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1. Introduction

We describe a general problem solving mechanism that is especially
suited for performing a particular form of abductive inference, or
best-explanation finding. A problem solver embodying this mechanism
synthesizes composite hypotheses. It does so by by combining hypothesis
parts as a means to the satisfaction of explanatory goals. In this way
it is able to arrive at complex, integrated conclusions which are not
pre-stored.

The intent is to present a computationally-feasible, task-specific
problem solver for a particular information processing task which is
nevertheless of very great generality. The task is that of synthesizing
coherent composite explanatory hypotheses based upon a prestored, and
possibly vast collection of hypothesis-generating "concepts". The
authors' claim is nothing less than to have shown, in a new sense, and
surpassing all other work in this area, how it is computationally
possible for an agent to come to "know", based upon the evidence of the
case.

The mechanism is described here functionally, and structurally; that
is, the why and what of a computation are described, and algorithms are
presented that show how the computations can be accomplished. Overall a
classification machine is used for selecting plausible hypotheses, and a
specialized means-ends machine is used for assembling a best explanation
from the plausible hypotheses that are selected. The activity of the
assembler is supervised by an overview critic, which uses the assembler
to pointedly investigate the space of alternative composites. The
result is an integrated knowledge-based problem solver functionally
suited to its abstract information processing task.

Although the mechanism is an abstraction of the architecture of the
Red-2 system, several other diagnostic AI systems realize it too, in
varying degrees.
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1.1. Red

Red is a knowledge-based medical expert system for use in blood
banks as a red-cell antibody identification consultant. (Josephson et
al. 1984, Josephson et al. 1985, Smith et al. 1985). The system has now
been through two working versions, and a third is under construction at
the time of this writing. This paper presents an abstract description
of the problem solving mechanism of Red-2, the second distinct version
of the system. Thus Red-2 serves as a working proof of the
realizability of the abstract design.

1.2. Abduction

Abduction or Inference to the best explanation is a form of
inference that follows a pattern something like this:

D is a collection of data (facts, observations, givens),
H explains D (would, if true, explain D),
No other hypothesis explains D as well as H does.

Therefore, H is correct.

The strength of an abductive conclusion will in general depend on
several factors, including:

* how good H is by itself, independently of considering the
alternatives,
* how decisively it surpasses the alternatives,
* how thorough the search was for alternative explanations, and
* pragmatic considerations, including

° how strong the need is to come to a conclusion at all,
* the costs of being wrong, and benefits of being right.

Abductions, as they are characterized here, go from data describing
some thing or situation, to an explanatory hypothesis that best accounts
for that data. Notice that calling an inference "abduction" carries
with it the idea of its goal: a best explanation. In contrast
classifying an inference as "deduction" carries instead the idea of a
constraint that it satisfies: that it is valid or truth-preserving.

C. S. Peirce used the term "abduction" for a form of inference close
to what we describe here (Peirce 1955 p. 150 ff). Gilbert Harman and
others have written of "inference to the best explanation" for
essentially the same pattern (Harman 1965. p. 88; Ennis 1968, p. 523;
Josephson 1982); and Lycan calls it "the explanatory inference" (Lycan
1985) . Sometimes a distinction has been made between an initial process
of coming up with explanatorily useful hypothesis alternatives, and a
subsequent process of critical acceptance where a decision is made as to
which explanation is best. Often the term "abduction" has been reserved
for the initial, hypothesis-originating stage (Peirce 1955). We use the
term here for the whole process of inferring from the data to the best
explanation.

Abductions appear to be ubiquitous in the un-selfconscious
reasonings and perceivings of ordinary life, and in the more critically
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aware reasonings upon which scientific theories are built (Josephson
1982).

A common view is that diagnostic reasoning in general is abductive
in character (Charniak and McDermott 1985; Pople 1973; Reggia 1985, p.
484). The idea is that the task of a diagnostic reasoner is to come up
with a best explanation for the symptoms, i.e., those findings for the
case which show abnormal values. The explanatory hypotheses appropriate
for diagnosis are malfunction hypotheses, typically disease hypotheses
for physicians, and broken-part hypotheses for mechanical systems.

The characteristic reasoning processes of fictional detectives has
also been characterized as abduction (Sebeok and Umiker-Sebeok 1983)• It
has even been alleged that there are a minimum of 217 abductions to be
found in the Sherlock Holmes canon (Truzzi 1983). It is
arguable that abduction is an eplstemologically fundamental form of non-
deductive reasoning (Harman 1965, Josephson 1982, Chap. 3).

