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MAGNETIC FIELD RECONNECTION IN COSMIC PLASMAS 

B. U. 0. Sonnerup 
Dartmouth College, Hanover, NH 03755 U.S.A. 

ABSTRACT 

A brief review is presented of the concept of magnetic field re­
connection or merging. This process occurs whenever an electric field 
is present along a separator line in the magnetic field. The basic 
properties of reconnection are discussed in the context of the classi­
cal MHD models by Sweet and Parker and by Petschek. Attention is then 
focussed on reconnection in collision-free plasmas. The energization 
of charged particles during their interaction with the current layers 
associated with the reconnection geometry is discussed and the nature 
of the processes occurring in the so-called diffusion region which 
surrounds the separator is considered. Finally, comments are made on 
the nonsteady aspects of reconnection at the earth's magnetopause. 

1. INTRODUCTION 

Magnetic field reconnection, or merging, is a universal process 
for the conversion of magnetic energy into plasma kinetic and thermal 
energy. The process, which may occur either impulsively or in a 
steady state, taps the magnetic free energy associated with electric 
current sheets and other sheared field configurations. It is believed 
to be important in a variety of cosmic situations: solar flares, solar 
magnetic-field evolution, and perhaps coronal heating; planetary mag-
netopauses and tails; cometary tails; accretion disks, etc. The pro­
cess has also been studied extensively in a variety of laboratory 
devices and simulations as well as in computer simulations. 

This paper has two purposes: to provide a brief review of the two 
classical reconnection models by Sweet-Parker and by Petschek; and to 
discuss some of the current concerns and findings about reconnection 
in its magnetospheric setting. For more detailed discussion, the 
reader is referred to the review papers by Vasyliunas (1975) and Son­
nerup (1979). 

In the magnetosphere we have a unique opportunity to learn about 
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6 B. U. 6. S O N N E R U P 

reconnection in a cosmic plasma from direct in situ measurements and 
it is expected that the information thus obtained can be translated to 
other cosmic situations, at least to some extent. However, since its 
introduction into magnetospheric physics by Dungey (1961), the recon­
nection concept has been a source of continual controversy. Initially, 
the evidence for reconnection was mostly indirect but the process 
nevertheless proved to be a powerful organizing concept for a great 
variety of observations. Recently, more direct evidence for the occur­
rence of reconnection has become available. But the controversy has 
not disappeared, for the reconnection process has proved to be far more 
complicated than originally envisaged. Some of the complexity of the 
process will become apparent in the following pages. 

2. DEFINITION 

In order to deal with reconnection in an organized fashion, it is 
desirable first to provide a simple and unambiguous definition of the 
process. This definition contains four parts: 

(i) A "separatrix" is a magnetic field line surface which sepa­
rates different magnetic cells as illustrated in Figure 1. 

(ii) A "separator11 is the line of intersection of a separatrix 
with itself or perhaps with another separatrix. 

(iii) "Reconnection" or "merging" occurs when an electric field 
E|| is present along a separator. 

separator 

Figure 1. Basic reconnection geometry. The field line "a", originally 
located in cell 3 moves toward the separatrix surface and lies in that 
surface at location "b". Reconnection occurs at the separator and the 
field line is broken into two parts, "c" and "d", located in cells 1 
and 2. 
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(iv) The "reconnection rate" is given by Ejj and is equal to the 
amount of magnetic flux transported per unit time across a unit length 
of the separator. 

Several notes on these definitions should be made: 

(a) In general, a separatrix surface is associated with two 
hyperbolic null points in the magnetic field (see Dungey, 1963). The 
case shown in Figure 1 is degenerate in the sense that the magnetic 
field is zero along the entire separator. Usually, this is not the 
case but a field component BJJ is present along most of that line. 

(b) The term "separator" is synonymous with "reconnection line," 
"merging line," or "X line." The phrases "neutral line" and "null 
line" are sometimes used as well but they are somewhat misleading 
because the field is in general not equal to zero along the separator. 

(c) The definition draws only upon the universally accepted con­
cepts of electric and magnetic fields. A number of magnetospheric 
scientists are uncomfortable with the ideas of moving field lines and 
frozen magnetic fields so that a definition based on fundamentals only 
is desirable, even though the term "reconnection" itself invokes the 
idea of moving field lines. Note that the definition is such that re­
connection can occur freely in a vacuum. However, as a process, it is 
only of interest in the presence of a highly conducting plasma in which 
the electromagnetic fields and currents are generated self-consistently 
by the differential motion of ions and electrons. 

(d) The definition emphasizes flux transport rather than plasma 
transport between different topological cells. A well-known mathemati­
cal theorem states that _E#B_ = 0 is a sufficient condition for the flux 
transport velocity v = E X B / B 2 t o m o v e points that were once joined by 
a field line in such a manner that they remain joined by a field line 
at all later times. It is on this fact that the concept of moving 
field lines is based. Figure 1 illustrates how a field line in cell 3 
moves towards the separator. Along this line E*B ^ 0 so that the 
theorem is violated. Reconnection occurs, the-result being a transport 
of magnetic flux from cell 3 to cells 1 and 2. No plasma physics has 
been introduced into the above discussion but it is the presence of a 
highly conducting plasma that assures that the condition I>_B = 0 is 
satisfied everywhere except at the separator. It is also known that 
JXB/B 2 is t n e electric drift velocity of charged particles. Other 
drifts such as inertia and gradient drifts are unimportant in most of 
the external flow but become significant near the separator. It follows 
from these facts that in a highly conducting plasma, the definition pre­
sented here is in all practical respects indistinguishable from the non­
local definition in terms of "plasma flow across a separatrix" adopted 
by Vasyliunas (1975). 

