ca) = H̃ (c̃a), where H : K → 	 is the
homeomorphism defined just after Definition 2.1, which implies |c̃a − ca| < δ for every δ′
sufficiently small. Let us analyze the limit of ‖k̃θ

n − k
θ
n‖C0 .

Define xn = ‖k̃θ
n − k

θ
n‖C0 for n ∈ N. Given ε0 > 0 and N ∈ N, if the distance between

k
θ

1 and k̃
θ

1 is small enough and so is δ′, then, by continuity, xn = ‖k̃θ
n − k

θ
n‖C0 < ε0 for

all n ≤ N . We will prove by induction that if n ≥ N , then there are constants C̃1, C̃2 and
0 < λ < 1 such that

xn+1 ≤ (1 + C̃1λ
n)xn + C̃2λ

n, (3.9)

and, for all n ≥ N , we can apply �
θ

n+1 to the image of k̃
θ
n . It is not true that we can always

apply �
θ

N+1 to the image of k̃
θ

N ; at least not considering the same domain Im(kθN ) used
in the definition at the beginning of the proof of Lemma 3.1. However, this domain can be
extended to a larger set Vε1(Im(kθN )), for some ε1 > 0, simply because

�
θ
n = �θn

◦ f(θ−n,θ−n+1) ◦ �−1
θn−1

is well defined on �θn−1
(G(θ−n+1)) ⊃ �θn−1

(G(θ−n+1)) = Im(kθn). So by making N =
n and observing that we can make xN ≤ ε0, the first part of the basis of induction is proved.
Now, if we can apply �

θ

n+1 to the image of k̃
θ
n for some n ≥ N , we have, following the

notation in the proof of Lemma 3.1, that

|k̃θ

n+1(x) − k
θ

n+1(x)| = |(�̃θ

n+1 ◦ k̃
θ
n)(x) − (�

θ

n+1 ◦ k
θ
n)(x)|

≤ |�θ

n+1(k̃
θ
n(x)) − �

θ

n+1(k
θ
n(x))| + |(�̃θ

n+1 − �
θ

n+1)(k̃
θ
n(x))|

≤ ‖D�
θ

n+1‖ · |k̃θ
n(x) − k

θ
n(x)| + ‖�̃θ

n+1 − �
θ

n+1‖
≤ (1 + C4μ

−nε) · |k̃θ
n(x) − k

θ
n(x)| + 2C3μ

−nε, (3.10)

which yields an estimate of the type in equation (3.9), and so, the induction basis is
complete. However, with basic real analysis, one can show that there are constants C̃3 and
C̃4 independent of m ∈ N such that, if equation (3.9) is true for all n such that N ≤ n ≤ m,
then

xm ≤ eC̃3λ
N

(xN + C̃4λ
N),
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and so xm, m ≥ N , can be made as small as xN by choosing N sufficiently large (and
consequently the distance between k

θ

1 and k̃
θ

1 sufficiently small). This is enough to show
that we can apply �

θ

m+1 to the image of k̃
θ
m to do the induction step.

Passing to the limit we show that

‖k̃θ − kθ‖C0 < ε

provided that the distance between k
θ

1 and k̃
θ

1 is small enough, but this is controlled by
the difference between fθ−1,θ0 and f̃θ−1,θ0 , which can be made small enough by choosing
δ′ > 0 sufficiently small.

The argument for the C1 norm is similar:

|Dk̃
θ

n+1(x) − Dk
θ

n+1(x)| = |D(�̃
θ

n+1 ◦ k̃
θ
n)(x) − D(�

θ

n+1 ◦ k
θ
n)(x)|

≤ |D(�̃
θ

n+1 ◦ k̃
θ
n)(x) −D(�̃

θ

n+1 ◦ k
θ
n)(x)| + |D(�̃

θ

n+1 ◦ k
θ
n)(x) −D(�

θ

n+1 ◦ k
θ
n)(x)|

≤ ‖D�̃
θ

n+1‖ · |Dk̃
θ
n(x) − Dk

θ
n(x)| + ‖D�̃

θ

n+1 − D�
θ

n+1‖ · |Dk
θ
n(x)|

≤ (1 + C4μ
−nε) · |Dk̃

θ
n(x) − Dk

θ
n(x)| + 2C4e

C5μ−nε,

where �̃
θ
n is defined on k

θ
n(G(θ0)) because, as shown previously, we can enlarge a bit

the domain of this function and k
θ
n is sufficiently close to k̃

θ
n ; and we use the estimate

‖D�̃
θ

n+1 − Id‖ ≤ C4μ
−nε. This estimate was proved for the unperturbed map in Lemma

3.1 (equation (3.3)), and is also true for the perturbation, maybe by enlarging C4 a little,
because this constant depends continuously on the map g defining the Cantor sets. The
proof is completed proceeding as above.

3.2. Configurations and renormalizations.

Definition 3.1. Given a dynamically defined conformal Cantor set K, described by
(A, B, 	, g) and a piece G(a), a ∈ A, we say that a Cr , for some r > 1, diffeomorphism
h : G(a) → U ⊂ C is a configuration of the piece of Cantor set.

In particular, if h is the restriction of a map A ∈ Aff(C) to its domain G(a), then we
say it is an affine configuration. We write Pr (a) for the space of all Cr configurations of
the piece G(a) equipped with the Cr topology. We write P(a) = ⋃

r>1 Pr (a) and equip
it with the inductive limit topology.

The space Aff(C) acts on P(a) by left composition and we denote the quotient space of
this action by P(a). We also refer to P as the union

⋃
a∈A P(a) and P = ⋃

a∈A P(a).
Configurations can be seen as the manner in which the Cantor set is embedded into

the complex plane. For example, by using an affine configuration, we can rotate, scale,
and translate a Cantor set that would be fixed in a certain region of the plane. Also, if h :⊔

a∈A G(a) → U ⊂ C is a Cr diffeomorphism such that Dh is conformal at the Cantor
set K, then h(K) can be seen as a Cantor set in the previous sense. To see this, we need
only to consider new sets G̃(a) = h(G(a)) and g̃ = h ◦ g ◦ h−1.

Definition 3.2. For any given configuration h of G(θ0), θ0 ∈ A, we say that h ◦ f(θ0,θ1) is
the renormalization by f(θ0,θ1) of the given configuration, and we write the renormalization
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operator as

T(θ0,θ1) : P(θ0) → P(θ1)

h �→ h ◦ f(θ0,θ1).

Because this operator commutes with the action of affine maps over P, it is well defined
over P.

If we apply n consecutive renormalizations, by f(a0,a1), . . . , f(an−2,an−1), f(an−1,an), we
end up with h ◦ fan

, an = (a0, a1, . . . , an) (we suppose a0 = θ0). Based on that, we define
for any word a ∈ 	f in, a = (a0, . . . , an) the renormalization operator operator as

Ta : G(a0) → G(an)

h �→ h ◦ fa .

This construction implies that Ta ◦ Tb = Tab for every pair of words a, b ∈ 	f in.
Notice that the image of h ◦ fan

corresponds to the image by h of the set G(an), that
is, the configuration of a piece of the nth step in the definition of the Cantor set K, and,
as seen in Lemma 3.1 and its proof, this map is close to h ◦ (�θ̃n

)−1 ◦ kθ̃ , where θ̃ =
θan. This observation indicates that the limit geometries work as attractors in the space of
configurations under the action of renormalizations (less affine transformations). The next
two lemmas give a more precise statement of this fact.

First, consider the space A = Aff(C) × 	−. It represents the affine configurations
of limit geometries and can be continuously associated with a subset of the space of
configurations by:

I : Aff(C) × 	− → P
(A, θ) �→ A ◦ kθ .

Notice that this identification is continuous.

LEMMA 3.6. The renormalization operator carries I (A) ⊂ P, the image of the identifi-
cation above, into itself. Writing h = A ◦ kθ , it follows that T(θ0,θ1)(h) := h ◦ f(θ0,θ1) =
A ◦ Fθθ1 ◦ kθθ1 , where Fθθ1 is in Aff(C). This allows us to write the action of the
renormalization operator over A by

T(θ0,θ1)(A, θ) = (A ◦ Fθθ1 , θθ1).

Proof. From Lemma 3.1, in which we established the existence of limit geometries, we
have that

kθθ1 ◦ (kθ ◦ fθ0,θ1)
−1 = lim

n→∞ k
θθ1
n+1 ◦ (k

θ
n ◦ fθ0,θ1)

−1

= lim
n→∞ �(θθ1)n+1 ◦ f(θθ1)n+1 ◦ (�θn

◦ fθn
◦ fθ0,θ1)

−1

= lim
n→∞ �(θθ1)n+1 ◦ �−1

θn

which implies that the last limit exists and in particular belongs to Aff(C) because this
is a closed subset of the space of configurations. So, for any θ = (. . . , θ−1, θ0) ∈ 	−
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and (θ0, θ1) ∈ B, we define (F θθ1)−1 = limn→∞ �(θθ1)n+1 ◦ �−1
θn

and we have that Fθθ1 ◦
kθθ1 = kθ ◦ fθ0,θ1 as we wanted to show.

Remark 3.7. Let an = (a0, a1, . . . , an) ∈ 	f in be a finite word with a0 = θ0. Making
A = Id in the previous lemma, it follows that

Fθa1 ◦ kθa1 = kθ ◦ fa0,a1

(this formula already appears in the proof above, but it deserves a special highlight).
Concatenating the renormalizations f(a0,a1), . . . , f(an−2,an−1), f(an−1,an), it follows that

Fθa1 ◦ F (θa1)a2 ◦ · · · F (θa1···an−1)an ◦ kθan = kθ ◦ fan
;

therefore, defining Fθan := Fθa1 ◦ F (θa1)a2 ◦ · · · F (θa1···an−1)an ∈ Aff(C),

Fθan ◦ kθan = kθ ◦ fan
.

Definition 3.3. For each limit geometry kθ , θ ∈ 	−, and any configuration h : G(θ0) →
C, the map hθ : kθ (G(θ0)) → C is defined as hθ = h ◦ (kθ )−1, which we call the
perturbation part of h relative to θ . Also, for each configuration h ∈ P(a), we consider
the scaled version of it as the map Ah ◦ h, where Ah ∈ Aff(R2) is an affine transformation
such that Ah ◦ h(cθ0) = 0 and D(Ah ◦ h)(cθ0) = Id.

