
SOME CHARACTERIZATIONS OF GENERALIZED 
MANIFOLDS WITH BOUNDARIES 

PAUL A. WHITE 

In R. L. Wilder's book [2] the open and closed generalized manifolds are ex­
tensively studied. However, no study is made of the generalized manifold with 
boundary nor is a definition of such a space given except in the case of the 
generalized closed n-cell. A definition of a generalized manifold with boundary 
was given by the author in his paper [1]. Before undertaking the study of further 
properties of these manifolds it seems appropriate to characterize the manifolds 
with boundary in terms of the open and closed manifolds of Wilder. It is to that 
purpose that this paper is directed and in particular the generalized closed w-cell 
of Wilder is characterized as a special manifold with boundary. 

The space M that we shall deal with will be a compact Hausdorff space and 
the homology theory used will be that of Cech in which the coefficient group 
for the chains will be an arbitrary field which we shall omit from the notation 
for a chain. We shall use small Roman letters for points and large Roman letters 
for sets of points. We shall use "VJ" for point set union or sum, "fY' for inter­
section, reserving + and — for the group operations. 

1. The generalized manifold with boundary; condition D. 

Definition 1. If K is a closed subset of M, then we will say that the local 
r-dimensional Betti number of M at x mod K, denoted by pr(M mod K;x), is 
the finite integer k if k is the smallest positive integer with the property that 
corresponding to any open set P such that x Ç P there exists an open set Q such 
that x Ç Q, Q C P, and such that any k + 1 Cech cycles of M mod 

(M - (P - K)) = (M - P) U K 

are linearly dependent with respect to homologies on M mod 

M-(Q-K)=(M-Q)\JK. 

(Note that if K = 0 then this definition is equivalent to the definition of pr(M, x), 
the local Betti number of M at x. Also this is equivalent to Wilder's definition 
[2, p. 291] of the Betti number around a point.) 

Definition 1.2. The compact space M will be called an n-dimensional genera­
lized manifold (w-gm) with boundary if there exists a closed subset K of M such 
that: 

(1) M == K \J A where A is open, K — À — A, and dim K < n, and dim 
M = n (in the sense of Lebesque [2, p. 195], 
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(2) pT(M mop! K] x) = 0 for all xÇikf, r < n - 1, 
(3) £n(M mod X; x) = 1 for all x£M", 
(4) pr(M, x) = 0 for all x£K,r < rc. 

(Note that this definition reduces to Wilder's definition of an w-dimensional 
generalized closed manifold (w-gcm) when K = 0 [2, p. 244] for (2) becomes 
pT(M, x) = 0, r < n, which is equivalent to r-co-local connectedness r < nf and 
(4) no longer applies.) 

THEOREM 1.1. The boundary set K in Definition 1.2 is unique. 

Proof. Let K\ and K2 be two closed subsets of M satisfying the conditions of 
Definition 1.2. Suppose there is a point x£Ki but not £K2. By (3), pn(M mod 
K2;x) = 1, but since x$K2, pn(M mod K2; x) = pn(M, x), hence pn{M, x) = 1 
which is a contradiction to pn(M, x) = 0 by (4) since x(Ei£i. Thus i£i = K2. 

THEOREM 1.2. A necessary and sufficient condition that M be a manifold with 
boundary is that there exist a closed subset K of M such that : 

(1) M = KU A, Kr\ A =0, dim M =n, 
(2) K is an (n — l)-gcm (see note after Definition 1.2), 
(3) A is a non-compact n-gm (i.e., Definition 1.2 with K = 0 and M locally 

compact, but not compact), 
(4) pr(M, x) = 0, r < n for all x^K. 

Proof of necessity. (1) This clearly follows from Definition 1.2 (1). (2) We 
first note that K is compact since K = À — A is a closed subset of the compact 
set M. We next show that pn-.i(K, x) = 1 for all x£K and that K is colcn_2 

(that is, r-co-locally connected r < n — 2, which is equivalent to pT(K, x) = 0, 
r < w - 2 forallxGX"). Since by Definition 1.2 (4)£r_i(iif,x) = pT{M,x) = 0 for 
r < wand all xGi£, it follows that£r_i(2£, x) = £r(-M"modi£;x) which [2, p. 291, 
Theorem 1.4] gives us the result by referring to (2) and (3) of the definition. 
Finally, dim K = n — 1, for dim K < n, but if dim K < w — 2, then [2, p. 196, 
Theorem 7.7] we conclude that pn-i(K, x) = 0 contrary to what we have just 
proved above. 

(3) We first observe that K ^ 0 since dim K — n — 1 and, therefore, A is 
locally compact but not compact, since it is an open subset of a compact space M 
and has a non-vacuous boundary K. Also dim A — n by Definition 1.2 (3). 
A is clearly cole7*""1 and pn{A,x) = 1 forxG^4 by(2) and (3) since pr (M mod K;x) 
= £rC&f, x) = pT{A, x) for x£i4. 

(4) This is the same as Definition 1.2 (4). 