(e) The amount of magnetic flux transported per unit time across 
a length element ci£ of the separator is 
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d<£> = B-{v xd£} (1) 
IB — — ( p — • — 

which, upon use of the expression for simplifies to 

ra 
d£ 

E„ (2) 

It is for this reason that E JJ is used as a measure of the reconnection 
rate. It is however often useful to define a nondimensional rate as 

M A 1 H E H / V A 1 B 1 ( 3 ) 

where v and are the Alfven speed and magnetic field at a chosen 
reference point and reference time. This usage is particularly common 
in steady-state two-dimensional reconnection models in which EJJ can 
be shown from Faraday's law to be constant throughout the plane per­
pendicular to the separator. In that case E |j/B^ represents the flux 
transport velocity (or the electric drift velocity) v 1 at the refer­
ence point so that M ^ = v /v^ is the Alfven Mach number at that loca­
tion. The definition remains arbitrary in the sense that the location 
of the reference point relative to the separator may be chosen differ­
ently. This point will be taken up later on. 

(f) It is noted that E j. and thus the reconnection rate is in­
variant under Galileo transformations. In other words, it does not 
matter whether E || is measured in a frame of reference in which the 
separator (or a segment thereof) is at rest or whether it is measured 
at the instant a moving separator passes the observation point. 

(g) Finally, the definition is local in nature and thus cannot 
and does not distinguish between electrostatic and inductive contribu­
tions to Ejj . 

3. SWEET-PARKER MODEL 

The Sweet-Parker model of reconnection (Sweet, 1958; Parker, 1963) 
is shown in Figure 2a. It describes the slow steady-state inflow of 
two oppositely and strongly magnetized plasmas towards a current sheet 
and the subsequent rapid outflow of weakly magnetized plasma along the 
sheet. The basic features of this model can be understood in three 
simple steps. 

First, the pressure at the separator(which is perpendicular to 
the plane of the figure) is equal to P^ + B 2 / 2U q where the subscript 0 0 

denotes upstream conditions. The excess pressure, B2/2y , is used to 
accelerate the outflowing plasma along the sheet so that, in accordance 
with Bernoulli's law, we have P + B2/2u = P + %)v 2 . The pressure 

oo co "o 0 0 . QUt _ 
at the exit is assumed to be the same as in the inflow and, for sim­
plicity, the density p is taken to be a constant. It follows that the 
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Figure 2. (a) Sweet-Parker model. Slow plasma inflow from the left and 
right with rapid outflow at top and bottom, (b) Petschek model. Slow 
plasma inflow from both sides. Acceleration into the wedge-shaped out­
flow regions by slow shocks, (c) Levy et al. model. Plasma inflow from 
the left only, with vacuum conditions on the right. Plasma accelera­
tion into the outflow at top and bottom by large-amplitude Alfven waves 
(rotational discontinuities). (After Petschek, 1964.) 

outflow velocity is 

v = B //u p = v. (4) out oo o A°° 
In other words, the outflow velocity is equal to the Alfven speed v ^ 
based on the inflow conditions. 

Second, the mass conservation law with constant density yields 
v

i n L = V Q 6 where 6 and L are the half width and half length of the 
layer, as shown in the figure. Thus the ratio of these two lengths is 

6/L = v. /v _ = v. /v. = M A (5) in out in A°° A 0 0 

where M is the nondimensional reconnection rate. Equation (5) indi­
cates that the larger the reconnection rate, the thicker the layer 
must be (for given L). 

Third, Ohm's law has the form j_ = oE near the separator where the 
plasma is semistagnant and has electrical conductivity a. According 
to Ampere1s law, we have j - 2B /2u 6 and since E = v. B Ohm's law 
yields 
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y GV. 6 = 1 (6) 
o i n 

In other words, the magnetic Reynolds number based on the current layer 
half width 6 and the inflow speed v. is equal to unity. This state­
ment expresses the fact that in a steady state the width 6 must be such 
that the inflow speed is equal and opposite to the resistive diffusion 
speed. 

If the width 6 is eliminated between (5) and (6), one obtains the 
well-known Parker formula for the reconnection rate 

M A = R~^ (7) A°° mL 
where R ^ is the magnetic Reynolds number based on v. and L, i.e., 
R _ = u av. L. Since the value of R T is extremely large in most 
mL . o A0? , mL. ' . 
cosmic applications, mostly because L is large, one is tempted to con­
clude from this analysis that reconnection is an insignificant process 
in cosmic physics. However, as discussed in the next section, cosmic 
plasmas may have the ability to manufacture small-scale dissipative 
structures, i.e., L values that are sufficiently small to permit M 
values of order unity. 