By definition, h = hθ ◦ kθ . Also, for example, the scaled version of a limit geometry is
the limit geometry itself.

Given a finite word an of size n with a0 = θ0 and a configuration h : G(a0) → C, we
will denote by hn the renormalization of h by an in the next lemma. Also under this
notation, the perturbation part of the scaled version of hn relative to θan is equal to

(Ahn ◦ hn)
θan = Ahn ◦ hn ◦ (kθan)−1 = Ahn ◦ h

θan
n .

LEMMA 3.8. Let K be a conformal Cantor set and h ∈ P(a0) a configuration of a piece
in K. Then, for any limit geometry θ ∈ 	− with θ0 = a0, the perturbation part of the
scaled version of hn relative to θan converges exponentially to the identity for any θ ∈ 	−.
In other terms, ‖Ahn ◦ h

θan
n − Id‖C1+ε < C · diam(G(an))

ε < C · μ−nε, C > 0 a constant
depending only on the Cantor set K and the initial configuration h.

Before proving the lemma, we state the following claim. It will be useful now and later
in this section.

CLAIM 3.9. Let γ : U ⊂ R
2 → R

2 be a C1+ε map defined on an open set U and X be
a subset of U such that its convex hull is contained inside U. There is some constant
C′ > 0 such that |Dγ (x) − Dγ (y)| < C′|x − y|ε. Again, it is a simple observation from
real analysis that

|γ (z + δ) − (γ (z) + Dγ (z) · δ)| < C′ · |δ|1+ε; z, z + δ ∈ X.

Let P , Q ∈ Aff(R2) be two affine maps, p be a point in X, and � ∈ Aff(R2) be
the affine map defined by �(z) = Dγ (p) · (z − p) + γ (p). Suppose that P and Q−1
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expand distances by a factor comparable to diam(X). This means there is some constant
C̃ > 0 such that C̃−1diam(X) ≤ m(DP) ≤ C̃diam(X), and the same inequality is true
with |DP |, |DQ|, and m(DQ) instead of m(DP). Then there is some constant C > 0
depending only on C̃ and C′ such that P ◦ γ ◦ Q is C · diam(X)ε - C1+ε close to the
affine map P ◦ � ◦ Q on the domain Q−1(X).

The proof of this claim is essentially the same estimates done on each of the �m in the
proof of Lemma 3.1 and so it is omitted. The role of each object of the claim will be played
by different objects along the text.

Proof of Lemma 3.8. The expansion term of Fθan , DFθan , has norm equal to

diam(kθ (G(an)))

diam(kθan(G(an)))
,

because of the relation Fθan ◦ kθan = kθ ◦ fan
applied to the domain G(an) and the fact

that fan
(G(an)) = G(an). Because the maps kθ , θ ∈ 	−, have a uniformly bounded

derivative, there is a constant C > 0 such that the expansion term of Fθan is less than
C · diam(G(an)) and more than C−1 · diam(G(an)).

However, because hn = h ◦ (kθ )−1 ◦ kθ ◦ fan
= h ◦ (kθ )−1 ◦ Fθan ◦ kθan ,

DA−1
hn

= Dh((kθ )−1 ◦ Fθan(0)) · D(kθ )−1(F θan(0)) · DFθan ,

and m(DA−1
hn

) and |DA−1
hn

| are also controlled by diam(G(an)) in the same way. Now, by
Remark 3.7, the domain of interest of hθ on the relation

h
θan
n = hn ◦ (kθan)−1 = h ◦ fan

◦ (kθan)−1 = h ◦ (kθ )−1 ◦ Fθan = hθ ◦ Fθan

is the set Fθan ◦ kθan(G(an)) = kθ (G(an)), whose size is also controlled by diam(G(an)).
Because the (kθ )−1 vary continuously with θ in a compact set, the maps hθ are C1+ε and,
if we enlarge C > 0,

|Dhθ(x) − Dhθ(y)| ≤ C · |x − y|ε,

for all θ ∈ 	−. Then, using Claim 3.9 with γ = hθ , P = Ahn , Q = Fθan , and X =
kθ (G(an)) and remembering that Ahn ◦ hn

θan(0) = 0 and D(Ahn ◦ hn
θan)(0) = Id, we

have

‖Ahn ◦ hn
θan − Id‖ = ‖Ahn ◦ hθ ◦ Fθan − Id‖ < C · diam(G(an))

ε.

The exponential decay of ratio μ is a consequence of Corollary 3.4.

The argument in the first paragraph of the previous proof gives us the following
corollary.

COROLLARY 3.10. Given a Cantor set K, there is some constant C > 0 such that, for any
θ ∈ 	− and a ∈ 	f in,

C−1 diam(G(a)) ≤ |DFθa| ≤ C diam(G(a)).
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3.3. Recurrent compact criterion. Given a pair of Cantor sets K and K ′, we are
interested in finding configurations h and h′ such that h(K) intersects h′(K ′). More
importantly, we want to find a criterion under which this intersection is stable, that is,
for small perturbations h̃, h̃′, K̃ , K̃ ′ the sets h̃(K̃) and h̃′(K̃ ′) also have a non-empty
intersection.

With these ideas in mind, for any pair of configurations (ha , h′
a′) ∈ Pa × P′

a′ we say
that it is:
• linked whenever ha(G(a)) ∩ h′

a′(G(a′)) �= ∅;
• intersecting whenever ha(K(a)) ∩ h′

a′(K ′(a′)) �= ∅;
• has stable intersections whenever h̃a(K̃(a)) ∩ h̃′

a′(K̃ ′(a′)) �= ∅ for any pairs of
Cantor sets (K̃ , K̃ ′) ∈ �	 × �	′ in a small neighborhood of (K , K ′) and any
configuration pair (h̃a , h̃′

a′) that is sufficiently close to (ha , h′
a′) in the C1+ε topology

at G(a) ∩ G̃(a) and G(a′) ∩ G̃′(a′) for some ε > 0.
It is better to work with Q, the quotient of P × P′ by the diagonal action of Aff(C).

We consider it equipped with the quotient topology. An element in Q, the equivalence
class of a pair (h, h′), denoted by [h, h′], is called a relative configuration or, as mentioned
sometimes, a relative positioning of the pair of Cantor sets. Because the action of the affine
group preserves the linking, intersecting, or stable intersection of a pair of configurations,
these notions are defined for relative configurations too. Also, we can define for any pair
in P × P′ and any pair of words (a, a′) ∈ 	f in × 	′f in a renormalization operator

Ta,a′(h, h′) := (Ta(h), Ta′(h′)).

For the same reasons as above, it can also be defined over Q. Also, we can allow one of the
words a or a′ to be void. In that case, the operator only acts at the non-trivial coordinate,
for example

T∅,a′(h, h′) = (h, Ta′(h′)).

Although we considered in Q the quotient topology coming from the Cr , r > 1, topology
of P × P′, in the next lemma, we are going to consider the topology coming from the C1

topology in P × P′. This is just a practical simplification. Under this context, we have the
following.

LEMMA 3.11. A relative configuration [h0, h′
0] is intersecting if, and only if, there is a

relatively compact sequence (in the C1 topology of Q) of relative configurations [hn, h′
n]

obtained inductively by applying a renormalization operator that acts trivially on one of
the coordinates of the equivalence class.

Proof. If h0(K) and h′
0(K

′) are intersecting at a point q = h0(p) = h′
0(p

′), (p ∈ K and
p′ ∈ K ′), consider the sequences H(p) = (a0, a1, . . .) ∈ 	 and H ′(p) = (a′

0, a′
1, . . .) ∈

	′, where H and H ′ are the homeomorphisms defined in §2.1. We can construct a
sequence of pairs of configurations (hn, h′

n), obtained by successively renormalizing by
the functions f(ai ,ai+1) and f(a′

j ,a′
j+1)

, i, j ≥ 0, chosen in a careful order such that the
ratio of diameters of the sets G(bn) and G(b′

n) are bounded away from 0 and ∞, where
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(hn, h′
n) = (h ◦ fbn

, h′ ◦ fb′
n
), bn = (a0, . . . , arn), and b′

n = (a′
0, . . . , a′

r ′
n
) (notice that

rn ≤ n and r ′
n ≤ n).

Indeed, if an = (a0, . . . , an), by equation (3.2) of Lemma 3.1 and Corollary 3.2,
diam(G(an)) is comparable to diam(G(an−1)). Therefore, if we choose carefully which
coordinate to act trivially, we can keep the ratios bounded.

Finally, such pairs of configurations are always intersecting, because the point q belongs
to both their images. Using Claim 3.9, with γ = h0 ◦ (kθ )−1, X = G(bn), P = Ahn , Q =
Fθbn ; and with γ = h′

0 ◦ (kθ ′
)−1, X = G(b′

n), P = Ahn , Q = Fθ ′b′
n , in a similar way as

done in the proof of Lemma 3.8, it follows that the sequence [hn, h′
n] is relatively compact

in Q.
However, let [hn, h′

n] be such a relatively compact sequence. We can consider
(hn, h′

n) = Tbn,b′
n
(h0, h′

0). Then (hn, h′
n) is linked, because if it was not, the distance

between the images of their scaled versions, (Ahn ◦ hn, Ahn ◦ h′
n), would go to infinity

as n → ∞. Hence, choosing points pn ∈ hn(K) ⊂ h0(K) and p′
n ∈ h′

n(K
′) ⊂ h′

0(K
′), it

follows that limn→∞ pn = p = limn→∞ p′
n, because the diameter of the sets hn(K) and

h′
n(K

′) converge exponentially to 0 as n → ∞, as they are controlled by diam(G(bn))

and diam(G′(b′
n)), respectively, and they are always linked. Because K and K ′ are closed,

p ∈ h0(K) ∩ h′
0(K

′) �= ∅ as we wanted to show.

This lemma is very important in finding a criterion for stable intersection in Cantor sets.
To do it, we will work with the space of relative affine configurations of limit geometries.

Definition 3.4. The space of relative affine configurations of limit geometries will be
denoted by C. It is the quotient of A × A′ by the action of the affine group by composition
on the left, that is, ((A, θ), (A′, θ ′)) �→ ((B ◦ A, θ), (B ◦ A′, θ ′)), where B ranges in
Aff(C).