Proof of sufficiency. By (1) Â — A C K and if x£K, but x #Â — A then 

£n_i(Af,x) = £n_i(if,x), 

but pn-i(M,x) = 0 by (4) which contradicts pn-i(K, x) = 1 by part of (2); 
therefore À - A = X. Also dim K = M - 1 < M by (2). 
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By [2, p. 292, Theorem 1.4] again together with pr-i(M, x) = pr(M, x) = 0 
for x£K, r < n, we conclude that pr-i(K, x) = pr(M mod K; x) for all x£K. 

By (2) and the above equality, we have pT(M mod K; x) = pr-i(K, x) = 0 
for all x £ K, r < w — 1, and for x G ̂ 4 this follows from (3). 

By (2) and the above equality we have pn(M mod K; x) = pn-i(K, x) = 1 
for all x £ X, which follows from (3) for x Ç ̂ 4. 

This is the same as (4). 

Definition 1.3. The n-gm M with boundary will be said to satisfy condition 
D if pn(Mu K) = 0 (pn(Mi, K) denotes the number of w-cycles on Mi mod K 
linearly independent with respect to homologies on Mi mod K), where Mi is a 
proper closed subset of M. We will denote this by saying that M is an n-D-gm 
with boundary. (This corresponds to condition D [2, p. 250].) 

THEOREM 1.3. A necessary and sufficient condition that M be an n-D-gm with 
boundary is that there exists a closed subset K of M such that : 

(1) M = K \J A, K C\ A = 0, dim M = n. 
(2) K is an (n — l)-gcm. 
(3) A is a non-compact n-gm satisfying D' (i.e., if zn is an infinite cycle of A 

on a subset A i of A closed relative to A such that the closure of A — A i relative 
to A is compact, then 2 n ^ 0 o n i . See [2, p. 254]). 

(4) pr(M, x) = 0, r < n,for all x£K. 
Before proving this theorem we remark that in the case of a closed subset K 

of a compact space ikf, such as we have here, the cycles M mod K and the in­
finite cycles on A = M — K are related in a one to one fashion so that if zn is a 
cycle on M mod K and g is the related infinite cycle on A, then zn ^ 0 on 
M mod K if and only if g ^ 0 on A. This result has been verified by Wilder in 
connection with some of his work that is not yet published. We now proceed to 
the proof. 

Proof of necessity. All the conditions (1), (2), (3), and (4) follow from Theo­
rem 1.2, except that A satisfies D'. To verify this let A i C A be closed relative 
to A, such that A — A i relative to A is compact. Let f be an infinite cycle on A i, 
then by the above remark there is a corresponding cycle zn on M mod K and 
zn will be on Mi = A x U Ki which is a proper closed subset of M. By hypothesis 
pn(Mi, K) = 0 implies that z" ^ 0 on Mi, hence on Mi mod i£, and by the 
remark f ^ 0 on A. 

Proof of sufficiency. That M is an w-gm with boundary follows from Theorem 
1.2. To show that M satisfies D, let Mi be a proper closed subset of M. Now 
A C\ (M - Mi) ^ 0, for otherwise ,4 C MxandÂ =MCM; also A Pi (M - Mi) is 
open and therefore contains an open set U such that Û C A C\ (M — Mi). 
If zn is a cycle on Mi mod JK\ then the corresponding infinite cycle f of -4 is 
on A — J7, which is proper closed relative to A, and 

4 - G 4 - £ / ) = t7C;4 
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is compact. Thus f ^ 0 on A and by the remark zn ^ 0 on M mod K, but this 
implies that zn = 0 mod K (with respect to the w-dimensional coverings of M) ; 
hence 2W ^ 0 on M\ mod K (with respect to all coverings). 

THEOREM 1.4. If M is an n-D-gm with boundary Ky then pn(MhK1) = 0, 
where M\ and K\ are closed subsets of M and K, respectively, and at least one subset 
is proper. 

Proof. It is sufficient to prove the theorem for cycles whose coordinates are 
restricted to a complete family of coverings of ikf, [2, p. 130], and since M is 
w-dimensional we can suppose this to be the family of n-dimensional coverings 
of M [2, p. 195]. First consider the case where K\ is a proper closed subset of K. 
Let p£K — Ki, then pn(M, x) = 0 and we can choose open sets U, V such that 
XÇLV, V C U, U C\ Ki = 0, and such that any w-cycle on M mod (M — U) is 
^ 0 on M mod (M — V). In particular if zn is a cycle on M\ mod Ku then it is a 
cycle mod (M — U) ; hence ^ 0 on M mod (M — V). Since only w-dimensional 
coverings are being used, this means that 

zn = 0 mod (M - V), 

that is, zn is on M — V. Now M — F is a proper closed subset of M; therefore 
pn(M — V, K) = 0, and zn ^ 0 on M — F mod K, but as before this implies 
that zn is on X; hence ^ 0 on Mi mod K, that is, pn(Mu Ki) = 0. The only 
remaining case would be where ikfi is a proper subset of M and i£i = i£, then 
pn(Mi,K!) = 0 by hypothesis. 