The formula (7) also appears to be relevant to reconnection in 
tokamaks. Park et al. (1983) have generalized (7) to include the 
effects of viscosity, their result being 

M _ R~^(l+y ov)~k (8) A°° mL o 
where v and a are the kinematic viscosity and the electrical conducti­
vity, respectively. According to Spitzer (1962), the product u a v , 
evaluated in transport perpendicular to a strong magnetic field*? tsX 

%g (T / T j V / m )Y (9) "o^x" 40* 
where 3^ is the ratio of electron pressure to magnetic pressure. This 
formula indicates that the modified Parker scaling (8) should be used 
whenever the £ value of the plasma is of order unity or greater, as 
is frequently the case in cosmic plasmas. 

In two-dimensional tokamak computer simulations performed by Park 
et al. (1983), it appears that in the m = 1 flip (internal kink) the 
reconnection rate is governed by (8). 

A family of exact solutions of the MHD equations with constant 
density has been described by Sonnerup and Priest (1975) for the case 
of resistive stagnation point flow at a current sheet which is essen­
tially the Sweet-Parker geometry. These authors also formulated the 
problem for the case where viscosity is important. 
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4. PETSCHEK MODEL 

In order to overcome the difficulty with the small reconnection 
rate in the Sweet-Parker geometry, Petschek (1964) devised his now 
famous model in which resistive diffusion is important, not over the 
entire length, 2L, of the current layer, but only over a short dis­
tance, 2y*, around the separator, as illustrated in Figure 2b. In the 
remainder of the flow field, electromagnetic energy is converted to 
plasma kinetic energy and heat in a set of standing slow-mode shocks 
originating at the separator. 

The region surrounding the separator in which resistive diffusion 
leads to a violation of the frozen magnetic field condition is called 
the "diffusion region." It has cross section 2x* by 2y* as shown in 
the figure. The Parker formula (7) applies to this region but with L 
replaced by the small length y*. The nature of the processes in the 
diffusion region in collision-free plasmas will be discussed in Sec­
tion 6. 

Away from the immediate vicinity of the separator, the frozen 
magnetic field condition holds except in the slow shocks. The con­
stancy of the electric field component tangential to a shock surface 
guarantees that in the xy plane the magnetic field appears to be frozen 
across the shocks. However, the charged particles undergo a displace­
ment in the z direction as they cross the shock whereas there is no 
corresponding displacement of the magnetic field lines. Thus the 
frozen-field condition is in fact violated in the shocks. The z dis­
placement of the charged particles is in the direction of the recon­
nection electric field, E|| , and it is therefore the means by which 
particles are energized in the shocks. Further discussion of this 
effect is given in Section 5. Here we simply note that the outflow 
speed of the plasma in the narrow wedges between the shocks can be 
obtained directly from the conservation laws for mass, magnetic flux, 
and tangential (y) momentum: 

v. L = v 6 in out 
B. 6 in 

B - L out 

pv. v ^ = B. B /u in out in out o 
By elimination of v. and B ^ between these equation one obtains in out ^ 

v = B. //up out in o (10) 

As in the Sweet-Parker model, the outflow velocity is equal to the 
Alfven speed based on the magnetic field in the inflow. This result 
is independent of the reconnection rate. 

In qualitative terms, the geometrical behavior of Petschek's re­
connection model for different reconnection rates is as follows. For 
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very small rates the diffusion region length y* is equal to L in which 
case no shocks develop and the geometry is that of the Sweet-Parker 
model. As the rate increases, y* and x* decrease and shock pairs 
appear on the upper and lower sides of the diffusion region. The wedge 
angle between these shocks is initially very small. As the rate in­
creases further, y* and x* continue to decrease and the wedge angle 
between the shocks increases. At the maximum reconnection rate, given 
by Petschek as 

M A = TrC8£n(2M2 R T ) ] _ 1 (11) A 0 0 A°° mL 
(for the incompressible case; a correction by Vasyliunas (1975) 'has 
been included), the diffusion region (y*) may be extremely small and 
the wedge angle substantial. The logarithmic dependence of on R^ L 

permits reconnection rates M - 0.1-0.2 in typical cosmic applications. 

Note that the maximum reconnection rate given by (11) is the 
Alfven Mach number far upstream of the reconnection region where 
Petschek assumed the flow and magnetic field to be uniform. If a 
reference point on the x axis immediately outside the diffusion region 
is used instead, one finds the magnetic field to be substantially 
weaker there and the inflow speed substantially larger so that the 
inflow Alfven Mach number is of order unity. Thus the logarithmic 
factor in (11) is the result of the specific upstream boundary condi­
tions used by Petschek. Vasyliunas (1975) has pointed out that these 
conditions correspond to fast-mode expansion in the two inflow regions. 
Other boundary conditions (Sonnerup, 1970; Yeh and Axford, 1970) may 
lead to different upstream values M and different behavior (slow-mode 
expansion) in the inflow regions. But the result that the maximum 
reconnection rate corresponds to an Alfv§n Mach number of order unity 
immediately adjacent to the reconnection region is likely to be valid 
regardless of the external boundary conditions on the inflow side, as 
long as the outflow remains unimpeded. For this reason the Petschek 
reconnection rate is often quoted simply as M^ ~ 1. 