1.3. Need for Efficient Hypothesis Assembly

In some problem situations abduction can be accomplished by a
relatively simple classification or hypothesize-and-match mechanism. If
the number of potentially applicable hypotheses is small, if each one
can be specified in advance, and if only one can be correct for a
particular case, then each stored hypothesis can be matched against the
data, with the quality of the matchings determining the winning
hypothesis. But if the number of potentially applicable hypotheses is
large, and if more than one can be correct at the same time, then the
combinatorics of the situation will not permit us to have one pre-
established pattern for each possible conclusion. One main alternative
seems to be to actively construct the abductive conclusion as a
combination of sub-hypotheses which are either abductive conclusions
themselves, or are the products of some selection mechanism working from
pre-established patterns.

Up to 2n > different combined conclusions are made available by
assembling from a space of n possible hypotheses. Thus a very large
space of possible conclusions can result from a relatively small space
of primitive categories. For example Red-2 has 54 most-detailed
hypothesis parts, giving rise to more than 10 potential conclusions.
(Many of these, however, would not be internally consistent, and so
could never be produced by the system. Eliminating inconsistent
conclusions still leaves more than 10 possible conclusions.) We will
describe a mechanism that can efficiently pick out the best combination,
even from so large a space.

2. The Mechanism

In this paper we will concentrate on presenting an abstract and
functional description of the mechanism, with enough detail about the
algorithms to make it clear how they work. An analysis of the
computational complexity of the hypothesis assembly algorithm shows that
modest assumptions about the domain suffice to make the algorithm
tractable (Allemang et al. 1986). An evaluation of Red-2's performance
is reported in (Smith et al. 1986), and shows that the system almost
always produces clinically acceptable answers, even in complex cases.
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2.1. Task and Sub tasks

Suppose that we intend to build a computer program to capture
expertise at a certain abductlve task. That is, our program is to take,
as input, data of a certain type; and produce, as output, best
explanations for a well-defined subset of the input data. Suppose that
we are given a large number of potentially applicable hypotheses
"concepts" or "frames" to base the system on; and that more than one
concept can correctly apply at the same time.

Notice that this is" precisely the diagnostic situation a physician
must face, where the pre-enumerated hypotheses correspond to known and
named diseases, and where multiple diseases are common, especially among
the very sick people seen at major hospitals, and among those with
unobvious ailments. Notice too that this is (an aspect of) the
situation faced by any intelligent knowledge-using agent facing a
complex, changing world, armed primarily with "concepts" of what is
possible, and having the goal of trying to "understand" some part of its
experience by forming a "good" composite hypothesis.

Suppose further that interactions of various sorts between the pre-
enumerated hypotheses can occur, making it unsatisfactory to just match
each separately to the case and accept all those above a certain
threshold of confidence. (We will discuss hypothesis interaction in
more detail in a later section.)

One way to organize a system for this sort of task, and indeed the
organization we are proposing, is to set up separate problem-solving
structures for the distinct subtasks of:

* coming up with a relatively small number of "plausible"
hypotheses from the much larger number of prestored patterns,
* building a "best" composite hypothesis using these plausible
hypotheses as available parts,
* testing and improving the "goodness" of the composite.

Ue will see that this decomposition provides a good way of
controlling the potentially explosive combinatorics of the problem.

2.2. The Major Modules and Their Functions

The overall function of the abduction machine can be described as
that of producing a "best explanation" for a given set of data. A side
effect is that information is made available about where there are
alternative ways of explaining things, and this information is useful
for critically assessing the goodness of that best explanation.

The major modules are:

* a classification machine for selecting plausible hypotheses,
* a specialized means-ends machine for assembling a subset of the
plausible hypotheses into a "best" composite explanation, and
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* an overview critic (described here algorithmically) which uses
the means-ends assembler, first to produce a tentative initial
composite, then repeatedly to explore the space of alternative
composites, and then possibly again to rebuild a final "best
explanation" after the pointed investigation of alternative
explanations. This overview critic also does some problem solving
to guarantee that the composite it finally produces is
parsimonious, i.e., has no explanatorily superfluous parts.

2.3. The Classification Machine

Taking the MDX (Chandrasekaran et al. 1979, Chandrasekaran and
Mittal 1983) system as it's point of departure, the classifier is
implemented as a taxonomic hierarchy of hypothesis specialists. Each
specialist in the hierarchy specializes in a single "concept". When
invoked it will match that concept to the details of the case, either
ruling it out of further consideration, or else producing a hypothesis
that has an associated symbolic likelihood, and offers to explain
certain of the findings of the case.