Remark. The condition D is actually stronger than the similar condition 
pn(M, Ki) = 0, for proper closed subsets K\ of K, which it implies, as is shown 
by letting M consist of the union of a bounded 2-cell and a disjoint projective 
plane. 

THEOREM 1.5. / / M is an n-D-gm with boundary K, then pn(M, K) < 1. 

Proof. Suppose Cni and Cw
2 are cycles on M mod K linearly independent with 

respect to homologies on M mod K. Let x Ç ¥ - X , then pn(M, x) = pn(M mod 
K;x) = 1 (by Definition 1.2 (3)); therefore we can find open sets V, U such 
that x^V, 7 C U, Ur\K = 0 and such that any two cycles mod (M — U) 
are linearly dependent with respect to homologies mod (M — V). In particular 
Cni and Cn2 are cycles mod (M — U) ; hence there exist elements oi, a2 of the 
coefficient field, not both zero, such that 

aiC\ + a2C
n
2 - 0 mod (M - V). 

Again we can restrict our cycles to w-dimensional coverings of M, which implies 
that 

zn = a\Cn\ + a2C
n2 

is on M — V. Since M — F is a proper closed subset of M, and M satisfies D, 
we have zn ^ 0 on M — V mod K contrary to the assumption that Cn\ and Cn

2 

were linearly independent mod K; thus pn(M, K) < 1. 
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2. Orientability. 

Definition 2.1. An n-gm M with boundary K is called orientable if M is the 
carrier of a cycle zn mod i£ such that zn no Yn mod K on M where Tn is a cycle 
mod i£ on a proper closed subset of M. (If K = 0, this becomes the definition 
of an orientable n-gcm.) 

THEOREM 2.1. A necessary and sufficient condition that M be an orientable 
n-gm with boundary is that there exist a closed subset K of M such that : 

(1) M = K W A, K r\ A = 0, dim M = n. 
(2) K is an (n — l)-gcm. 
(3) A is a non-compact n-gm orientable in the sense that there is an infinite 

cycle on A not homologous on A to any infinite cycle on a proper closed subset of A. 
(4) pr(M, x) = 0, r < n,for all x£K. 

(See [2, p. 254] for definition of infinite cycle on a proper closed subset.) 
From Theorem 1.2 it follows that we need only show that the orientability 

of A is a necessary and sufficient condition for the orientability of M. 

Proof of necessity. Let zn be the cycle on M mod K given in the definition of 
orientability and let %n be the infinite cycle on A corresponding to zn according 
to the remark after the statement of Theorem 1.3. If zn ^ tf\ on A where %ni 
is an infinite cycle on a proper closed subset Ai of A, then fi determines a 
cycle zni on Ai\J K = Mi which is a proper closed subset of M such that 
zn ^ zni mod K on M, contrary to the hypotheses on zn. Thus in is the required 
infinite cycle on A. 

Proof of sufficiency. Let f be the infinite cycle on A in the definition of the 
orientability of A and let zn .be the cycle on M mod K corresponding to it. Sup­
pose zn ^ zni on M mod K, where zn\ is a cycle on M\ mod K, and Mi is a proper 
closed subset of M. Then zni would correspond to an infinite cycle fi on a proper 
closed subset Ai of A as in the proof of Theorem 1.3, and zn would be ^ ini 
on A, contrary to the hypotheses on in. Thus zn is the required cycle on M mod K 
in the definition of orientability. 

THEOREM 2.2. If M is an orientable n-gm with boundary K, then K is an 
orientable (n — l)-gcm. 

Proof. K is an (n — l)-gcm by Theorem 1.2. To show that K is orientable, 
let zn be the cycle on M mod K according to the definition of orientability; then 
dzn = sn_1 is a cycle on K. Suppose 2n_1 ^ sn_1i on K where s71-1! is a cycle on a 
proper closed subset K± of K. Thus zn~li ^ O o n Af and by [2, p. 201, Lemma 1.4] 
there exists a cycle Cn mod Ki on M such that dCn ^ zn~"1i on X"i. Choose 
x£K — Ki, and since pn{M, x) = 0, there exist open sets Z7, V, such that xÇ F, 
V' C U, U r\ Ki = 0, and such that any rc-cycle mod ( i f — U) is ^ 0 mod 
(M — F). In particular C71 is a cycle mod ( i f — U); therefore Cn = 0 on V 
(when restricted to the complete family of w-dimensional coverings). Thus Cn 
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is on a proper closed subset Mi = M — V of M. Now 

dCn - dzn ~ zn~\ - z11'1 ~ 0 on K\ 

therefore, there exists by [2, p. 201, Lemma 1.6] a cycle Tn on M such that 
(Cn - zn) ^ Yn mod K on M. Again Tn is a cycle on M (mod JRTI) ; therefore Yn 

(when restricted to ^-dimensional coverings) is on Mi as before. Now zn ^ 
Cn __ rn m o d jj- o n M^ where Cre - Tn is on Mi. It follows that zn is ̂  mod K to a 
cycle on a proper closed subset of M. This contradicts the orientability assump­
tion; hence 2n_1 is not homologous to a cycle on a proper closed subset of K, 
which is the orientability condition for K. 