Park et al (1983) have generalized this rate to include viscous 
effects, the result being 

M A ~ (l+uoav)"~^. (12) 

This rate is not observed in computer simulations of tokamak reconnec­
tion. The reason is that the Petschek model assumes free and unimpeded 
outflow from the reconnection region, a condition not satisfied in 
tokamaks but likely to be valid in a number of cosmic situations, e.g., 
reconnection at the earth's magnetopause. 

A precise mathematical analysis of the Petschek model may be found 
in Soward and Priest (1977;1982) and Soward (1982). 

Petschek1s model can also be developed for the case of magneto-
pause reconnection where the plasma and magnetic field conditions are 
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dissimilar on the two sides of the current sheet. The special case 
with a vacuum on one side of the layer was discussed by Levy et al. 
(1964) and is shown in Figure 2c. In general, asymmetric models con­
tain a rotational discontinuity across which most of the requisite 
field direction change occurs. In addition, slow shocks or slow ex­
pansion fans may be present. 

Note that even a small asymmetry in the plasma density on the two 
inflow sides will lead to the occurrence of a rotational discontinuity. 
The reason for this is as follows. The slow shocks on the low density 
side of the configuration will have to be somewhat weaker and those 
on the high density side somewhat stronger than in the symmetric model 
in order to match flow velocities and field directions in the outflow 
wedges. But the strongest permissible slow shock is a switch-off shock 
in which the field on the downstream side of the shock is along the 
shock normal. If an even stronger tangential momentum change is 
needed on the high density side, it has to be provided by a rotational 
discontinuity initially followed by a slow shock which reduces the 
excessive momentum change provided by the rotational discontinuity, as 
illustrated in Figure 3. 

a 6 c 
Figure 3. Asymmetric reconnection. Upper half of configuration is shown, 
(a) Symmetric case, (b) Density increased on the right and decreased on 
the left until right-hand slow shock (SS) is a switch-off shock. Left-
hand shock gets weaker, (c) Density asymmetry increased further. A ro­
tational discontinuity (RD) appears on the right, followed by a slow 
shock. Left-hand slow shock weakens further. 

5. PARTICLE ACCELERATION IN CURRENT SHEETS 

The classical reconnection models discussed in the two previous 
sections are magnetohydrodynamic in nature. However, the magneto-
spheric plasma is collision-free and it is not entirely clear how this 
influences the geometry or how slow shocks manifest themselves in such 
a medium. This point is illustrated in Figure 4 which shows symmetric 
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Figure 4. Hill's collision-free 
reconnection model. The outflow 
wedges are located between the 
central current layer and the 
slow shocks. 

collision-free reconnection in the geomagnetic tail, as envisaged by 
Hill (1975). Individual particles interact with, and are energized at, 
a central current sheet (which in MHD terminology is a contact dis­
continuity and can exist only when the pressure is suitably noniso-
tropic), being either reflected or transmitted there. The outflowing 
particles form wedge-shaped regions on either side of the current 
sheet, regions that are somewhat similar in nature to the so-called 
foreshock region upstream of the earth's bow shock. In these wedges, 
the plasma consists of a mixture of particles that flow slowly toward 
the central current sheet and particles that have already interacted 
with it and have gained kinetic energy during the interaction. This 
latter population is streaming with a large field-aligned velocity 
component away from the diffusion region at the center of Figure 4. 
The outer edge of each outflow wedge is marked by particles that have 
passed through the diffusion region. At this location the magnetic 
field changes direction and magnitude in order to accommodate the 
higher plasma pressure in the wedge. This discontinuity is presumably 
a slow shock, although the usual jump conditions probably need to be 
modified to allow for heat flow behind it. 

Since only a very small portion of the inflowing particles passes 
through the diffusion region, while the overwhelming majority interacts 
with the central current sheet, it is logical first to examine the 
interaction of particles with a one-dimensional laminar current sheet 
which may be either a shock, a rotational discontinuity or a contact 
discontinuity. 
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The first important point is that such current sheets have a non-
vanishing normal magnetic field component. This feature allows one to 
transform away the reconnection electric field, EJJ , by examining the 
particle orbits in a frame of reference that slides along the current 
sheet, away from the diffusion region, with speed = E||/(Bsin0) 
where 6 is defined in Figures 4 and 5. This frame is often referred to 
as the de Hoffmann-Teller (dHT) frame. The principal advantage of this 
procedure is that, in the moving frame, a particle either conserves its 
energy or changes it in a known manner in response to the electric 
potential structure, $(x), of the current sheet. In particular, re­
flected particles must have the same energy before and after reflection. 