The concepts of linking, intersection, and stable intersection were well defined for pairs
of affine configurations of limit geometries, and again, because they are invariant by the
action of Aff(C), they are also defined for relative configurations in C. Also, because the
renormalization operator acts by multiplication on the right on (A, θ), its action commutes
with the multiplication on the left by affine transformations and so it can be naturally
defined on C. This space can be identified with 	− × 	′− × Aff(C) by the identification
[(A, θ), (A′, θ ′)] ≡ (θ , θ ′, A−1 ◦ A′), and in this manner, the topology on C is the product
topology on 	− × 	′− × Aff(C).

Definition 3.5. (Recurrent compact set) Let L be a compact set in C. We say that L is
recurrent if for any relative affine configuration of limit geometries v ∈ L, there are words
a, a′ such that u = Ta,a′(v) satisfies u ∈ int L.

If such a renormalization can be done using words a and a′ such that their total size
combined is equal to one, we say that such a set is immediately recurrent.

THEOREM 3.12. The following properties are true.
(1) Every recurrent compact set is contained in an immediately recurrent compact

set.

https://doi.org/10.1017/etds.2021.97 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.97


30 H. Araújo and C. G. Moreira

(2) Given a recurrent compact set L (respectively immediately recurrent) for g, g′, for
any (g̃, g̃′) in a small neighborhood of (g, g′) ∈ �	 × �	′ , we can choose base
points c̃a ∈ G̃(a) ∩ K̃ and c̃a′ ∈ G̃(a′) ∩ K̃ ′ respectively close to the pre-fixed ca

and ca′ , for all a ∈ A and a′ ∈ A
′, in a manner that L is also a recurrent compact

set for g̃ and g̃′.
(3) Any relative configuration contained in a recurrent compact set has stable

intersections.

Proof. (1) We remember that A is a metric space, so for every point v of the recurrent
compact set L, there is a closed ball around v that is carried by a renormalization (given by
a pair of words av , a′v) into the interior of L. Because this set is compact and by continuity
of the renormalization operator, there is a finite number N of compact sets (balls) Li whose
union covers L and associated pair of words (ai , a′i ) for 1 ≤ i ≤ N such that Li is carried
into the interior of L by the renormalization associated to the pair (ai , a′i ). Now, consider
for every such pair, all the pairs of words (bi,j , b′i,j ) such that bi,j is a subword of ai

and b′i,j is a subword of a′i . We construct an immediately recurrent Cantor set L′ in the
following way.

First, we choose one of the two pairs (bi,j1 , b′i,j1) with total size 1 sharing the

same beginning with (ai , a′i ) and write (bi,j1 , b′i,j1) as the word pair that needs to be
concatenated to (bi,j1 , b′i,j1) to result in (ai , a′i ). By continuity, there is a compact set
Li(1) such that int Li(1) ⊃ T

(bi,j1 ,b′i,j1 )
Li and T

(bi,j1 ,b′i,j1 )
Li(1) ⊂ int L. This can be done in

the same manner the sets Li were constructed just above.
Then we inductively construct a sequence of compact sets Li(k), k = 1, . . . , m such that

for each Li(k), there is a renormalization by a pair of words of total size one that carries it
into int Li(k+1) for k = 1, . . . , m − 1 and carries Li(m) into int L, where m is the total size
of (ai , a′i ). Then, taking L′ = ⋃

i(k) Li(k), we have an immediately recurrent compact set.
(2) Using the decomposition L = ∪N

i=1Li , described in the previous argument, it is
enough to show that for any ε > 0, there is δ > 0 such that, for any pair (g̃, g̃′) in UK ,δ ×
UK ′,δ , the renormalization operators associated to the words ai and a′i , i = 1, . . . , N ,
denoted by T̃

ai ,a′i = (T̃ai , T̃
a′i ), satisfy ‖T̃ − T‖ < ε.

These operators are obtained by composition of a finite number of operators arising
from pairs of words of total size one, and so we need only to show that for any ε′ > 0,
a δ > 0 can be found such that |T(a,b) − T̃(a,b)| < ε′ and |T(a′,b′) − T̃(a′,b′)| < ε′ for all
pairs (a, b) ∈ B and (a′, b′) ∈ B ′, or precisely, by Lemma 3.6, that for any θ ∈ 	− and
θ1 ∈ A, |Fθθ1 − F̃ θθ1 | < ε′, and its analogous version for K ′ and K̃ ′. However, as seen in
Lemma 3.6, Fθθ1 = kθ ◦ fθ0,θ1 ◦ (kθθ1)−1, and we need only to show that the values of
all the functions and their derivatives above at a fixed point x do not change much when
considering its K̃ version. This is was done in Lemma 3.5.

(3) Given a recurrent compact set L relative to a pair of Cantor sets K and K ′, its image
under

I : C → Q
[(A, θ), (A′, θ ′)] �→ [A ◦ kθ , A′ ◦ kθ ′

]
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is also a compact set, because this association is continuous. In what follows, whenever we
work with the set L in the context of Q, we are referring to the set I (L).

In this sense, any pair (A ◦ kθ , A′ ◦ kθ ′
) representing a relative affine configuration of

limit geometries v belonging to L is intersecting, because, considering it a part of an
immediately recurrent compact set, one can construct a sequence as in the hypothesis
of Lemma 3.11. In light of the previous item, this implies that A ◦ k̃θ and A′ ◦ k̃θ ′

also
represent intersecting configurations for a pair of Cantor sets (K̃ , K̃ ′) sufficiently close to
(K , K ′).

Thus, it is enough to show that, for any pair of Cantor sets (K , K ′) that has a
recurrent compact set L and a configuration pair v ∈ L represented by [(A, θ), (A′, θ ′)], if
h : Im(A ◦ kθ ) → C and h′ : Im(A ◦ kθ ′

) → C are embeddings C1+ε close to the identity,
then h ◦ A ◦ kθ and h′ ◦ A′ ◦ kθ ′

are also intersecting.
To accomplish this, we will construct a relatively compact sequence of relative config-

urations [hn, h′
n] ∈ Q, with [h0, h′

0] = [h ◦ A ◦ kθ , h′ ◦ A′ ◦ kθ ′
], obtained inductively by

renormalization. If we have such a sequence, the result follows from Lemma 3.11 again. We
are going to represent each equivalence class [hn, h′

n] by its representative that is scaled
on the first coordinate (remember Definition 3.3). We are also interested on how ‘far’ each
term of this sequence is from being in L, thus we write

[hn, h′
n] = [ηn ◦ kθ(n), η′

n ◦ Bn ◦ kθ ′(n)]

for some limit geometries

θ(n) = (. . . , θ−n, . . . , θ0, . . . , θrn) ∈ 	− and

θ ′(n) = (. . . , θ ′−n, . . . , θ ′
0, . . . , θ ′

r ′
n
) ∈ 	′−

and in what follows, we will show that these choices can be done so that ηn and η′
n are maps

C1 close to the identity in their domains, kθ(n)(G(θnr )) and kθ ′(n)(G(θn′
r
)), respectively,

Bn ∈ Aff(C) and [kθ(n), Bn ◦ kθ ′(n)] ∈ int L for all n ≥ 1. If this is the case for all n ≥ 1,
then the sequence is relatively compact and the proof is complete.

To prove the estimates for ηn and η′
n for large values of n, we are going to use Claim 3.9

many times. For n = 0, we make θ(0) = θ and θ ′(0) = θ ′, and so η0 is the perturbed
part of the scaled version of h ◦ A ◦ kθ relative to kθ(0) = kθ ; in other words, if A(z) =
α · z + β and we denote �0(z) = h(β) + Dh(β) · (z − β),

η0 = A−1 ◦ �−1
0 ◦ h ◦ A.

Moreover, if we denote A′(z) = α′ · z + β ′ and �′
0(z) = h′(β ′) + Dh′(β ′) · (z − β ′),

then

η′
0 ◦ B0 = A−1 ◦ �′

0
−1 ◦ h′ ◦ A′.

It follows from continuity that if h and h′ are sufficiently close to the identity in their
domains, then η0 is close to the identity and η′

0 ◦ B0 is close to A−1 ◦ A′.
Therefore, for n = 0, we make θ(0) = θ , θ ′(0) = θ ′, B0 = A−1 ◦ A′, η0 = A−1 ◦

�−1
0 ◦ h ◦ A, and η′

0 = A−1 ◦ �′
0
−1 ◦ h′ ◦ A; and the base of our construction is complete.
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Now consider a decomposition of the recurrent compact set L = ∪Li as done in item
(1) and fix a set of renormalizations T

ai ,a′i that carries each Li to the interior of L. We can

find a δ > 0 such that the distance of any T
ai ,a′i (v), v ∈ Li to the boundary of L is bigger

than δ. The idea is to use the series of renormalizations that worked for [A ◦ kθ , A′ ◦ kθ ′
]

and do small adaptations along the way.
Let us show how to go from [hn, h′

n] to [hn+1, h′
n+1]. If

[hn, h′
n] = [ηn ◦ kθ(n), η′

n ◦ Bn ◦ kθ ′(n)],

we choose a(n) = (θrn , . . . , θrn+1) ∈ 	f in and a′(n) = (θ ′
r ′
n
, . . . , θ ′

r ′
n+1

) ∈ 	′f in

among the words fixed in the previous paragraph such that

Ta(n),a′(n)(k
θ(n), Bn ◦ kθ ′(n)) ∈ int(L)

and make

[hn+1, h′
n+1] = Ta(n),a′(n)[hn, h′

n].