The hierarchy organizes the specialists from most general at the
top, to most specific at the tip nodes. The hypothesis selection
activity proceeds in a top-down, more-general-to-more-refined manner,
taking advantage of the search pruning effect that comes from ruling out
whole subtrees of hypotheses by ruling out at high levels of generality.
This top-down, prune-or-pursue control regime, associated with MDX-like
diagnostic systems has been called "establish-refine". It can in
principle proceed in parallel, matching of two sub-concepts being
typically independent of each other, although we have only made serial
implementations of establish-refine up to this time. By efficiently
pruning the search for plausible hypotheses, establish-refine is a
significant contributor to taming the combinatorics of the problem
space. It makes it efficient and practical to search a very large space
of stored hypotheses for just those that plausibly apply to the case.

2.4. Plausible Hypotheses

Each hypotheses that is considered and cannot be ruled out is
matched against the data of the case to produce a description of which
parts of the data it can explain (or contribute to explaining), and how
plausible it is under the circumstances. Thus each plausible hypothesis
delivered by the classifier comes with:

* a description, particularized to the case, of which findings it
offers to explain,
* a symbolic plausibility value representing a prima facie
estimate of likelihood for the hypothesis.

Each plausible hypothesis has its own consistent little story to
tell, and to contribute to the larger story representing the abductive
conclusion.

2.5. Hypothesis Interactions

Hypothesis interactions are considered to be of two general types,
each with its own kind of significance for the problem-solving:

https://doi.org/10.1086/psaprocbienmeetp.1986.1.193146 Published online by Cambridge University Press

https://doi.org/10.1086/psaprocbienmeetp.1986.1.193146


463

* explanatory interactions, i.e., due to overlapping in what the
hypotheses can account for, and
* substantive interactions of mutual support and incompatibility,
e.g., resulting from causal or logical relations.

For example two disease hypotheses might offer to explain the same
findings without being especially compatible or incompatible causally,
logically, or definitionally. On the other hand hypotheses might be
mutually exclusive (e.g., because they represent distinct sub-types of
the same disease), or mutually supportive (e.g., because they are
causally associated). The Internist system did not make a clear
distinction between hypotheses which are competitors because they are
both capable of explaining the same findings in the case (thus not both
needed), and those that are competitors because they are mutually
exclusive. (Pople 1977. p. 1030). Internist was only concerned with the
former type. In general the elements of a diagnostic differential need
to be exhaustive of the possibilities, so that at least one must be
correct (which one can be discovered by exclusion), but they need not be
mutually exclusive.

The following types of hypothesis interaction can be accommodated
and treated appropriately by the mechanism we are, describing.
Appropriate handling for all of them has all been implemented and
tested:

* A and B are mutually compatible, and represent explanatory
alternatives where their explanatory capabilities overlap.
* Hypothesis A is a subhypothesis of B (i.e., a more detailed
refinement).
* A and B are mutually incompatible.
* A and B cooperate additively where they overlap in what they can
account for.

Another form of hypothesis interaction that it is easy for the
mechanism to handle is where one hypothesis, if it is used as part of a
best explanation, suggests that a particular other one be used also.
This has only been partly implemented, and has not been tested, but
there seems to be no special problem in doing so.

Yet another form of interaction is where one hypothesis, if it is
accepted, raises explanatory questions of its own that are resolved by
appeal to another hypothesis. For example a medical diagnosis machine
might hypothesize the presence of a certain pathophysiological state to
explain certain symptoms, and then hypothesize some more remote cause to
account for the pathophysiological state. The tummy ache is explained
by the presence of the ulcers, and the ulcers is in turn explained by
the anxiety neurosis. Unfortunately our present domain does not call
for exploring this kind of hypothesis interaction, yet it appears to be
a relatively straightforward matter to assemble composite hypotheses
along these lines. This will be discussed in a later section. We look
forward to exploring this dimension of hypothesis assembly in some
future domain.

2.6. The Hypothesis Assembler
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A mechanism for hypotheses assembly is used which is reminiscent of
the means-ends regime of GPS (Newell and Simon 1963). It detects
differences between the goal state (everything explained) and the
present state (the working hypothesis does not explain everything), and
extracts a salient difference (a most significant unexplained finding).
It uses this unexplained finding to select a hypothesis part to
integrate into the growing working composite.