The orientability condition for the n-D-gm can be more simply stated as is 
indicated in the following theorem. 

THEOREM 2.3. A necessary and sufficient condition that an n-D-gm M with 
boundary K be orientable is that pn (M, K) = 1. 

Proof. By Theorem 1.5, pn{M,K) < 1; thus the orientability assumption, 
which implies pn(My K) £ 1, implies pn(M, K) = 1. Conversely, pn(M, K) = 1 
implies the existence of a cycle zn on ikfmod i£ which is not ^ 0 mod K and, 
therefore, is not homologous to a cycle zni on a proper closed subset Mi of ikf, 
for any such cycle £i is ^ 0 by property D. 

In connection with the orientable n-D-gm it turns out that if condition D 
had been stated, upn(M1 Ki) = 0, where Mi, K\ are closed subsets of M and K, 
respectively, such that one but not both inclusions are proper," then the n-
dimensional part of Definition 1.2 (4) follows from the other hypotheses. This 
is embodied in the following theorem and corollary. 

THEOREM 2.4. For an orientable n-gm M with boundary K satisfying the condi­
tion pn(M, Ki) = 0 where K\ is a proper closed subset'of K, the condition pn(M, x\) 
= 0 for x£K in the definition of a manifold follows from the other conditions in 
the definition. 

Proof. It will be sufficient to prove the proposition for the complete family 
of w-dimensional coverings of M. Let x be any point of K and U any open set, 
x£U, and let yn be an arbitrary w-cycle mod (M— U), hence mod [{M — U)KJ K]. 
Since pn[M mod K,x) = 1, there is an open set V, V C U, xÇ. V, such that there 
is only one cycle mod [ (M — U) W K] linearly independent with respect to 
homologies on M mod [(M — V) W K]. Let zn be the cycle on M mod K from 
the definition of orientability, then zn is a cycle mod [(M — U)\J K\. Also 

2Boo0 m o d [ ( M - V) \JK], 

for otherwise it would be on (M — V) VJ K (since only w-dimensional coverings 
are being used), contrary to the orientability assumption which says that zn is 
not ^ to a cycle mod K on a proper closed subset of M. Now suppose 7 n oo0 
mod [(M — V)yj K] on M, then there exist elements a\ ^ 0 and a2 ^ 0 of 
the coefficient field such that axy

n + a2z
n ^ 0 mod [(M — V) KJ K] on M, but 
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this means that a\yn + a2z
n = 0 on V — K, hence = 0 on 

V-K=V. 

Then (ndyn + a2dzn = 0 on 7 , but dyn is on M - U, hence = 0 o n f C ^ ; 
thus dzn = 0 on V. Now i£i = K — F is a proper closed subset of K and by the 
above zn is a cycle mod i£x; therefore by the hypothesis pn(M,K1) = 0, we 
have zn ^ 0 on M mod 2£"i, contrary to the orientability assumption. Thus we 
conclude that 

yn ~ 0 mod [(M - V) U K] on If; 

hence yn = 0 on V — K (since only ^-dimensional coverings are considered). 
This, however, implies yn = 0 on 

7 - 2 S : = 7 ; 

therefore 7W ̂  0 mod (ikf — F), and pn(M, x) = 0 for all xÇK. 

COROLLARY 2.4.1. i w an orientable n-D-gm M with boundary K the condition 
pn(M, Ki) = 0, where K\ is a proper closed subset of K, is equivalent to the condi­
tion pn(M,x) = Ofor allx£K. 

Proof. The proof follows by combining Theorems 1.4 and 2.4 
The following example shows that condition (4) of Definition 1.2 is necessary 

for r < n even in the case of an orientable n-D-gm. 

Example. Let M be a solid pinched sphere, i.e., a 2-sphere plus its interior in 
which all points on some fixed diameter are identified. Let K equal the boundary 
2-sphere with the pinched points, then M satisfies conditions D and (1), (2), 
(3), and (4) (for r = n = 3) of Definition 1.2, but p2(M, x) = 1 where x is the 
pinched point. 

The next theorem and its corollaries clarify the role of the n-D-gm in connec­
tion with the orientable n-gm. 

3. The orientable manifold satisfying condition D. 

THEOREM 3.1. If M is an n-gm with boundary K, then M has only a finite 
number of components Mi \J M2 W . . . W Mk, and each component Mi is an 
n-gm with boundary Kt — K C\ Mt\ and if M is orientable, then each Mt is an 
orientable w-D-gm with boundary Kt. 