We need now to explain how the choices of θ(n + 1), ηn+1, θ ′(n + 1), Bn+1, η′
n+1

must be made. Some of them are automatic, for example, we make θ(n + 1) =
θ(n)a(n) and θ ′(n + 1) = θ ′(n)a′(n). Writing b(n) = a(0)a(1) · · · a(n) and b′(n) =
a′(0)a′(1) · · · a′(n), it follows by induction on n, having in mind Remark 3.7, that

[hn+1, h′
n+1] = Tb(n),b′(n)[h0, h′

0]

= [h ◦ A ◦ kθ ◦ fb(n), h′ ◦ A′ ◦ kθ ′ ◦ fb′(n)]

= [h ◦ A ◦ Fθ b(n) ◦ kθ(n+1), h′ ◦ A′ ◦ Fθ ′ b′(n) ◦ kθ ′(n+1)]. (3.11)

We recall that Fθ b(n) and Fθ ′ b′(n) are the affine maps that help us do calculations with
renormalizations that were defined in Remark 3.7. Because we want the first coordinate of

[ηn+1 ◦ kθ(n+1), η′
n+1 ◦ Bn+1 ◦ kθ ′(n+1)](= [hn+1, h′

n+1])

to be a scaled configuration, ηn+1 must satisfy:

ηn+1 = (F θ b(n))−1 ◦ A−1 ◦ �−1
n ◦ h ◦ A ◦ Fθ b(n),

where A ◦ Fθ b(n)(z) = αn · z + βn, αn ∈ C
∗, and βn ∈ C, and �n ∈ Aff(C2) is an affine

map defined as �n(z) = Dh(βn)(z − βn) + h(βn).
By Claim 3.9, making P = (F θ b(n))−1 ◦ A−1 ◦ �−1

n , Q = A ◦ Fθ b(n), γ = h, p = βn,
and

X = (A ◦ Fθ b(n))(kθ(n+1)(G(θrn+1))) = A(kθ (G(b(n)))),

it follows that ηn+1 is C · diam(X) C1-close to the identity in its domain kθ(n+1)(G(θrn+1)),
if n is sufficiently large. Notice that diam(X) decays exponentially with n, so for large n,
the map ηn+1 is very close to the identity. For small values, we can make h sufficiently
close to the identity so that the same conclusion is true.
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The construction of the terms in the second entry is where the proof really happens.
Define the map Tn : C → C by

Tn := (F θ b(n))−1 ◦ A−1 ◦ �−1
n ◦ h′ ◦ A′ ◦ Fθ ′ b′(n).

Again, because the first coordinate of [ηn+1 ◦ kθ(n+1), η′
n+1 ◦ Bn+1 ◦ kθ ′(n+1)] is scaled,

by equation (3.11),

η′
n+1 ◦ Bn+1 = Tn. (3.12)

The key is to realize that although Tn is fixed after the choices of an and a′
n, we can

choose the maps η′
n+1 and Bn+1 in a smart way so that they have the properties previously

stated, which means that η′
n+1 is close to the identity and [kθ(n+1), Bn+1 ◦ kθ ′(n+1)] ∈

int L.
A naive idea is to make Bn+1 = (F θ(n) a(n))−1 ◦ Bn ◦ Fθ ′(n) a′(n), because then

[kθ(n+1), Bn+1 ◦ kθ ′(n+1)] = Ta(n),a′(n)[kθ(n), Bn ◦ kθ ′(n)] ∈ int L.

However, this choice would not work, because we would lose control of the distance of
η′

n+1 to the identity. If we make this choice of Bn+1 for every n ≥ 0, then, following
equation (3.11), one could prove that

η′
n+1 = (F θ b(n))−1 ◦ A−1 ◦ �−1

n ◦ h′ ◦ A ◦ Fθ b(n).

The composition of terms to the left-hand side of h′ yields an affine map that is an
expansion by a factor comparable to μn, where μ is the expanding factor of g. If h′ =
Id + ω for some ω ∈ C close to 0, then the distance of η′

n+1 to the identity would be
exponentially big, also depending on n.

Even so, a small translation is sufficient to make the construction work. So we write

B̃n+1 := (F θ(n) a(n))−1 ◦ Bn ◦ Fθ ′(n) a′(n)

instead and use it as an auxiliary map for the construction of Bn+1. It is important to see
that in our inductive construction below, the derivatives of Bn+1 and B̃n+1 are the same,
therefore, by induction,

DB̃n+1 = DBn+1 = D((F θ b(n))−1 ◦ A−1 ◦ A′ ◦ Fθ ′ b′(n)). (3.13)

If A′ ◦ Fθ ′ b′(n)(z) = α′
n · z + β ′

n, the derivative of Tn at zero is equal to

DTn(0) = (DFθ b(n))−1 · DA−1 · Dh(βn)
−1 · Dh′(β ′

n) · DA′ · DFθ ′ b′(n)

= α−1
n · Dh(βn)

−1 · Dh′(β ′
n) · α′

n.

Hence, because α−1
n · α′

n = D((F θ b(n))−1 ◦ A−1 ◦ A′ ◦ Fθ ′ b′(n)) = DB̃n+1 is bounded,
as

[kθ(n+1), B̃n+1 ◦ kθ ′(n+1)] = Ta(n),a′(n)(k
θ(n), Bn ◦ kθ ′(n)) ∈ int(L),
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DTn(0) is C′ · ‖Dh−1 − Id‖ · ‖Dh′ − Id‖ close to DB̃n+1 for some constant C′ > 0
depending on L.

Under this notation, Bn+1 ∈ Aff(C) is defined as

Bn+1(z) := DB̃n+1 · z + Tn(0).

To show that it is δ close to B̃n+1, we must estimate |Tn(0) − B̃n+1(0)|. We use Claim 3.9
again.

First, making P = (F θ b(n))−1 ◦ A−1, Q = A′ ◦ Fθ ′ b′(n), γ = �−1
n ◦ h′, p = β ′

n, and

X = (A′ ◦ Fθ ′ b′(n))(kθ ′(n+1)(G(θ ′
r ′
n+1

))) = A′(kθ ′
(G(b′(n)))),

it follows that Tn(0) is C′′ · diam(X)ε close to P ◦ � ◦ Q(0) for large values of n, where
C′′ > 0 is a constant depending on h and h′,

� = �−1
n ◦ �′

n and �′
n(z) = Dh′(β ′

n)(z − β ′
n) + h′(β ′

n).

At the same time, � is close to the identity, because h and h′ are. Proceeding in the same
manner we did to estimate DTn(0), we find

|Tn(0) − B̃n+1(0)| ≤ |Tn(0) − P ◦ � ◦ Q(0)| + |P ◦ � ◦ Q(0) − B̃n+1(0)|
≤ C′′ · diam(X)ε + C′ · ‖�−1

n − Id‖ · ‖�′
n − Id‖,

and consequently, this difference can be made smaller than δ if n is sufficiently large and
h and h′ are sufficiently close to the identity. For small values of n, the same conclusion is
true by continuity if we make h and h′ sufficiently close to the identity.

Finally, we need only to check the estimate on η′
n+1. By equation (3.12), we can

write this function as P ◦ γ ◦ Q, where P = (F θ b(n))−1 ◦ A−1 ◦ �−1
n , γ = h′, Q = A′ ◦

Fθ ′ b′(n) ◦ B−1
n+1 and the domain of γ is

X = A′ ◦ Fθ ′ b′(n)(kθ ′(n+1)(G(θ ′
r ′
n+1

))).

Observe that, because of Corollary 3.10, the affine map P expands distances by a factor
comparable to the inverse of diam(G(b′(n))) – we are considering the maps A and A′
fixed here. Moreover, because DB̃n+1 = DBn+1 is bounded away from zero and infinity,
as L is compact (remember that Aff(C) contains only invertible transformations), Q−1

also expand distances by a factor comparable to the inverse of diam(G(b′(n))), because
DP · DQ is close to the identity by equation (3.13). The diameter of X is also comparable
to these values.

Making p = β ′
n, the map η′

n+1 is thus C · diam(X)ε close to P ◦ � ◦ Q, where � =
Dγ (p)(z − p) + γ (p). However, the definition of these maps imply that P ◦ γ ◦ Q =
Tn ◦ B−1

n+1. Hence, P ◦ � ◦ Q is an affine transformation that has derivative equal to

D(P ◦ γ ◦ Q)(Q−1(p)) = D(Tn ◦ B−1
n+1)(Q

−1(p)) = DTn(B
−1
n+1 ◦ Q−1(p)) · DB−1

n+1

= DTn(0) · DB−1
n+1,
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which is close to the identity because DB−1
n+1 is bounded and has Bn+1(0) = Tn(0) as a

fixed point. This implies that η′
n+1 is close to the identity for large n. For small n, the result

follows by continuity as done many times before.

Remark 3.13. We remark that the sequence of renormalizations Ta(n),a′(n) constructed
above for a pair (h, h′) close to the identity is not necessarily equal to the sequence of
renormalizations constructed for (h, h′) = (Id, Id). Notice that the choice of the maps
Bn+1 has an influence on the choice of the pair (a(n + 1), a′(n + 1)) and may make it
different from the one working for (h, h′) = (Id, Id). This may happen because the relative
configurations [kθ(n), B̃n ◦ kθ ′(n)] and [kθ(n), Bn ◦ kθ ′(n)] may belong to different parts Li

of the recurrent compact set L.

4. Constructing a compact recurrent set for Buzzard’s example
In the article [4], Buzzard found an open set U ⊂ Aut(C2) with a residual subset N ⊂ U

with coexistence of infinitely many sinks, thus establishing the existence of Newhouse
phenomenon on the two-dimensional complex context. The strategy was very similar to
that used by Newhouse in his works [11–13]. Consider the Example 2.7 in §2.3.

Checking §5 of [4], we find a very favorable construction of a tangency between Ws
F (0)

and Wu
F (0); the disk of tangencies DT is equal to a small vertical plane {q} × ρ2 · D and,

choosing a suitable parameterization of DT , we can assume that the projections �s and
�u along the stable and unstable foliations from Wu

F ,loc and Ws
F ,loc to DT are the identity

(considering also the obvious inclusion of such sets into C).
Moreover, we remember that, as already discussed in Example 2.7 in §2.3, for any G ∈

Aut(C2) such that ‖G|K1 − F‖ is sufficiently small, both unstable and stable foliations
are also defined and can be taken Cr , r > 1, very close to the vertical and horizontal
foliations. That means, denoting by pG the continuation of the fixed point 0 for F,
there are continuations W

u,s
G,loc(pG), parameterized by au(w) = (αu(w), w), w ∈ S(0; 3)

and as(z) = (z, αs(z)), z ∈ S(0; 3), respectively, with αs and αu very close to zero, such
that the sets (au)−1(Wu

G,loc(pG ∩ �G)) = Ks
G and (as)−1(Ws

G,loc(pG) ∩ �G) = Ku
G are

Cantor sets very close to K := KF in the topology we consider for �PN . Further, the
disk of tangencies DG

T is also well defined and can be parameterized by a map close
to the parameterization of DT . Therefore, the projections �s from Wu

G,loc to DG
T and

the projection �u from Ws
G,loc to DG

T can be seen, under these parameterizations, as
diffeomorphisms hs and hu very close to the identity.