As illustrated in Figure 5 for a symmetric field-reversing current 
sheet with $ = 0, a particle moving with guiding-center velocity v 
toward the sheet in the stationary frame appears to be moving along^ 
the magnetic field with guiding-center velocity vj and pitch angle a 
in the dHT frame (Fig. 5a). Assume that it traverles the sheet and 
leaves on the other side, moving along .B, with guiding-center velocity 
v^ and pitch angle (Fig. 5b). Conservation of energy in the dHT 
frime implies that v^ /coso^ = v^ /cosa^ = v !. In the stationary frame 
(Fig. 5c), we then se§ that v cin be much larger than v . The energy 
change in this frame is Ae =^m(v2-v2)/2 where (for bott^lubscripts 
1 and 2) v 2 = v 2 + (v'tana) 2. It is easy to show from the triangles in 
Figure 5 that tSe energy increase may be written 

y 

q 6 c 
Figure 5. Particle energization in a current sheet, (a) Particle moves 
towards sheet with guiding center speed v . Transformation velocity v t 

along the sheet is added so that in the moving (dHT) frame the velocity 
is vj along _B. (b) In the moving frame the electric field E=0. The 
parti§le exits with velocity v' along JB. (c) Return to stationary 
frame in which the exit velocity v is large. 

O n to 
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or 
Ae = m -—r-r- vfcos0(cosa,-cosa0) (13) Bsm8 1 2 

Ae = |q | E|j R^cosG (coscx-^—cosa2) (14) 

where = mv'/|q|B x > q being the particle charge and B x the normal 
magnetic field component. Thus R^^ is the particle gyroradius in the 
normal field. 

Several general comments should be made: 

(i) The particle energization is proportional to the particle mass. 
Thus electrons pick up very little energy and different species of ions 
pick up energy in proportion to their mass. At the earth's magneto-
pause and magnetotail where trace amounts of a variety of ion species 
may be present, this feature provides an opportunity for a persuasive 
test of the reconnection hypothesis. 

(ii) The energization formulas (13,14) work for reflected as well as 
transmitted particles. Generalization to cases where the magnetic 
field and plasma flow on the two sides of the layer do not lie in a 
single plane is straightforward. 

(iii) The energization formulas suggest large energization when 6 is 
small. This is indeed the case for particle reflection in the earth's 
bow shock (e.g., Sonnerup, 1969) where the electric field is fixed. 
However, in the reconnection case, self consistency of magnetic fields 
and plasma motion implies that for a typical plasma ion v' 
v'cosGcosa -v^. For small angles G and with the angle yj ?n Figure 5 
sufficiently different from 0 or T T , we then have approximately 
v = Ejj /(BsinG)^ . In other words, E JJ is proportional to sin6 and 
trie energization of a typical plasma particle is independent of G and 
of the reconnection rate E|j . Since v

t ~ v ^ it is clear that for such 
a particle v^-2v^. As noted below, these results agree with the pre­
dictions of MHD theory in which the geometrical effects discussed here 
are embodied in the law of conservation of tangential momentum (see 
e.g., Hudson, 1970; Sonnerup et al., 1981). 

(iv) For the symmetric contact discontinuity in the geomagnetic tail 
(Fig. 4), the flow in the exit wedges contains a mixture of incoming 
particles with essentially zero flow speed (v^ ~0) and outflowing par­
ticles with speed v 2g~2v A directed nearly alonf _B. This feature cannot 
be described by the MHD model, but the average velocity in the outflow 
regions is v^ in agreement with that model. For the dayside magneto-
pause, the magnetosheath plasma flows across a rotational discontinuity 
and, in the MHD model, acquires a tangential velocity of 2v^ in agree­
ment with the single particle results given above. As long as only 
average plasma properties are considered,the MHD model gives the cor­
rect results but detailed distribution functions such as are now mea­
sured in the geomagnetic tail and at the magnetopause can of course 
not be obtained from that model. 
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(v) The single particle considerations discussed here, along with 
actual orbit calculations in a model tail current sheet, have been used 
by Lyons and Speiser (1982) to predict distribution functions in the 
exit wedges and good agreement with observations is obtained. To date, 
the corresponding calculations have not been performed at the magneto-
pause which usually has a much more complicated structure. However, on 
the fluid level, agreement between theory and observations is reason­
ably good (Paschmann et al., 1979; Sonnerup et al., 1981). Observa­
tions include energization of transmitted as well as reflected magneto-
sheath ions. Recently, the full fluid energy balance has been checked 
(Paschmann, private communication, 1983). It has been found that, in 
addition to the electromechanical energy conversion described above, 
the plasma enthalpy and entropy increase substantially in a rotational 
discontinuity. Furthermore, reflected ions may occasionally provide 
an important heat flow away from the discontinuity. 

(vi) The energization of a particle during a single encounter with a 
current sheet is relatively small. In order to increase the energy to 
large values, multiple encounters are needed. In the geomagnetic tail, 
this may occur as a result of reflection near the earth in the magnetic 
mirrors provided by the dipole field. In other circumstances, scatter­
ing due to electromagnetic irregularities may bring some particles back 
to the current sheet. 