Proof. M has only a finite number of components since it is compact and 
locally-O-connected. Let At = Mf — Kh then clearly (1) Ât — At = Kt. Condi­
tions (2), pr(Mi mod Ku x) = 0 for all x£Mit r < n — 1 ; (3) pn(Mt mod Ku x) 
= 1 for all x€Kt; and (4), pr(Mif x) — 0 for all x£Kiy r < n follow im­
mediately from the corresponding conditions on M and K since Kt C K and 
the Mi are separated. The condition dim Mi — n follows since Mt C M and 
dim M — n implies that dim Mt < n, and condition (3) for Mt requires that 
dim Mi > n. Also if M is orientable, then each Mt is orientable, for the cycle 
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zn in the definition of orientability of M can be written in the form 

zn = z\ + . . . + z\ 
where each zt is the part of zn on Mt and is clearly a cycle mod Kt with the 
properties required for the orientability of Mt. 

Finally we will show that Mt satisfies condition D. To this end consider M't 
a proper closed subset of Mt. We must show pn(M'u Kt) = 0, and it will be 
sufficient to consider only the complete family of w-dimensional coverings of M. 
Let Cn be a cycle on M't mod Kt and let M" i C M' i be a minimal locus of con­
centration for the cycle Cn, that is, Mf\ is a closed set such that every open set 
Z) M" i is a carrier of Cn and Mn\ is minimal with respect to that property. The 
existence of such a minimal locus of concentration is guaranteed by [2, p. 205, 
2.2]. Let x be a point on the boundary of Mff

t relative to Mt; such points exist 
since Mt is connected and M"t is a proper closed subset, and x CAT"*. Since 
pn(Mi mod Kux) = 1, there exist open sets F, U such that x Ç F, V C U, and 
such that there is only one w-cycle on Mt mod [(Mt — U)\J Kt] linearly inde­
pendent with respect to homologies mod [(Mi — V) \J Ki\. Now both Cn and 
zni are cycles mod Ku hence, mod [(Mt — U) U2£*]; therefore, there exist 
elements a\ and a2 of the coefficient field, not both zero, such that 

aizni + a2C
n ~ 0 mod [(Mt - V) U Kt]. 

Now zni is not ^ 0 mod [(Mt —• F) U i£J, for if it were, then it would be equal 
to zero on V — Kt (since only w-dimensional coverings are being used), and 
zni would be on the proper closed subset (M — V) \J Kt of Mit contrary to the 
orientability of Mt. Also if M"t <£ Kt then Cn is not ^ 0 mod [(Mt - V)\J Kt] 
for if it were, then, as above, 

[(Mi- V)\JKi}C\M"i 

would be a proper closed subset of Mf\ and a locus of concentration for Cn, 
contrary to the minimal property of M" t. We therefore conclude that ai 9e 0 
and a2 5̂  0 in the preceding homology, and that 

Cn ~ - (al/a2)z
n
i mod [(Mt - V) U Kt] on M<; 

hence zn = — (a\/a2)z
ni on F — Kt. Since x is a boundary point of M"t and 

i£* = Ai — Au there is a point y £ F — iT* — ikf'i. Let W be an open set such 
that 

x e w, wn M"i = o, wcv-Ki- M'\. 
Now just as before zni ^ 0 on W, but Cn = 0 on IF, since AT"* is a locus of con­
centration and this requires the open set Mi — W 3 M"* to carry Cn. This is, 
however, contrary to Cn = — (ai/a2)sni on F — X*; therefore we conclude that 
M"i C #<; and that Cn = 0 mod X,. 

COROLLARY 3.1.1. A necessary and sufficient condition that the n-gm M with 
boundary K be orientable is that pn(MuKi) = 1 for each component Mt of M 
where Kt = KC\Mi} and that each Mt satisfy condition D; in particular, a 
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necessary and sufficient condition that a connected n-gm M with boundary K be 
orientable is that pn{M1K) — 1, and M satisfy D. 

Proof. The necessity follows from Theorems 2.4 and 3.1. The sufficiency 
follows from Theorem 2.4 which requires each M * to be orientable, and from the 
fact that M is clearly orientable if each component is. 

COROLLARY 3.1.2. If M is an orientable n-gm with boundary K, then pn(M, K) 
is the number of components of M. 

Proof. By Corollary 3.1.1, pn{MiyKl) = 1 for each component; therefore 
pn(M,K) is the number of components, since Hn(M,K) is isomorphic to the 
direct sum of the groups Hn{Mu Kt). 

COROLLARY 3.1.3. A necessary and sufficient condition that an orientable n-gm 
M with boundary K be an n-D-gm is that M be connected. 

Proof. The necessity follows from Corollary 3.1.2 and Theorem 2.4. The 
sufficiency follows directly from the Theorem. 

The above theorem and corollaries allow us to restrict our attention in the 
orientable case to the n-D-gm. 

THEOREM 3.2. If M is an orientable n-D-gm {or equivalently connected orient-
able n-gm) with boundary K, then M is an irreducible membrane relative ro zn~l, 
the cycle referred to in the Definition 2.1. (See Definition [2, p. 209].) 