The existence of a tangency between between Ws(�G) and Wu(�G) corresponds
to a intersection between hs(Ks

G) and hu(Ku
G). Consequently, if we can show that the

configuration pair (Id, Id) has stable intersections for the pair (K , K) of conformal Cantor
sets, then, for every G ∈ Aut(C2) such that ‖G|K1 − F‖ is sufficiently small, there is a
homoclinic tangency at G. We show that this is the case. In the theorem below, δ is the
distance between the pieces defining the Cantor set K, as it was defined in the beginning
of Example 2.7.

THEOREM 4.1. There is δ sufficiently small for which the pair of Cantor sets (K , K)

defined above has a recurrent compact set of affine configurations of limit geometries L
such that [Id, Id] ∈ L.
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FIGURE 2. The first square represents the configuration obtained from Id. The second represents that from A−1 ◦
A′(z) = α · z + β. We will measure the distance of the configuration to the identity by the marked area the

squares above have in common.

Proof. The first observation is that the maps defining K,

ga : S(a; c0) → S(0; 3)

z �→ 3
c1

(z − a),

for a ∈ A are all affine. Hence, if θ ∈ (PN)− := {(. . . , a−n, a−n+1, . . . , a−1, a0) : ai ∈
P for all i ≤ 0} has θ0 = a, then kθ is an affine transformation with derivative Id ≡ 1 ∈ C

that carries a base point to 0. So, choosing for any of the pieces S(a; c0) the base point
ca = a, we have kθ (z) = z − a, whose image is always the set S(0; c0).

It is also easy to verify that, under our notation, for any a, b ∈ P , f(a,b)(z) = (c1/3)z +
a. We can then verify that the action of the renormalization operator is described by

Fθ(a,b)(z) = c1

3
(z + b).

As already discussed, we denote every configuration pair [h, h′] ∈ Q by its representa-
tive that is scaled in the first coordinate (Ah ◦ h, Ah ◦ h′). Similarly, any configuration pair
[(A, θ), (A′, θ ′)] ∈ C will be represented by the triple (θ , θ ′, A−1 ◦ A′), as pointed out in
the paragraph after Definition 3.4. However, proceeding by algebraically calculating the
renormalization operator under this identification makes it hard to construct a recurrent
compact set, so we also choose a geometric interpretation. For this, we may identify any
map B ∈ Aff(C) with B(S(0; c0)), which is a square embedded on C, considering the
orientation of its vertices. Figure 2 exemplifies this idea for our identification.

The square FGHI represents Id(S(0; c0)) with E = 0 as its center. The square
F1G1H1I1 represents the image of S(0; c0) by A−1 ◦ A′. If A−1 ◦ A′ = α · z + β, α, β ∈
C, then the vector �EE1 represents β and α = (F1 − β)/F , when F , F1, β are seen as
complex numbers. In Figure 2, one can easily see that α = R · exp iφ, with R > 1 and
φ ∈ (0, π/4), as the square was rotated no more than this angle.

For each κ ∈ (0, 1] and each complex number α, define Xκ
α as the set of all B ∈ Aff(C)

that are equal to α · z + β, for some β ∈ C, such that the area of S(0; c0) ∩ B(S(0; c0)) is
at least κ · c2

0 · (1 + |α|2), meaning that their intersection has an area of at least a small
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percentage of the sum of their areas. For κ = 0, we write Xκ
α for the set of all B ∈

Aff(C) that are equal to α · z + β, for some β ∈ C, such that S(0; c0) ∩ B(S(0; c0)) �= ∅.
For example, if we consider the affine map identified in Figure 2, it is true that for κ

very close to 0, it is in Xκ
α . Also for any real number c ∈ (0, 1], define the set Rc = {z ∈

C; c1/2 ≤ |z| ≤ c−1/2}.
The recurrent compact set L we will construct on the subsequent lines will not depend

on the limit geometries, that is, L = 	− × 	′− × L = (PN)− × (PN)− × L, where L is
a subset of Aff(C). Additionally, it is composed by three parts. The first one, which we call
‘central’ and denote by L0, is made up of affine transformations B = α · z + β ∈ Aff(C)

such that α ∈ Rc1/3, or in other words, ln |α| belongs to an interval around 0; and β is such
that B ∈ X

κ1
α for some value of κ1 very close to 0 to be chosen later.

In addition to this central part, two ‘lateral’ parts are in L, which we denote by L1 and
L−1. To construct them, we will chose a real number c2 between 1

4 and c1/3, assuming c1

is sufficiently close to 1. The first one, L1, is made up by the affine transformations B =
α · z + β ∈ Aff(C) such that α ∈ Rc2 and |α| > (3/c1)

1/2, in other words, ln |α| belongs
to an interval to the right of 0 and sharing its left border with the central one; and β is
such that B ∈ X

κ2
α , where κ2 is some small constant larger than κ1 to be chosen later.

The other one, L−1, is defined in a symmetrical manner, being made up by the affine
transformations B = α · z + β ∈ Aff(C) such that α ∈ Rc2 and |α| < (c1/3)1/2; and β is
such that B ∈ X

κ2
α for the same value of κ2 already stated.

For each v = (θ , θ ′, B) ∈ L, we will find a renormalization that carries it to the interior
of L. If it belongs to the central part L0, we can find a renormalization Ta,a′ , where a and
a′ have size one, which carries v to a point in L0 preserving the coefficient α of B. This
may not be enough to take v ∈ int L0. However, if κ , the largest value such that B ∈ Xκ

α ,
is smaller than κ2, we will prove that v is carried to (θa, θa′, B ′), where B ′ ∈ Xλκ

α for
some λ > 1. After successive iterations of these renormalizations, v will be carried to the
interior of L0. If v belongs to any of the lateral parts, then we will find a renormalization
Ta,a′ , where a and a′ have combined size equal to one, which carries it to the central part,
to its portion that is close to the other lateral part. See Figure 3 for an illustration.

Having in mind the plan just described, let 1
4 < (c1/3) = c3 < 1

3 and κ0 =
c3/(36(1 + c3)). The first step is the following claim.

CLAIM 4.2. If κ < κ0 then, for any B ∈ X0
α \ Xκ

α with α ∈ Rc3 , the intersection
S(0; c0) ∩ B(S(0; c0)) is contained in one of the four strips S1 = {z; Re(z) > (c0/3)} ∩
S(0; c0), S2 = {z; Re(z) < −(c0/3)} ∩ S(0; c0), S3 = {z; Im(z) > (c0/3)} ∩ S(0; c0),
or S4 = {z; Im(z) < −(c0/3)} ∩ S(0; c0). It is also contained in one of the four strips
B(Si) for i = 1, 2, 3, 4.

Proof. Let Sm denote the smallest square among S(0; c0) and B(S(0; c0)), and SM the
other one. Let lm and lM be the length of their sides, respectively, and |Sm| and |SM | their
areas. Further, let 2

3Sm denote the square with the same center as Sm but side equal to 2
3 of

the original. Define 2
3SM in the analogous way. If the conclusion fails, then Sm intersects

2
3SM or SM intersects 2

3Sm. Indeed, if Sm does not intersect 2
3SM , then there is a line

separating these squares. The half-plane defined by it that contains Sm intersects SM in a
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FIGURE 3. A diagram representing the recurrent compact set. The coordinate β is measured by κ(β), the
proportion of area of intersection between the original square and its image by α · z + β. This way, being
closer to the axis means that this area is close to the maximal proportion, whereas being far means it is
close to zero. The arrows indicate the action of the renormalizations considered above. Note that [Id, Id] is

represented by the origin.

Sm
2
3SM

FIGURE 4. The line separating the squares Sm and 2
3 SM . The outer square on the right-hand side denotes the

square SM . Notice that the intersection between the line separating the plane and the square SM is contained
inside one strip.

region contained in at most one strip of SM . The best way to see this is to translate the line
until one of the vertices of 2

3SM belongs to it. The analysis of the other case is analogous.
See Figure 4 for an illustration.

Now, suppose Sm intersects 2
3SM and let p be a point in this intersection. Consider a

square centered at p congruent to Sm whose sides are parallel to the sides of Sm, that is, a
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p

Sm
SM

FIGURE 5. The central square divided into four smaller squares represents the square centered at p used in the
proof of Claim 4.2. The point p belongs to 2

3 SM , which was not drawn to avoid confusion. The highlighted
smaller square belongs to Sm.

translation of Sm. Divide it into four smaller squares sharing a common vertex at p. One of
them is contained in Sm. If it is also contained in SM , then the area of their intersection is
at least 1

4 |Sm|. See Figure 5 for an illustration.
Suppose it is not. The diagonal of this smaller square defines an isosceles triangle with

a right angle at p, the cathetuses having length equal to 1
2 lm. If they are both contained in

SM , then the area of intersection between Sm and SM is at least 1
8 of that of Sm, as this

triangle would be contained in both. If just one of the cathetuses is entirely contained in
SM , the part of the other one (which intersects the border of SM ) that is contained in SM is
a segment of length at least 1

6 lM ; therefore, the intersection area is at least 1
2 · 1

2 · 1
6 = 1

24
of the area of Sm.

Finally, if both cathetuses intersect the border of SM , they either intersect this border
on the same side of SM or in a pair of adjacent ones. In the first case, the distance
between the intersection points with the border is at least 1

3 lM . Considering the triangle
with base determined by these two points and the other vertex being p, the area of
intersection between Sm and SM is at least 1

2 · 1
3 · 1

6 · |SM | = 1
36 |SM |, because the height

of this triangle is at least 1
6 lM and it is contained in both Sm and SM . In the other case,

the worst case scenario happens when p coincides with a vertex of 2
3SM , but in this case,

a direct calculation shows that the area of intersection is equal to 1
36 |SM |. The argument

in the case where SM intersects 2
3Sm is analogous, and we conclude in both cases that the

area of Sm ∩ SM is at least 1
36 |Sm|. Because |Sm|/(|Sm| + |SM |) ≥ c3/(1 + c3), the claim

follows.

We divide the construction of L into parts. In each of them, we find constraints for c1

in terms of κ1, κ2, and c2. In the end, if κ2, κ1, and c2 are appropriately chosen, then there
is some c1 such that the resultant compact set is indeed recurrent.