(vii) One may conclude from (14) that, during its interaction with the 
current sheet, a particle must experience a displacement Az in the z 
direction, i.e., along E JJ given by 

Az = R^cosO (cosa1~cosa2) (15) 

This displacement can indeed be derived directly from the conservation 
of energy in the dHT frame and the conservation of the generalized par­
ticle momenta associated with the two cyclic coordinates tangential to 
the current sheet (Cowley, 1978). The result (15) is represented graph­
ically in Figure 6 for the case of reflected particles. Looking along 
the magnetic field, one finds that the particle orbit before and after 
reflection must be located inside an ellipse of major and minor axes 
2R^ x and 2R sinO. Inside the ellipse are circles, each labeled with a 
specific pilch angle a, which represent the projections of the helical 

Figure 6. View along J3 of par- ^ 
ticle reflection in a current * 
sheet. Incident helical orbit J* 
is a circle on the left, la­
beled by a ; exit helix is 
circle on the right, labeled 
by a^. Guiding-center dis­
placement is purely along z J 
(see Fig. 5). 
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particle orbits. The centers of these circles, i.e., the guiding cen­
ters, are located at z = IR^cosGcosa and, except for small pitch angles, 
the circles touch the ellipse. The two foci of the ellipse occur at 
z = 1R, cos6 and correspond to pitch angles 0° and 180°. As a particle 
approaches the current layer, it moves on that circle, centered at z<0, 
which corresponds to its pitch angle a 1(<90°). As it leaves the current 
sheet after reflection, it moves on a circle, centered at z>0, which 
corresponds to its pitch angle o u C ^ O 0 ) . Maximum displacement of the 
guiding center occurs for = 0 , a 2 = 1-0° in which case the orbit 
moves from the left-hand to the right-hand focus of the ellipse. Simi­
lar diagrams may be constructed for transmitted particles both in the 
planar case (e.g., Fig. 5) and in the case where the rotation angle of 
the tangential magnetic field is arbitrary. Except for thick current 
layers where = a 2, the actual relationship between the entry and 
exit pitch angles must be obtained from detailed orbit calculations. 

6. DIFFUSION REGION 

In discussing various physical processes in the diffusion region, 
it is desirable to examine the generalized Ohm's law: 

E + vxB = j_/o + (jxB)/ne - (V-P^)/ne 

+ Oj_/3t + V-(jv+vj)}me/ne2 (16) 

Away from the separator and the slow shocks, the electric field E is 
balanced by v*B, i.e., the frozen magnetic field condition holds. In 
the diffusion region, JE remains nonzero but, since the plasma is semi-
stagnant, the v*B term is small. Additionally, for Bj| = 0 the mag­
netic field vanishes at the separator. It is then necessary that one 
or more of the terms on the right-hand side of (16) becomes sufficiently 
large to balance _E. In a collisional plasma the term j_/a provides this 
balance. To do so, the current density j_ must be large when the con­
ductivity a is large; this leads to a very narrow diffusion region 
(small x*), as discussed in Section 4. 

In a collision-free plasma an effective resistivity 1/a may be 
provided by plasma microinstabilities driven by the strong currents or 
gradients in the diffusion region (J.D. Huba, this Symposium). Another 
possibility is that electron inertial or pressure effects contained in 
the last two terms on the right in (16) are dominant, as discussed by 
Vasyliunas (1975) and Sonnerup (1979). There is no doubt that these 
terms must become important at the separator itself for without them, 
and with a = °°, the generalized Ohm's law implies that the magnetic 
field is frozen into the electron fluid which would make reconnection 
impossible. These terms produce the electron inertial length, A , and 
gyroradius, R^e> a s important scale sizes in the diffusion region. 

However, the question remains whether all, or even most, of the 
diffusion-region current is carried by electrons so that x*~A^ (or R T q ) . 
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Sonnerup (1979) has argued that the Hall term (j_xJB)/ne plays an impor­
tant role and leads to a much larger diffusion region width, x*~A. (or 
R ^ i ) , with a substructure of size -A^ at the separator. In this situa­
tion, most of the current in the diffusion region is carried by ion 
drift in the z direction rather than by electron drift. Another effect 
is the formation of Hall-current loops in the xy plane with associated 
regions of positive and negative B values in the diffusion region: 
this may have a bearing on the observed magnetic field orientations in 
the plasmoid formed in the geomagnetic tail during reconnection (J. 
Birn, this Symposium). A recent analysis of the Hall effect in colli-
sional tearing (Terasawa, 1983) is also relevant. 

The inertial effects of electrons and ions discussed above can be 
dealt_with in a qualitative manner in terms of an "inertial" conducti­
vity a = ne2x/m where x is the residence time of a particle in the dif­
fusion region, estimated as T = x*/vi n. Thus the condition u ax*v. =1, 
which for constant a leads to x*~v7 , in this case produces a value of 
x* that is independent of v. , i.e., of the reconnection rate. This i . in value is 

x* = /m/y Qne 2 (17) 

which is the definition of the inertial length of electrons or ions 
depending on whether the mass m^ or nu is used. 

Microinstabilities may well be present in the diffusion region and 
may provide an important signature of this region and the separatrix 
surfaces attached to it (Scudder et al., 1983). But it is not clear 
that such instabilities play a significant role in allowing reconnec­
tion to occur in a collision-free plasma. The argument that in their 
absence electrons would be able to move quickly along the separator to 
cancel out E JJ (in particular when Bj|^0) fails to take account of the 
short residence time T of most particles in the diffusion region. For 
the same reason, the diffusion region may not be a prodigious source of 
high energy particles, accelerated by a single large displacement along 
the separator. A detailed study of particle orbits near the separator 
would be of great interest, in particular for Bjj^O, but a realistic 
model of the electric and magnetic fields should be used (E ,E ̂ 0; 
B 2=B z(x,y)). X y 

7. NONSTEADY EFFECTS 

A basic discussion of nonsteady reconnection must start with an 
examination of the tearing mode, a topic dealt with elsewhere (J.F. 
Drake, this Symposium). Thus my presentation will be limited to several 
remarks about observed, nonsteady aspects of magnetopause reconnection. 