Proof. In the proof of Theorem 2.2 it was shown that if zn is the cycle on 
M mod K in Definition 2.1, then dzn = zn~l satisfies the definition of orientability 
for the (n — l)-gcm K. Clearly zn~l ^ 0 on M ; suppose also that z71"1 ̂ O o n 
Mi, a proper closed subset of M. By [2, p. 201, Lemma 1.4] there exists a cycle 
zni on Mi mod K such that dzni ^ z71-1 on K. Thus 

d(zn - z\) = zn~l - dz\ r^OonK 
and by [2, p. 201, Lemma 1.6] there exists a cycle Cn on M such that zn — z\ ^ Cn 

on M mod K. By property D, Cn ̂  0; hence zn ^ zn\ mod K on M contrary to 
the orientability hypothesis of M. Thus M is an irreducible membrane for the 
homology zn~l ^ 0 on M. 

Definition 3.1. If K is a closed subset of the compact space M then gT(M; K, 0) 
is the maximum number of r-cycles on K ^ 0 on M and linearly independent 
with respect to homologies on K [2, p. 211]. 

THEOREM 3.S. If M is an orientable n-D-gm with boundary K, then gn~1(M; 
K, 0) = 1 irreducibly (that is, gn~l{M; K, 0) = 1 and g~l(M) Ku 0) = 0 where 
K\is a proper closed subset of K). 

Proof. Theorem 3.2 yields a cycle z71"1 on K ^ 0 on M such that zn~l oo 0 
on K (since zn~l oo 0 on any proper closed subset of M). Thus gn~1(M; K} 0) ^ 1. 
Now consider two cycles zn~li and zn~1

2 on K such that zn~li ^ 0 on M (i = 1, 2). 
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By [2, p. 201, Lemma 1.4], there exist cycles Cni on M mod K such that 
dCni — z^i on K (i = 1, 2). By Theorem 8, pn(M, K) = 1; hence there exist 
elements ai, a2 of the coefficient field, not both zero, such that aiCn\ + a2C

n2 ^ 0 
on M mod X. By [2, p. 201, Lemma 1.3], 

d(aiCni + a2C
n

2) = aidCwi + a2<9Cw
2 — 0 on K; 

hence ai**-1! + a2z
n~12 ̂  0 on X, that is, gn~l(M]K, 0) < 1. Thus g7*"1^; 

X,0) = 1. 
Next consider the proper closed subset Ki of K and a cycle zn~l\on Ki such 

that 2n_1i ^ 0 on Jkf. As before, there exists a cycle Cn\ on Af mod K\ such that 
<3Cni — z^\ on i^i. By Theorem 4, >̂w(ikT, Xx) = 0; hence C\ ^OonM mod i£i, 
which implies that zn~\ ^ 0 on Ki. Thus g * " 1 ^ ; # i , 0) = 0. 

4. The generalized w-cell. Before proving the next theorem we prove three 
lemmas needed later. 

LEMMA 1. If M is an n-gm with boundary K, then A = M — K is ulcn_1 

(uniformly r-locally connected r < n — 1). 

Proof. Let A' be homeomorphic with A such that A' C\ A = 0 and such that 
A1 \J K is an n-gm Mf with boundary K; then by Theorem 2.4 of (1) M U Jkf = S 
is an w-gcm. By [2, p. 292, Theorem 1.7] we have5 — K — A' \J A\s (n — r — 1) 
— ulc for 0 < n — r — 1 < n — 1, since 

pr(K, x) = pT{K, x) = 0, 0 < r < w - 1, 

by Theorem 1.2. Since A' and -4 are separate, this implies that A is ulcn_1. 

LEMMA 2. If M is an orientable n-gm with boundary K and yr, r < n — 1, 
is a cycle on K, then there exists a compact cycle zr in A = M — K such that 
yr ^ zr on M. 

Proof. As in the preceding proof an n-gcm S can be constructed with A as 
an open ulcn-1 subset of S. Furthermore it follows from Theorem 3.2 of (1) that 5 
is orientable. The conclusion now follows from [2, p. 301, Theorem 5.9]. 

LEMMA 3. If M is an orientable n-gm with boundary K such that A = M — K 
is an Fa, then h^^A) ~ HT(M, K) r < n if either group has finite dimension, 
where hs(A) denotes the ^-dimensional (unaugmented) homology group of A 
with respect to compact cycles. 

Proof. As in the preceding lemmas, A can be considered as an open subset 
of an n-gcm. By Theorem 2.1, A is an orientable non-compact n-gm. By [2, 
p. 258, Theorems 5.13 and 5.14], Hr(A) = hn~T{A), r < n, if either group has 
finite dimension, where Hr(A) is the r-dimensional homology group of A with 
respect to infinite cycles. By the remark after Theorem 1.3, Hr(A) ~ Hr(M, K) ; 
thus A*-'(4) - IT(M, K), r < n. 

Definition 4.1. A generalized closed n-cell is an orientable n-D-gm with a non-
vacuous boundary K such that pr(M, K) — 0, 0 < r < n. 
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THEOREM 4.1. If K is a closed subset of M such that M — K is an Fa, then a 
necessary and sufficient condition that M be a generalized closed n-cell with boundary 
K is that : 

(1) M = K\J A,KC\A = 0, dimikf = n. 
(2) K is an (n — l)-gcm. 
(3) A is a generalized (open) n-cell (i.e., a non-compact orientable w-gm 

satisfying D' which is cell-like in the sense that its compact (augmented) 
homology groups of dimensional < n reduce to the identity). 