Part 1 (Central part of L and B ∈ Xκ
α for small values of κ). Let α ∈ Rc1/3 and 0 <

κ < κ0. First, we show that if c1 is really close to 1, for any v ∈ C identified by (θ , θ ′, B)

with B ∈ Xκ
α \ X

κ0
α , we can find a pair of letters (a, a′) ∈ P 2 such that the renormalization

Tθ0a,θ ′
0a

′ carries v to (θa, θ ′a′, B ′) with B ′ ∈ Xκ ′
α satisfying 1 > κ ′ > κ · λ, where λ > 1

is a constant to be determined.
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Any of these renormalization operators has a very simple visual description when we
consider the graphical identification we defined in this section. Precisely, it carries the
square that represents B to an inner square QB(a′) that is centered at the point B((c1/3)a′)
and whose side length is equal to |α|(c1/3)c0. The square that represents the identity
is carried into S((c1/3)a; (c1/3)c0). It is necessary to rescale the pair by an affine
transformation that carries the last one to S(0; c0), but such action preserves the area
proportion of the intersection.

We begin by observing that because B ∈ X0
α \ X

κ0
α , we can assume, without loss of

generality for our next calculation, that S(0; c0) ∩ B(S(0; c0)) ⊂ S1 ∩ B(S1). Dividing S1

into three squares of side length c0/3, Q1, Q2, Q3, we observe that it is impossible for
(Qi) ∩ B(Qj ) to be non-empty for all pairs (i, j), i, j = 1, 2, 3.

Now, we remember that the area of the intersection between two subsets of C is at least
the sum of their areas minus the area of their union. As a consequence, the area of

⋃
a∈P

S

(
c1

3
a; c0 · c1

3

)
∩

⋃
a′∈P

B

(
S

(
c1

3
a′; c0 · c1

3

))

is at least c2
0 multiplied by c2

1(1 + |α|2) − (1 − κ)(1 + |α|2), because c2
0 · c2

1(1 + |α|2) is
equal to the sum of the areas of the 18 squares and their union is contained in S(0; c0) ∪
B(S(0; c0)), and hence has area at most c2

0 · (1 − κ)(1 + |α|2). This area is divided along
at most eight intersections of the type S((c1/3)a; c0 · c1/3) ∩ B(S((c1/3)a′; c0 · c1/3)) �=
∅ for (a, a′) ∈ P 2. Because the areas of these squares are c2

0 multiplied by (c1/3)2 and
(c1/3)2 · |α|2, respectively, we need only to show that for c1 big enough,

(1 + |α|2) (c
2
1 − (1 − κ))

8
≥ (1 + |α|2)c

2
1 · λ · κ

9
,

and it is clear that we can choose c1 < 1 and λ > 1 both close to 1 respecting all the
previously fixed constraints in a way that the inequality above is true. Notice that as c1 gets
closer to 1, the distance δ between the pieces defining the Cantor set K has to be closer
to 0. Moreover, if we fix κ1 < κ0 and choose c1 such that

c2
1 >

9 − 9κ1

9 − 8κ1
, (4.1)

then there is some λ > 1 such that for any κ1 ≤ κ ≤ κ0 and any v ≡ (θ , θ ′, B) with B ∈
Xκ

α \ X
κ0
α , we can find a pair of letters (a, a′) ∈ P 2 such that the renormalization Tθ0a,θ ′

0a
′

carries v to (θa, θ ′a′, B ′) with B ′ ∈ Xλκ
α .

Part 2 (Central part of L and B ∈ Xκ
α for large values of κ). However, if B ∈ X

κ0
α with

κ ≥ κ0, α ∈ Rc3=c1/3, and ξ ∈ (0, 1), the intersection

⋃
a∈P

S

(
c1

3
a; ξ · c0 · c1

3

)
∩

⋃
a′∈P

B

(
S

(
c1

3
a′; ξ · c0 · c1

3

))

is empty only if

c2
1 · ξ2 ≤

(
1 − c3

36(1 + c3)

)
= 1 − κ0,
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because the area of the union of the 18 squares is equal to c2
1ξ

2 · (1 + |α|2)c2
0 and they

are all contained in S(0; c0) ∪ B(S(0; c0)), whose area is at most (1 − κ0)(1 + |α|2)c2
0.

Hence, if ξ is sufficiently large, for some pair (a, a′) ∈ P 2,

S

(
c1

3
a; ξ · c1

3
c0

)
∩ B

(
S

(
c1

3
a′; ξ · c1

3
c0

))
�= ∅. (4.2)

Assume that ξ > 1 − c1/3
√

2.

CLAIM 4.3. For this said pair, the area of the intersection

S

(
c1

3
a;

c1

3
c0

)
∩ B

(
S

(
c1

3
a′; c1

3
c0

))

is larger than or equal to ((1 − ξ)2/4)(c2
1/9)(1 + |α|2)c2

0.

Proof. Let x be a point in the intersection in equation (4.2). The square centered at x whose
sides are parallel to the sides of S(0; 1) and has lengths (1 − ξ)c0c1/3 is contained inside
S((c1/3)a; (c1/3)c0). Denote it by R1. Analogously, the square centered at x whose sides
are parallel to the sides of B(S(0; 1)) and has lengths (1 − ξ)|α|c0c1/3 is contained inside
B(S((c1/3)a′; (c1/3)c0))). Denote it by R2.

The intersection between R1 and R2 lies inside

S

(
c1

3
a;

c1

3
c0

)
∩ B

(
S

(
c1

3
a′; c1

3
c0

))
.

Suppose without loss of generality that |α| < 1. The argument in the other case is
analogous. In this case, R2 is smaller than R1. If R2 is not contained inside R1, then the
intersections of the diagonals of R2 with the sides of R1 determine a square whose area is
greater than (1 − ξ)2/2 · (c2

1/9)c2
0 contained both in R1 and R2. The estimate follows as

1 + |α|2 ≤ 2.
If R2 is contained inside R1, we adapt the argument a little. Dividing R2 into four

congruent squares, we observe that at least one of them can be exchanged by one sharing
the same vertex x but side lengths equal to |α|/2 so that the resultant figure is still contained
in B(S((c1/3)a′; (c1/3)c0))). Because (1 − ξ)

√
2 < c1/3, the intersection of this bigger

square with R1 is a right-angled sector centered at x and so has an area of exactly 1/4 of
the area of R1.

Therefore, the area of the intersection is at least (((1 − ξ)2/4) · (c2
1/9)c2

0 +
((3(1 − ξ)2|α|2)/4) · (c2

1/9)c2
0) and the estimate follows.

Now, 1 − κ0 = 1 − (c3/36(1 + c3)) ≤ 179/180, because c3 ≥ 1
4 . Hence, if

c2
1 >

179
180(1 − 2

√
κ1)2 , (4.3)

there is some value of ξ2 smaller than or equal to (1 − 2
√

κ1)
2 (and so (1 − ξ)2/4 ≥ κ1)

such that c2
1ξ

2 > 1 − κ0, and hence

⋃
a∈P

S

(
c1

3
a; ξ · c0 · c1

3

)
∩

⋃
a′∈P

B

(
S

(
c1

3
a′; ξ · c0 · c1

3

))
�= ∅.
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That way, following Claim 4.3, given v ∈ C identified by (θ , θ ′, B) with B ∈ X
κ0
α and

α ∈ Rc1/3, we can find a pair of letters (a, a′) ∈ P 2 such that the renormalization Tθ0a,θ ′
0a

′

carries v to (θa, θ ′a′, B ′) with B ′ ∈ X
κ1
α .

We are almost able to construct the recurrent compact set. Before that, fix 1
4 < c2 <

(c1/3).
Part 3 (Lateral parts). Let κ2 < κ0 and α ∈ Rc2 \ Rc1/3. We divide into the following

cases.
(1) |α|2 > (3/c1). In this case, if we consider any v ≡ (θ , θ ′, B) ∈ C such that B =

α · z + β ∈ X
κ2
α then, by choosing c1 sufficiently close to 1 and κ1 close to 0, we can find

a renormalization operator T∅,θ ′0a′ that sends v to (θ , θ ′a′, B ′) with B ′ = α′ · z + β ′, α′ ∈
Rc1/3, β ′ ∈ C and B ′ ∈ X

κ1
α′ . Checking the formula for the renormalization operator, we

have that α′ = α · c1/3 ∈ Rc1/3 by definition, so the expansion part of B ′ is guaranteed.
Pay attention to the importance of the choice T∅,θ ′0a′ . The hard part is to control the
translation part of B ′.

Now, we know that the area of S(0; c0) ∪ B(S(0; c0)) is at most c2
0(1 + |α|2)(1 − κ2).

This implies that the area of

S(0; c0) ∩
⋃
a∈P

B

(
S

(
c1

3
a; c0 · c1

3

))

is at least c2
0(1 + c2

1|α|2 − (1 + |α|2)(1 − κ2)) – it is the same argument as before, but this
time we only have ten squares (S(0; c0) and B(S((c1/3)a; c0 · c1/3)) for a ∈ P ) whose
areas add up to c2

0(1 + c2
1|α|2). By the pigeonhole principle, for some a ∈ P , the area of

S(0; c0) ∩ B(S((c1/3)a; c0 · c1/3) is at least 1
9 of this total area. Thus, if c1 and κ1 satisfy

c2
0
(1 + c2

1|α|2 − (1 + |α|2)(1 − κ2))

9
≥ c2

0 · κ1

(
1 +

(
c1

3

)2

|α|2
)

,

then, for some a ∈ P , the area of intersection between S(0; c0) and B(S((c1/3)a; c0 ·
c1/3) is at least κ1 times the sum of their areas. However, this inequality is equivalent to

c2
1 · (1 − κ1) ≥ 1 + 9κ1

|α|2 − 1 + |α|2
|α|2 κ2.