We begin by describing a basic hypothesis assembler, capable only of
treating one type of hypothesis interaction. Then we will describe how
it can be enhanced to appropriately treat the other types of
interaction.

2.6.1. The Basic Assembler

The basic assembler treats only hypotheses that are mutually
compatible and that represent explanatory alternatives where their
explanatory capabilities overlap. A set of findings is given, the
object is to assemble an explanation for them, and to do so in a manner
that respects the plausibilities of the candidate parts. Note that the
findings to be explained are in general a proper subset of all of the
findings of the case. We might try to explain the patient's symptom,
but we won't try to explain his age.

The assembler works by using the plausibilities to guide a means-
ends search whose goal is a complete explanation for the set of
findings.

Procedure:

* Loop until there is nothing left to explain, or nothing left
that can be explained.
*

° Focus attention on an unexplained finding (initially the
whole set is unexplained). If domain knowledge is available
to point out the most significant unexplained finding, then
well and good; but if not, then the choice can be made at
random.
• Pick the most plausible hypothesis that explains that
finding. If no plausible explanation for it can be found,
then note the finding as unexplainable and loop again, else
continue. If more than one explanation for the finding is
maximally plausible, then if knowledge is available to guide
the choice, use it, and if none is available choose at
random.
"Add the chosen finding into the unstructured set of
hypotheses that constitutes the growing composite
hypothesis.
° Compute what the composite can now explain.
° Compare what can be explained to what needs to be
explained overall and determine the unexplained remainder.

* End loop.

The basic assembler produces a composite hypothesis which is as
complete as possible. Since it uses the most plausible explanatory
hypothesis at each choice point, the composite hypothesis is sense
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maximally plausible as well, or nearly so. (The conditions under which
this process produces an optimally plausible composite have been
investigated to some extent, and will possibly form the subject of a
future paper.)

It is easy and computationally inexpensive to rid the composite of
explanatorily superfluous parts: check through the parts in order of
least plausible to most plausible; for each part compute the explanatory
capabilities with the part removed; and check to see if there is any
loss.

Note that this interpretation of Ockham's Razor has clear epistemic
virtues. Logically the composite hypothesis is a conjunction of little
hypotheses; so, if we remove one of the conjuncts the resulting
hypothesis is distinctly more likely to be true, since it makes fewer
commitments. Superfluous hypothesis parts make factual commitments,
expose themselves to falsity, with no compensating gain in explanatory
power. Thus the sense of parsimony we propose here is such that the
more parsimonious hypothesis is more likely to be true.

By this assembly process we arrive at a composite hypothesis which
is as complete as possible, maximally plausible (or nearly), and
parsimonious.

Since the assembly process added monotonically to a growing
hypothesis, with incrementally growing explanatory power, and with no
backtracking, the process is computationally very inexpensive. In
general the greatest computational expense will be in checking through
the available hypotheses to determine which one is the most plausible
way to explain the finding of attention. But the classifier will
collaborate to reduce the alternatives to a relatively small number, and
one pass through the set will suffice. The whole process of assembly is
computationally very efficient.

2.6.2. Extensions and Elaborations

Extensions can be made to the basic assembler to handle the other
types of hypothesis interaction we have mentioned.

If hypotheses in the space come with subtype relationships, as they
normally would with a hierarchical classifier, the assembler can
preferentially pursue the goal of explanatory completeness and
secondarily pursue the goal of refining the constituent hypotheses down
to the level of most detail. This is unimplemented in the present
version of Red, which builds up its composite hypothesis at the level of
the most refined hypotheses. But there seems to be no special
difficulty with this strategy - there is more than one way to go about
the refinement process - and we expect to implement it in the next
version.

A more difficult problem is in devising a strategy for when some of
the hypotheses in the space are mutually incompatible. (We assume the
ability to determine whether any given pair of hypotheses is compatible
or not.) One thing we can do is to maintain the consistency of the
growing hypothesis as we go along. If a finding is encountered whose
only available maximally plausible explainers are incompatible with
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something in the growing hypothesis, then we add one of these
incompatible hypothesis to the growing hypothesis, removing from it any
parts inconsistent with the new one. (If we remove parts from the
growing hypothesis we introduce the danger of an infinite loop, but
fortunately this can be dealt with fairly readily.) The basic idea is
that the finding must be explained, even if that forces a serious
revision of the growing hypothesis. This is all implemented in Red-2.