Although the situation at the magnetopause would seem ideal for 
the occurrence of reconnection in a quasisteady state, whenever the 
interplanetary magnetic field has a substantial southward component, 
B 7<0, observations indicate that the process is mostly patchy, or at 
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least limited to a narrow longitude segment, and that it is highly 
time-dependent. It is not entirely clear whether the recently dis­
covered "flux transfer events" correspond to localized holes in the 
magnetopause moving away from the equatorial region, as visualized by 
Russell and Elphic (1978) (see also C T . Russell, this Symposium), or 
to field lines connected across an open strip of the magnetopause, with 
the observation site located away from that strip. In either case, the 
observations suggest the existence of a threshold, other than B^O, for 
the onset and switch off of magnetopause reconnection. The nature of 
this threshold is not understood but the following scenario may account 
for the observations. 

Assume that a bundle of interplanetary magnetic field lines gets 
hung up, perhaps in a small indentation, over the subsolar magnetopause. 
The plasma will escape from the bundle by streaming along B, the result 
being a lowering of the plasma density n, of the 6 value (in particular 
31| ), and of the Alfven Mach number, M^. It may be argued that each of 
these factors is conducive to the onset of reconnection over the narrow 
longitude segment occupied by the bundle. As soon as reconnection has 
started, two effects occur: a deepening indentation in the magneto­
pause develops; and the region originally occupied by the bundle gets 
replenished with fresh magnetosheath flux and plasma in which n, $, 
and M^ return to their normal values. The latter effect may lead to 
the switch-off of reconnection, while the former creates a suitable 
site at which a new magnetosheath field bundle may get hung up. It 
seems possible that for varying plasma conditions, this kind of model 
may lead either to a succession of flux transfer events, to the occur­
rence of quasisteady reconnection in a narrow longitude segment, or to 
reconnection that ultimately spreads over a substantial longitude seg­
ment. Detailed theoretical and observational studies guided by this 
scenario should provide important insights into reconnection in its 
magnetopause version. 

ACKNOWLEDGEMENT 

The research was supported by the Division of Atmospheric Sciences, 
National Science Foundation, under Grant ATM-8201974 to Dartmouth Col­
lege. 

REFERENCES 

Cowley, S.W.H., 1978, Planet. Space Sci., 26, p. 539. 
Dungey, J.W., 1961, Phys. Rev. Lett., 6, p. 47. 
Dungey, J.W., 1963, "Geophysics of the Earth's Environment," (C. deWitt, 

J. Hieblot, and L. leBeau, eds.), Gordon and Breach, p. 503. 
Hill, T.W., 1975, J. Geophys. Res., 80, p. 4689. 
Hudson, P.D., 1970, Planet. Space Sci., 18, p. 1611. 
Levy, R.H., H.E. Petschek, and G.L. Siscoe, 1964, AIAA J., 2, p. 2065. 
Lyons, L.R., and T.W. Speiser, 1982, J. Geophys. Res., 87, p. 2276. 

https://doi.org/10.1017/S0074180900075471 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900075471


MAGNETIC FIELD RECONNECTION IN COSMIC PLASMAS 21 

Park, W., D.A. Monticello, and R.B. White, 1983, "Reconnection Rates of 
Magnetic Fields," Princeton Plasma Phys. Lab., PPL 2014 (submitted 
to Phys. Fluids). 

Parker, E.N., 1963, Astrophys. J. Suppl. Ser., 8, p. 177. 
Paschmann, G., B.U.O. Sonnerup, I. Papamastorakis, N. Sckopke, G. 

Haerendel, S.J. Bame, J.R. Asbridge, J.T. Gosling, C.T. Russell, 
and R.C. Elphic, 1979, Nature, 282, p. 243. 

Petschek, H.E., 1964, "The Physics of Solar Flares," (W.N. Hess, ed.), 
NASA SP-50, p. 425. 

Russell, C.T., and R.C. Elphic, 1978, Space Sci. Rev., 22, p. 681. 
Scudder, J.D., K.W. Ogilvie, and C.T. Russell, 1983, J. Geophys. Res. 

(submitted). 
Sonnerup, B.U.O., 1969, J. Geophys. Res., 74, p. 1301. 
Sonnerup, B.U.O., 1970, J. Pla sma Phys., 4, p. 161. 
Sonnerup, B.U.O., 1979, "Solar System Plasma Physics," Vol. Ill, (L.T. 

Lanzerotti, C.F. Kennel, and E.N. Parker, eds.), North Holland, 
p. 45. 

Sonnerup, B.U.O., and E.R. Priest, 1975, J. Plasma Phys., 14, p. 283. 
Sonnerup, B.U.O., G. Paschmann, I. Papamastorakis, N. Sckopke, G. 

Haerendel, S.J. Bame, J.R. Asbridge, J.T. Gosling, and C.T. Russell, 
1981, J. Geophys. Res., 86, p. 10049. 