Hence, if c2
1 ≥ 1 + 4κ1 − (5κ2/4),

c2
1 · (1 − κ1) ≥ c2

1 − κ1 ≥ 1 + 3κ1 − 5κ2

4
≥ 1 + 9κ1

|α|2 − 1 + |α|2
|α|2 κ2,

because |α|2 belongs to the interval (3, 4). In other words, if κ1 is sufficiently small and c1

close to 1, the condition

c2
1 ≥ 1 + 4κ1 − 5κ2

4
(4.4)

is satisfied and so there is a choice of a′ ∈ P such that T∅,θ ′
0a

′ carries v ≡ (θ , θ ′, B) to
(θ , θ ′a′, B ′) with B ′ ∈ X

κ1
α′ , which concludes this part.
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(2) |α|2 < (c1/3). This case is very similar to the previous one; the difference is that
for v ≡ (θ , θ ′, B) ∈ C such that B = α · z + β ∈ X

κ2
α , we find a renormalization operator

Tθ0a,∅, a ∈ P , that sends v to (θa, θ ′, B ′) with B ′ = α′ · z + β ′, α′ ∈ Rc1/3, β ′ ∈ C and
B ′ ∈ X

κ1
α′ . Once again, α′ = α · (3/c1) ∈ Rc1/3, so we proceed to check the translation

part.
Again, the area of S(0; c0) ∪ B(S(0; c0)) is at most c2

0(1 + |α|2)(1 − κ2). By definition,
B ′ = (F θa)−1 ◦ B, but because Fθa is affine, B ′ ∈ X

κ1
α′ if, and only if, the area of

Fθa(S(0; c0)) ∩ B(S(0; c0)) = S

(
c1

3
a; c0 · c1

3

)
∩ B(S(0; c0))

is larger than c2
0 · κ1((c1/3)2 + |α|2).

Arguing as in the previous item, the area of

⋃
a∈P

S

(
c1

3
a; c0 · c1

3

)
∩ B(S(0; c0))

is at least c2
0 · (c2

1 + |α|2 − (1 + |α|2)(1 − κ2)) and it is divided among the nine squares
S((c1/3)a; c0 · c1/3). By the pigeonhole principle, if

c2
1 + |α|2 − (1 + |α|2)(1 − κ2)

9
≥ κ1

((
c1

3

)2

+ |α|2
)

,

then, for some a ∈ P , the area of intersection between S((c1/3)a; c0 · c1/3) and
B(S(0; c0)) is at least κ1 times the sum of their areas. Thus, there is a renormalization
operator Tθ0a,∅ that sends v to (θa, θ ′, B ′) with B ′ ∈ X

κ1
α′ and α′ ∈ Rc1/3.

However, this inequality is equivalent to

c2
1 · (1 − κ1) ≥ 1 + 9κ1|α|2 − (|α|2 + 1)κ2,

which is satisfied when c2
1 ≥ 1 + 4κ1 − (5κ2/4) (equation (4.4)), because then

c2
1 · (1 − κ1) ≥ c2

1 − κ1 ≥ 1 + 3κ1 − 5κ2

4
≥ 1 + 9κ1|α|2 − (1 + |α|2)κ2,

because |α|2 belongs to the interval ( 1
4 , 1

3 ).
It is no surprise that the quota would be the same given the symmetry of the problem.
Thus, we can construct a recurrent compact set L ⊂ C as a union L = L−1 ∪ L0 ∪ L1,

where Li = (PN)− × (PN)− × Li for i = −1, 0, 1, and the Li are defined as:
• L1 = ⋃

α∈R1
c2

X
κ2
α ; R1

c2
= {α ∈ C,

√
3/c1 < |α| ≤ √

1/c2};
• L−1 = ⋃

α∈R−1
c2

X
κ2
α ; R−1

c2
= {α ∈ C,

√
c2 ≤ |α| <

√
c1/3};

• L0 = ⋃
α∈Rc1/3

X
κ1
α ;

and κ1, κ2, c1, and c2 are chosen respecting the constraints we have already fixed. This
means that κ1 is sufficiently small and c1 is sufficiently close to 1 so as to make equations
(4.1), (4.3), and (4.4) true. As we have already shown, for almost all v ∈ L, one of the
renormalization operators T we already found above makes T(v) ∈ int(L). We need only
to show that for v = (θ , θ ′, B), where B = α · z + β with |α|2 = c1/3 or 3/c1 and B ∈
X

κ1
α \ X

κ2
α , we can find a renormalization that carries it to the interior of L. Yet, in this case,
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we can repetitively apply the renormalization operators previously described appropriate
to this case to obtain a sequence vn = Tθnan,θ ′na′

n
(vn−1) for which:

• v0 = v;
• (θn, θ ′n) = (θn−1an−1, θ ′n−1

a′
n−1); and

• vn ∈ X
λnκ1
α .

Hence, if n is large enough, λnκ1 > κ2, which implies that vn ∈ int(L) as we wished to
obtain.

Remark 4.4. Given the constraints on the proof above, more importantly, κ2 <

(c3/36(1 + c3)), we can calculate that for

c2
1 ≥ min

κ1∈[0,1]
max

{
9 − 9κ1

9 − 8κ1
, 1 + 4κ1 − 1

144
,

179
180(1 − 2

√
κ1)2

}
,

κ1 can be chosen such that the construction above works at all steps. Some computation
proves that δ ≈ 5 · 10−8 is sufficiently small to the conclusion of Theorem 4.1. This quota
is not optimal and may be greatly improved by adaptations in the argument, because a lot
of area is ‘wasted’ in the estimates.

Acknowledgements. We would like to thank the anonymous referee for their very useful
comments and suggestions. The paper was written while the first author was at IMPA and
we thank them for their support and hospitality. This work was supported by CNPq and
CAPES.

A. Appendix
We need an adaptation of the Cr section theorem, which can be found in the book by Shub
[19, Theorem 5.18], to the case in which the base is not overflowing. Because we did not
find a precise version of what we mean by this in the literature, we state the following
version below and give a short argument on how a proof would work. We recommend
reading the proof in Shub’s book beforehand.

THEOREM A.1. (Adapted Cr section theorem) Let � : E → M be a Cm vector bundle
over a manifold M, with an admissible metric on E, and D be the disc bundle in E of radius
C, C > 0 a finite constant.

Let h : U ⊂ M → M be an embedding map of class Cm (with a Cm inverse too), U a
bounded open set such that U �⊂ h(U) but h(U) ∩ U �= ∅, and F : E|U → E|h(U) a Cm

map that covers h, that is, � ◦ F = f ◦ �.
Let also N ⊂ U be an open neighborhood of U \ h(U) and s0 : N → D|N a Cr

invariant section (�r� ≤ m, r ∈ R, m ∈ N). By invariant we mean that whenever x ∈ N

and h(x) ∈ N , we have s0(h(x)) = F(s0(x)). We also need the technical hypothesis that
N ⊂ U \ h2(U) and U \ N ∩ U \ h(U) = ∅.

In this context, suppose that there is a constant k, 0 ≤ k < 1, such that the restriction of
F to each fiber over x ∈ U , Fx : Dx → Dh(x) is Lipschitz of constant at most k; that h−1

is Lipschitz with constant μ; that F (j), s(j)

0 , and h(j) are bounded for 0 ≤ j < �k�, j ∈ Z;
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and kμr < 1. Then there is a unique invariant section s : U → D|U (meaning that for
x ∈ U and h(x) ∈ U , we have s(h(x)) = F(s(x))) with s|N = s0 and such a section is Cr .

Proof. The loss of the overflowing condition on h and U is overcome by the presence
of the invariant section s0. The natural graph transform would carry sections over U to
sections over h(U), but, because s0 is invariant in N ⊃ U \ h(U), given any section s that
agrees with s0 in N, we are able to extend its graph transform from h(U) ∩ U back to the
whole open set U. This idea comes from Robinson [18]. In addition to this, very little has
to be changed from the proof of Shub. The admissible hypothesis on the metric works the
same way to allow us to work in the context of E = M × A, where A is a Banach space
and E is equipped with the product metric d, and write a section as s(x) = (x, σ(x)).

Next we consider the complete metric space �(U , D|U ; s0) of continuous sections over
U bounded by C that agree with s0 on N ′ ⊂ U , an open set such that N ⊃ N ′ ∩ U ⊃
N ′ ⊃ U \ h(U). Careful choice of N ′ allows us to use a C∞ function λ on U that is
equal to one on N ′ and zero outside of N, and thus, taking s = λ · s0 yields a well-defined
section that belongs to �(U , D|U ; s0); which shows that it is not empty. Then consider
�F : �(U , D|U ; s0) → �(U , D|U ; s0) defined by

�F (s)(x) =
{

s(x) if x ∈ N ′,
F ◦ s ◦ h−1(x) if x ∈ h(U).

Because s is equal to s0 over N ′, it is invariant in this open set and the definition above
is coherent. Also, because k < 1, this transformation is a contraction, so there is a unique
section in �(U , D|U ; s0) fixed by �F . From now on, we denote it by s to simplify notation.
If x ∈ U and h(x) ∈ U , this implies that

s(h(x)) = �F (s)(h(x)) = F ◦ s ◦ h−1(h(x)) = F(s(x)),

and hence s is an invariant section over U that agrees with s0 on N.
The verification of regularity of s has some minor technical differences. First, we need

to verify that if 0 ≤ r < 1, then s is r-Hölder in all U, that is, there is a constant H > 0
such that d((σ (x), σ(y)) ≤ Hd(x, y)r for all pairs x, y ∈ U . To do so, we need some
intermediate steps, which consider different locations of the points x and y.

Because s agrees with s0 on N, it is r-Hölder on this set, so there is a constant H ′ > 0
such that d(σ (x), σ(y)) ≤ H ′d(x, y)r for all x, y ∈ N . Now, U \ h(U) and U \ N have
a positive distance ε between each other and the section s is bounded by C. So, if
x ∈ U \ h(U) and y ∈ U \ N , we have d(σ (x), σ(y)) ≤ 2C ≤ H ′εr ≤ H ′d(x, y)r up to
increasing the constant H ′. This allows us to write d(σ (x), σ(y)) ≤ H ′d(x, y)r for any
pair x ∈ U \ h(U) and y ∈ U .

The map F is Cm with m ≥ 1 and so also r-Hölder. Hence there is a constant H̃ >

0 such that d(F (e1), F(e2)) ≤ H̃d(e1, e2)
r for all e1, e2 ∈ E. As in the book, whenever

h−j (x) ∈ U and h−j (y) ∈ U for all j = 0, 1, 2, . . . , m, we have

d(σ (x), σ(y)) ≤ kmd(σ (h−m(x)), σ(h−m(y))) + H̃

m∑
j=1

(μr)j kj−1(d(x, y))r .

We are going to consider two cases.
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If x, y ∈ U are such that h−j (x) ∈ U and h−j (y) ∈ U for all j ∈ N, we let m → ∞
in the inequality above, and, because kμr < 1 and σ is bounded by C, the right-hand side
converges to H̃ · C̃d(x, y)r , where C̃ = μr/(1 − kμr).