This scheme for dealing with incompatible hypotheses seems to be
little more than a clever trick for getting the job done. It is weak on
its use of knowledge, and is not very adaptive or opportunistic. It
endangers the computational feasibility of the hypothesis assembly
process by threatening to force a search through the potentially large
space of all possible consistent combinations (though it does search in
such a way that it favors hypothesis parts of higher plausibility and
greater explanatory indispensability, which makes it pretty clever.)

If hypotheses can cooperate additively where they overlap in what
they can explain, all we need to do is to suitably incorporate this
knowledge into the methods for computing what a composite hypothesis can
explain. This too is already implemented in the present version of
Red.

In order to handle the kind of hypothesis interaction where one
hypothesis suggests the use of another, as for example if there is
available knowledge of a statistical association, we can give extra
plausibility credit to the suggested hypothesis if the hypothesis making
the suggestion is already part of the growing composite. The
availability of a way to grow the hypothesis preferentially along lines
of statistical association provides a rudimentary ability for it to grow
along causal lines as well. This has only been partly implemented, and
has not been tested, but there seems to be no special problem in doing
so.

A more interesting ability to grow along causal lines results if we
permit one hypothesis, if it is accepted into the growing hypothesis, to
raise explanatory needs of its own. For example, a newly added
hypothesis can be posted as a kind of higher-level finding which needs
to be explained in its turn by the growing assembly. Thus at the same
time that the newly added hypothesis succeeds in explaining some of the
findings, it introduces a "loose end". This provides a way in which the
growing hypothesis can move from hypotheses close to the findings of the
case, and towards more and more remote causes of those findings. This
has not been implemented; Red's domain problem does not seem to call for
this ability.

2.7. The Overview Critic

Procedure:

* The assembler is invoked to produce a tentative best
explanation.
* Explanatorily superfluous parts are removed.
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•* The assembler is invoked repeatedly as necessary to assess which
of the hypotheses in the composite are indispensable. A
hypothesis is judged indispensable if removing it from a composite
which is a complete explanation, leaves behind a composite which
cannot then be assembled to completion without reintroducing the
removed one. It follows that a hypothesis is indispensable if and
only if something that it explains has no other plausible
explanation.
* The non-indispensable parts of the composite are removed, and
the assembler is invoked again to rebuild from the core of
indispensables back'to a complete explanation.
* Explanatorily superfluous parts are removed.

At the end of this process the composite hypothesis explains as much
as possible, is maximally plausible (or nearly), is parsimonious, and
has been built up by going from a core of hypotheses which are most
certain.

At this stage the best explanation has been inferred, or at least A
best explanation has been inferred, there being no a priori guarantee
that a best explanation is unique.

3. Extensions and Elaborations

The degree of intimacy between the classifier, the overview critic,
and the assembler, is an unresolved research issue which we are actively
exploring. In Red-2 the classifier runs first, producing a set of
plausible hypotheses, and then is followed by the critic, which uses the
assembler to produce the best explanation. In the near future we
anticipate a version where the classifier and the overview critic run
concurrently, with the critic using its perspective on the progress of
the problem solving, to help guide the search for plausible hypotheses.
More distantly we envision a version where lots of little hypothesis
assemblers, and also maybe bits of overview criticism, are distributed
over a conceptual structure that makes local abductions, producing
little assembled best explanations. By solving subproblems the little
abductors serve the needs of larger abductors, and make it possible to
assemble hypotheses from parts which are themselves assemblies.

4. Summary

We have described how best explanations can be inferred by a
mechanism which tames the combinatorics of very large spaces of
explanatory hypothesis. Structured conclusions can be arrived at whose
parts are connected by relationships of type-subtype, statistical
association, and explainer-explained. An instance of this machine
exists which exercises some of the capabilities we attribute to the
abstract machine, and that gets correct answers in complicated
situations. (Smith et al. 1986).

A computational description has been given to the functional
architecture of a possible mind, or rather, of a certain dimension or
slice of a possible mind. The kind of synthesis of explanatory
hypotheses we describe here is a generic task of higher intelligence.
It must be accomplished somehow by any intelligent, knowledge-using
agent that comes to "know" by calling upon "concepts", attaching them to
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situations or objects, and using the resulting little hypotheses as
materials to form composite "best explanations". The task is general,
but specific. There are a limited number of functional architectures
that could accomplish it, especially when account must be taken of the
constraints imposed by limited knowledge, limited time, and limited
computational resources. There are even fewer architectures that are
especially suited to the task, and one of them has been described.

Note

This work has been supported in various stages by NSF Grant MCS-
8305032, and NIH Grant R01 LM 04298 from the National Library of
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