(4) pr(M, x) = 0, r < n, for all x £K. 

Proof of necessity. By Theorems 1.3 and 2.1, it follows that (1), (2), (4) are 
satisfied, and that A is an orientable n-gm satisfying D'. By Theorem 2.3, 
pn(M,K) = 1, and by hypothesis pr(M, K) = 0, 0 < r < n; therefore by 
Lemma 13.3, 

hn-r(A) « Hr(M,K), 0 < r < n. 

Thus for 0 < r < n, hn~T{A) ~ 0 and h°(A) has dimension 1, or if the augmen­
ted homology groups are used the 0-dimensional group also reduces to the 
identity, as required in condition (3). 

Proof of sufficiency. M is an orientable w-D-gm by Theorems 1.3 and 2.1. By 
Lemma 13.3 hn-r(A) ~ Hr(M, K) for 0 < n - r < n, i.e., for 0 < r < n since 
the dimension of the left-hand group is finite by property (3). In particular, 
A"-r(i4) « 0 for 0 < n - r < n; therefore pr(M, K) = 0 for 0 < r < n. 

THEOREM 4.2. If M is a generalized closed n-cell with boundary K, such that 
A = M — K is an Fa, then pr(M) — 0 for all r (where augmented theory is 
used). 

Proof. By Corollary 3.1.3, ikf is connected and pr(M) = 0 (using augmented 
theory). Next let zr be a cycle on M, 0 < r < n. Since zT is also a cycle mod K 
and pr{M, K) = 0, 0 < r < n, it follows that zr ^ 0 mod K on M. By [2, 
p. 203, Lemma 1.13], there is a cycle yr on K such that yr ^ zr on M. By Lemma 2 
above, there is a compact cycle Cr of A such that yr ^ CT on M. Since by 
Theorem 4.1, A is a generalized n-cell, CT^Q on A; hence, 2r ^ 0 on M\ Since 
M is an w-D-gm, 

p*(M, 0) = pn(M) = 0 

by Theorem 4. Finally, pr(M) = 0 for all r > n since M is w-dimensional ; thus 
pr(M) = 0 for all r. 

THEOREM 4.3. If M is a generalized closed n-cell with boundary Kt such that 
A = M — Kis an Ffff then K is a sphere-like (n — l)-gcm. (The (n — l)-gcm is 
sphere-like if its homology groups are isomorphic to those of the (n — l)-sphere.) 

Proof. Let zr, 0 < r < n — 2, be a cycle on K, then by Lemma 2 above, there 
is a compact cycle yT in A such that zT ^ yT on M. By Theorem 4.1, A is a 
generalized n-cell, and it follows that yr ^ 0 in A ; hence zr ^ 0 on M. By 
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[2, p. 201, Lemma 1.4], there is a cycle CT+l mod K on M such that dCr+1 ^ zr 

on K. Now l < r + l < » — 1; hence pr+1(M, K) = 0, by hypothesis. Thus 
Cr+1 ^ 0 mod X on M, and by [2, p. 201, Lemma 1.3], zr ^ 0 on i£. By Theorem 
2.2, K is orientable; therefore, there is at least one cycle zn_1 on K, not ^ 0 
on i£; hence p^iK) > 0. Consider two cycles zn~l

x and 2n_1
2 on K, then by the 

same argument used above in the lower dimensions, we have two cycles Cn\ 
and Cn

2 mod K on M such that dCn
t ^ s71"1* on if (i = 1, 2). Since M is an 

orientable w-D-gm, we have pn(MyK) = 1 by Theorem 2.3; therefore, there 
exist elements a,\ and a2 of the coefficient group, not both 0, such that 

aiC\ + a2C
n
2 ~ 0 mod K on M. 

Thus as before didCni + a2dCn2 ^ 0 on K; hence, 

aizn-1i + a2z
n~\ ~ 0 on i£, 

which proves that pn~l{K) = 1. 

THEOREM 4.4. If M is a generalized closed n-cell with boundary K, such that 
A = M — K is an Fff, and if zn~l is a non-bounding (n — 1)-cycle on K, then M is 
an irreducible membrane relative to zn~l. 

Proof. By Theorem 3.2 there is one cycle zn~l on K satisfying the conclusion 
of the theorem. By Theorem 4.3 any two non-bounding (n — 1)-cycle on K are 
linearly dependent; therefore, any such cycle satisfies the conclusion of the 
theorem. 

Remark. Wilder has defined a generalized closed w-cell [2, p. 287] as a com­
pact space M satisfying Conditions (1), (2), (3), and (4) of Theorem 4.1, and 
in addition the properties in the conclusions of Theorems 4.3 and 4.4. Thus we 
have proved (at least in the case where M — K is on Fff), that the weakened 
conditions (1), (2), (3), and (4) are equivalent to Wilder's apparently stronger 
conditions. It should also be noted that if (1), (2), (3), and (4) are taken as the 
definition of a closed w-cell, then an examination of the proofs of Theorems 4.2, 
4.3, and 4.4 shows that the conclusions of those theorems hold without the 
hypothesis that M — K be an F9 if the additional assumption pT{M, K) = 0, 
0 < r < n, is added. Thus we have proved the following theorem. 