If else, there is a finite maximal m such that h−j (x) and h−j (y) belong to U for all j =
0, 1, 2, . . . , m. In this case, we can assume without loss of generality that h−m(x) ∈
U \ h(U). However then, using again the estimate above,

d(σ (x), σ(y)) ≤ kmd(σ (h−m(x)), σ(h−m(y))) + H̃

m∑
j=1

(μr)j kj−1(d(x, y))r

≤ km · H ′ · d(h−m(x), h−m(y))r +H̃ ·C̃d(x, y)r ≤H ′ ·km · μmrd(x, y)r +H̃ ·C̃d(x, y)r,

because h−m(x) ∈ U \ h(U) and h−m(y) ∈ U . Again, because kμr < 1, it follows that
d(σ (x), σ(y)) ≤ (H ′ + H̃ · C̃) · d(x, y)r for any x, y ∈ U . So this part is done after
taking H = H ′ + H̃ · C̃.

The smoothness is proved with the same argument as in the book adapted in some way
as above. Using the same induction idea, in our case on 	k
, one can do as follows.

Let Ē be the fiber bundle over M with each fiber being equal to L(TxM , A). As in
Shub’s proof, the derivative of s, which we denote by ∂s, can be seen as living in Ē if we
ignore the trivial part and consider ∂s(x) = (x, Dσ(x)). The same construction from the
book allows us to consider this bundle to be a trivial bundle with a product metric d equal
to, when restricted to each fiber, the one obtained from the operator norm. Fix C̃ larger than
‖∂s‖ and let D̃ be the disc bundle of radius C̃ on Ē. Then the metric space �(U , D̃|U ; ∂s0)

of continuous sections of D̃ that agree with ∂s0 on N ′ is complete. The graph transform
γDF (τ) of a section τ(x) = (x, ς(x)), where ς(x) ∈ L(TxM , A), is defined by

γDF (τ)(x) =
{

∂s(x) if x ∈ N ′,
(x, �DF (ς(h−1(x))) if x ∈ h(U),

where �DF (L) := (�2DF(x,σ(x))) ◦ (Id, L) ◦ Dh−1
h(x) for any linear transformation in L ∈

(TxM , A) and the compositions are just compositions of linear maps. This means that

�DF (L) = �2D1F(x,σ(x))(Dh−1
h(x)) + �2D2F(x,σ(x))L(Dh−1

h(x)).

It is a fiber contraction of constant kμ < 1.
To show that the invariant section τ̃ indeed corresponds to the tangent to s(x) =

(x, σ(x)) for all x ∈ U , we have to divide in cases as above.
If x ∈ ⋃

n∈N hn(N ′), then it is true by definition of ∂s and the fact that τ̃ is invariant
and equal to ∂s0 on N ′ (remember that s0 is Cr ).

If not, then for any n ∈ N, there is δ small enough such that if d(x, y) < δ,
then h−j (x), h−j (y) ∈ U for j = 0, 1, 2, . . . , n. This comes from the fact that x ∈⋂

i∈N hi(U) and hn(U) is an open set around x. This is enough to show, by the same
iteration argument, that Lip0(σ (x + y), σ(x) + ς̃ (x)(y)) = 0, which completes the
proof.
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Remark A.2. The condition kμr < 1 may be replaced by a pointwise condition:

kx · (Liph(x)(h
−1))r < C < 1,

for every x ∈ U , where kx is the Lipschitz constant of the fiber contraction Fx ,
Liph(x)(h

−1) is the Lipschitz constant of h−1 at the point h(x), and C < 1 is some
constant uniform for all x. This is important for Remark 2.3. The proof is the same as
above, changing k and μ for the corresponding kx and Liph(x)(h

−1). To keep the clarity of
the text, we chose to present only the simplified version.

Remark A.3. Observe that, from the argument above, if we just want to obtain an invariant
section that is continuous, we can just make m = r = 0 and consider just the case in which
M is a topological space rather than a manifold.

Remark A.4. If we add the additional hypothesis that the maps h, F , s0, and all their
derivatives are uniformly continuous, the proof above also shows that the invariant section
varies continuously with the maps involved. More specifically, fixing h, F , s0 and choosing
any h′, F ′, s′

0 such that h and h′ are Cm close and also their inverses; F and F ′ are Cm

close (and F ′ covers h′); s0 and s′
0 are invariant (by F and F ′, respectively) and Cr close;

and kμr < 1, then s and s′ are both close in the Cr topology. The proof is essentially the
same as above and the details are left to the reader.

We now proceed to the proof of Theorem 2.2.

Proof of Theorem 2.2. The work of Pixton (Theorem 3.4 of [17]) shows that we can
construct a not necessarily smooth Fu

G for any G with the desired properties as above.
The idea is described as follows.

We begin by constructing a transversal (not necessarily semi-invariant) foliation F0 to
Ws

G,α that covers an open set around Ws
G,α . Here, Ws

G,α denotes the union of all local
stable manifolds

⋃
p∈�G

Ws
G,α(p) as they were defined in §2.2, with α being the size

(ε) of the local stable manifolds. This can be done locally and, in the case that Ws
G,α

is a zero-dimensional transversal lamination, which is our case, it is possible to glue
these constructions together by bump functions (check the original for details). We can
restrict F0 to a small neighborhood N of Ws

G,α \ G(Ws
G,α) in such a way that G(N) ∩ N =

N ′ does not intersect G−1(N) ∩ N = G−1(N ′). We consider a new foliation F′
0 on

N ′ ∪ G−1(N ′) defined by being the same as F0 over G−1(N ′) and being equal to G(F0)

over N ′. We can then, considering again that Ws
G,α is transversely zero-dimensional,

construct a transversal foliation F1 to it that agrees with F′
0 on N ′ ∪ G−1(N ′). Now we

define recursively the foliation Fn as being equal to G(Fn−1) when restricted to a small
neighborhood V ⊂ U of �G chosen suitably and being equal to Fn−1 when restricted to
N. Notice that this is possible because of the semi-invariance of F1, so both foliations are
coherent in the overlap of their domains. Notice that for any point x ∈ V \ ⋂

n∈N Gn(V ),
for any integer n bigger than a integer nx , the leaf Ln(x) of Fn at x is the same so we can
safely define in V \ ⋂

n∈N Gn(V ) the limit foliation F. Finally, adding the submanifolds
Wu(x), x ∈ �, yields a semi-invariant foliation Fu

G in an open subset V ′ of U that
contains Ws

G,α (also see [9] for the idea of fundamental neighborhood). Notice that we
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can chose L and δ small enough such that the items above are satisfied for any G satisfying
‖G − G0‖ < δ.

We can use the Cr section theorem to show that this foliation is indeed C1+ε. Begin by
changing the fibrate decomposition EG0 = E = Es ⊕ Eu over � to a C2 decomposition
F = F s ⊕ Fu over V ′ that is an approximation of E such that the action of the derivative
map T Gx := F s

x ⊕ Fu
x → F s

G(x) ⊕ Fu
G(x) can be written as a block matrix:

T Gx =
[
Ax Bx

Cx Dx

]

in which |Ax | < ‖DG0|Es ‖ + δ′, |D−1
x | < ‖DG−1

0 |Eu‖ + δ′, and |Bx |, |Cx | < δ′ for some
small δ′ uniformly on V ′, possibly shrinking V ′. Also, by possibly shrinking V ′, we may
assume that the tangent directions to F can be written as the graph of a linear map from
Fu

x to F s
x (with operator norm bounded by 1 on V ′).

We are now ready to describe how to use Theorem A.1. First, we make the following
associations to fit into the terms of the statement: V ′ ∩ G−1(V ′) → U , G → h and V ′ →
M . If U ⊂ h(U), then we are in the context of the usual Cr section theorem and nothing
needs to be done. Let E be the C2 bundle whose fibers are L(Fu

x , F s
x ) and so m = 2. Let

D be the disk bundle of radius C = 1. This bundle can be seen as trivial and equipped
with the product metric through the addition of a trivializing complementary bundle, in a
manner similar to that mentioned in the proof of Theorem A.1. The map F is defined by
F(x, T ) = (x, �DF (x)(T )), where

�DF (x)(T ) = [Bx + AxT ] ◦ [Dx + CxT ]−1

for any T ∈ L(Fu
x , F s

x ). Notice Dx + CxT is invertible because it is very close to Dx that
is invertible (remember that the norm of T is bounded, as we are in the disk bundle D).
The set N is as before. It is however necessary to check the construction of Pixton to see
that it has the desired properties. The idea here is that N can be chosen very small around
Ws

G,α \ G(Ws
G,α) and V is constructed according to N. We associated to the foliation Fu

G

the section s = (x, Tx(Fu
G)) identifying these tangent spaces with the graph of a linear

transformation. Observe that this section is invariant by F. So, if we write s0 = s|N , it is
the unique invariant section guaranteed by Theorem A.1.

Given small δ′′ > 0, making δ and δ′ sufficiently small, we have that �DF is a fiber
contraction of constant at most ‖DG0|Es ‖ · ‖DG−1

0 |Eu‖ + δ′′. Given δ′′′ > 0, if we shrink
V ′, the Lipschitz constant of the base map G−1 is at most ‖DG−1

0 |Es ‖ + δ′′′. Therefore,
writing r = 1 + ε, for sufficiently small δ′′ and δ′′′,

(‖DG0|Es ‖ · ‖DG−1
0 |Eu‖ + δ′′) · (‖DG−1

0 |Es ‖ + δ′′′)r < 1.

This is enough to show that the section (x, Tx(F ∪ Wu)) is the unique invariant section of
the Cr section theorem that agrees with F on N, and so it is C1+ε. By the same argument
with the Fröbenius theorem, we can express the foliation F locally through a finite number
of C1 charts and the fact that the section above is C1+ε allows us to show that these
charts are actually C1+ε. The continuity in the C1+ε topology comes immediately from
the construction and previous observations, we only require F0 and its derivatives to be
uniformly continuous on V, which is clearly possible to be done.
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COROLLARY A.5. With the hypothesis ‖DG0|Es ‖ · ‖DG0|Eu‖ < 1, the last theorem
guarantees the existence of a C2 foliation F u

G for any G sufficiently close to G0.

This could be the case in the dissipative context, especially in the case of horseshoes
arising from transversal homoclinic intersections.
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