Spitzer, L., Jr., 1962, "Physics of Fully Ionized Gases," Interscience. 
Soward, A., 1982, J. Plasma Phys., 28, p. 415. 
Soward, A.M., and E.R. Priest, 1977, Phil. Trans. Royal. Soc. London, 

284, p. 369. 
Soward, A., and E.R. Priest, 1982, J. Plasma Phys., 28, p. 335. 
Sweet, P.A., 1958, Proc. IAU Symposium No. 6, "Electromagnetic Phenomena 

in Cosmic Physics," (B. Lehnert, ed.), Cambridge U. Press, p. 123. 
Terasawa, T., 1983, Geophys. Res. Lett., 10, p. 47 5. 
Vasyliunas, V.M., 1975, Revs. Geophys. Space Phys., 13, p. 303. 
Yeh, T., and W.I. Axford, 1970, J. Plasma Phys., 4, p. 207. 

DISCUSSION 
Sturrock: In order to explain a solar flare, we need a system which 

exhibits an "explosive" or "hard" instability. What do we know about 
the conditions which determine whether or not reconnection is an 
explosive process? 

Sonnerup: In my view, not much. A few suggestions for explosive 
instability behavior have been made. For example, explosive behavior of 
the ion tearing mode has been predicted by Galeev and coworkers. How­
ever, this result has been contested by Pellat. 

On the whole, I believe that the type of behavior observed in solar 
flares is not determined solely by local conditions at the reconnection 
line, but by the global configuration and the dynamic accessibility of 
the free energy stored in it. 

Mahajan: What is the definition of a "classical picture"? Does it 
have anything to do with the form of the Ohm's law? 

Sonnerup: No, it does not refer to classical versus anomalous 
resistivity. I used the phrase "classical reconnection models" for the 
Sweet-Parker and the Petschek models. 
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Vasyliunas: On the definition of reconnection: 1) As you pointed 
out, definitions in terms of plasma flow or in terms of electric field 
are practically equivalent; the advantage of the former is that the 
trivial vacuum case is excluded. 2) It may be preferable to define 
reconnection globally, as palsma flow across an electric field E in the 
separatrix surface; the existence of E along the separator line can 
then be deduced as a consequence. 3) Various terms: reconnection, 
field line merging (preferable in my opinion, for linguistic reasons), 
field annihilation, etc. are all synonymous. 

Sonnerup: (1) I prefer to think of flux transfer as the principal 
characteristic of reconnection. Since such transfer occurs unimpeded in 
a vacuum, that case must of course be included in the definition; I do 
not see that as a disadvantage. The definition in terms of plasma flow 
across a separatrix does, on the other hand, have the disadvantage that 
the case of annihilation of exactly antiparallel fields (e.g., the 
stagnation point flows studied by Priest and myself a few years ago) 
does not qualify as reconnection under such a definition. (2) I actually 
prefer the local definition because the reconnection actually takes place 
at the separator. From this definition one can then deduce (with min­
imal additional assumptions) that an electric field is also present 
elsewhere on the separatrix surface. (3) It is true that the terms 
reconnection, merging, and annihilation are used more or less inter­
changeably. However, in my view it would be desirable to make a slight 
distinction: reconnection describes the case of a distinct separator 
line; annihilation describes the case where the separator has degenerated 
to a surface (this occurs in a current sheet without a normal magnetic 
field component). Finally, merging could be used to incorporate both of 
the preceding situations. 

Bratenahl: I am fascinated with Nancy Crooker*s idea that the max­
imum reconnection rate occurs when the fields are antiparallel. With 
the new calculational machinery, are we on the track of being able to 
settle this appealing idea of Crooker? 

Sonnerup: Ordinary reconnection theory predicts a simple formula for 
the reconnection electric field as a function of the angle between the 
two reconnecting magnetic fields. This formula gives a maximum when 
the fields are anti-parallel. Nancy Crooker?s proposal is more radical. 
She argues that reconnection may occur only when the two reconnecting 
magnetic fields are exactly, or very nearly, antiparallel. I do not 
know of any strong theoretical or observational support for this idea. 
In a tokamak the reconnecting fields form only a very small angle. On 
the other hand, the recent collision free electron tearing mode analysis 
by Coroniti and Quest does indicate a fairly strong dependence of the 
growth rate on the angle between the fields. 

A definite answer to the question must await a better understanding 
of the role played by B in the diffusion region. 

Van Hoven: Can the width of diffusion region be uniquely specified 
for the case of steady reconnection? 

Sonnerup: In the case where classical resisitivity n multiplied by 
the current density is used to balance the electric field in the diffus­
ion region, the width x* is such that the magnetic Reynolds number 
M v-j_ x /n 1. In that case x* simply becomes as small as is required 
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in order to maintain this approximate equality. If, on the other hand, 
the effective resitivity is a function of current density or of the 
reconnection rate, then the situation may be different. For example, 
in my paper I have shown that the width of a diffusion region in which 
ion inertial effects dominate is always of the order of the ion inertial 
length A; (or perhaps the ion gyroradius). Similarly, a diffusion region 
dominated by electron inertial effects would have width x ^ X E . 
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