THEOREM 4.5.-4 necessary and sufficient condition that the n-gm M with 
boundary K, such that A = M — K is an Fff, be a generalized closed n-cell in the 
sense of Wilder is that pr(M, K) = 0 , 0 < r < w , or that A be a generalized 
(open) n-cell. 

The next theorem, which is a summary of the necessary and sufficient condi­
tions contained in Theorems 1.2, 1.3, 2.1, and 4.1, shows that in each case the 
condition imposed on M is equivalent to a similar condition on A — M — Km 
the presence of three other conditions that do not change. 
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THEOREM 4.6.-4 necessary and sufficient condition that M be: 
(a) an n-gm with boundary, 
(b) an n-D-gm with boundary, 
(c) an orientable n-gm with boundary, 
(d) a generalized closed n-cell, 

is that there exists a closed subset K of M, such that : 
(1) M = K \J A, K C\ A --= 0, dim M = n. 
(2) K is an (n — l)-gcm. 

j (a) n-gm, 
ro\ A • . . , J (b) n-gm satisfying D', 

(c) orientable n-gm, 
(d) generalized n-cell. 

(4) pr(M, x) = 0, r < n,for all x £K. 
(In case (d) the additional hypothesis that A be an Fa must be included.) 

5. Classical manifolds. We close with two theorems which show that the 
generalized manifolds with boundary reduce to the classical ones in the one- and 
two-dimensional separable cases. 

THEOREM 5.1. If M is a connected, separable 1-gm with boundary K and K = 0, 
then M is a 1-sphere and if K 5* 0, then M is an arc with end points a and b such 
that K = a\Jb. 

Proof. By Theorem 1.2, K is a 0-gcm, that is, a finite set of points; and by 
Conditions (2) and (4), M is a Peano continuum. Suppose M is not a 1-sphere; 
then either M is acyclic or contains a 1-sphere / . If M 3 / , but M 9e J, then the 
argument in the remarks on [2, p. 271] yields a neighbourhood P of a point 
x £J and three arcs xx', xyf, and xy such that each lies entirely in P except 
their end points x', y'', and y which lie on the boundary of P, and each pair of 
arcs has only the point x in common. We can also suppose P is chosen so that it 
contains no points of K — x. Then the arcs (x'x W xy) and (x'x U xy') carry 
1-cycles mod [ ( M - P ) U X ] (actually mod (M — P)) which, because M is 
one-dimensional, are linearly independent with respect to homologies mod 
[(5 - Q)UK] for every Q, Q C P , contrary to pi(M mod K; x) = 1. If M is 
acylic, then M 3 a (maximal) non-degenerate arc J. li M 9e J, the argument 
above again yields a neighbourhood P of an interior point x € J and three arcs 
xxr, #y, and xy with the above properties, and leads to a contradiction as before. 
Thus M is either a 1-sphere or an arc. If M is a 1-sphere, then K = 0; for if 
x € X, then 

£i(2f modi£;x) = px(Mmod x\x) = 2, 

contrary to property (3). If Jlf is an arc with end points a and b, then K Qa^U b 
by the argument just applied above for the 1-sphere. Finally a, b £K, for if 
a iK then 

pi(Mmod K, a) = pi(M,a) = 0, 

yvyy ^JL fo w//f i / i / t / f i ' ) f n / f f i /v / f f^ 'U' i / i / 
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contrary to property (3). This shows that the remainder of the theorem holds. 

COROLLARY 5.1. If M is a separable 1-gm with boundary K, then M consists 
of a finite number of components each of which is a 1-sphere or an arc. 

Proof. This follows directly from Theorem 5.1 and the fiirst part of Theorem 3.1. 

THEOREM 5.2. If M is a connected separable 2-gm with boundary K, then M 
is a classical 2-gm from which a finite number of open 2-cells whose closures are 
disjoint have been deleted. K consists of the union of the 1-spheres that form the 
boundaries of the deleted 2-cells. 

Proof, By Theorem 1.2, K is a 1-gcm, hence K = Ji VJ J2 VJ . . . VJJki where 
the (Jt) are pairwise disjoint 1-spheres. Let 

M' = {Ax U Ji) U W , U / J ) U . . . U (Ak U /*) 

where each A t is an open 2-cell with boundary Ju Atr\Aj = 0, i ^ j , and 
A t r\ M = 0 for all i. Now M' is a 2-gm with boundary K and by (1) M' \J M 
is a 2-gm. By [2, p. 272, Theorem 2.3], M' VJ M is a classical 2-gcm and our 
theorem follows. (If M is not assumed connected then as before M consists of a 
finite number of components each of which has the property of Theorem 5.2.) 
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