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This paper focuses on the vanishing limit problem for the three-dimensional
incompressible Phan-Thien–Tanner (PTT) system, which is commonly used to
describe the dynamic properties of polymeric fluids. Our purpose is to show the
relation of the PTT system to the well-known Oldroyd-B system (with or without
damping mechanism). The suitable a priori estimates and global existence of strong
solutions are established for the PTT system with small initial data. Taking
advantage of uniform energy and decay estimates for the PTT system with respect
to time t and coefficients a and b, then allows us to justify in particular the vanishing
limit for all time. More precisely, we prove that the solution (u, τ) of PTT system
with 0 � b � Ca converges globally in time to some limit (ũ, τ̃) in a suitable Sobolev
space when a and b go to zero simultaneously (or, only b goes to zero). We may
check that (ũ, τ̃) is indeed a global solution of the corresponding Oldroyd-B system.
In addition, a rate of convergence involving explicit norm will be obtained. As a
byproduct, similar results are also true for the local a priori estimates in large norm.

Keywords: Navier–Stokes equations; Phan-Thien–Tanner system; global
well-posedness; vanishing limit; convergence rate
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1. Introduction

In this paper, we are interested in only homogeneous flow of incompressible isother-
mal polymer fluids. The Phan-Thien–Tanner (PTT) model originates from the
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works of Nhan Phan-Thien and Roger I. Tanner in [44, 45]. This model attempts
to describe the behaviour of this complex mixture of polymers and fluids, and as
such, it presents numerous challenges, simultaneously at the level of their deriva-
tion, that of their numerical simulation and mathematical treatment. This flow is
governed by the following continuity and momentum balance equations:{

div u = 0,
ut + u · ∇u = div T −∇p,

(1.1)

where u, p and T represent the velocity field, the isotropic pressure and the stress
tensor, respectively. The stress tensor T , corresponding to the rates of creation
and destruction of junctions which depend on the instantaneous elastic energy of
the network, or equivalently, the average extension of the network strand, is often
divided into the following two parts:

T = μ1τ + 2μD(u),

where τ is the polymers contribution to the stress tensor and D(u) := (1/2)(∇u +
(∇u)T ). Two constants μ1 > 0 and μ > 0 are the elastic coefficient and the solvent
viscosity coefficient, respectively.

Throughout this paper, we shall focus on the linear PTT model, which is a
well-studied phenomenological constitutive model for polymers. One can deduce
that

λ1
Dτ

Dt
+

ελ1

η
(tr τ)τ = 2η

(
1 − λ2

λ1

)
D(u),

and the ‘objective derivative’ Dτ/Dt is denoted as follows:

Dτ

Dt
:=

∂τ

∂t
+ u · ∇τ + τΩ(u) − Ω(u)τ + λ(D(u)τ + τD(u)),

where Ω(u) := (1/2)(∇u − (∇u)T ), λ1 > 0 is the relaxation time of the fluids, λ2

(0 � λ2 < λ1) is the retardation time of the fluids, η > 0 is the polymer viscosity
coefficient, ε is a parameter controlling the elongational viscosity coefficient and
λ is a constant that is typically in [−1, 1]. In particular, we call the system a
co-rotational case when λ = 0.

For the sake of conciseness, we set a = 1/λ1, b = ε/η and μ2 = (2η/λ1)
(1 − λ2/λ1). Two constants a > 0 and μ2 > 0 are associated with the Deborah
number De = μ2/a, which indicates the relation between the characteristic flow
time and the elastic time (see [4]). The constant b � 0 is related to the rates of
creation and destruction for the polymeric network junctions. Using the notations
introduced above, we aim to solve the following three-dimensional incompressible
PTT system:⎧⎪⎪⎨⎪⎪⎩

ut + u · ∇u − μ�u + ∇p = μ1 div τ, (t, x) ∈ R
+×R

3,
τt + u · ∇τ + (a + b(tr τ))τ + Q(τ,∇u) = μ2D(u), (t, x) ∈ R

+×R
3,

div u = 0, (t, x) ∈ R
+×R

3,
u|t=0 = u0(x), τ |t=0 = τ0(x), x ∈ R

3.

(PTT)
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Here, Q(τ, ∇u) is a given bilinear form

Q(τ,∇u) = τΩ(u) − Ω(u)τ + λ(D(u)τ + τD(u)).

It can be seen that the PTT system is derived from the coupling of the consti-
tutive equation with the incompressible Navier–Stokes equations. The coupling in
Navier–Stokes equations comes from an extra stress tensor contributed from the
polymers. Without taking into account the rates of creation and destruction for
the polymeric network junctions (i.e. a > 0 and b = 0), then the second equation of
system (PTT) is replaced by

τt + u · ∇τ + aτ + Q(τ,∇u) = μ2D(u).

One reduces to the well-known Oldroyd-B system, which models the motion of some
simple types of steady flow of certain idealized elastico-viscous liquids (see [42]).
Note that there is a new nonlinear term b(tr τ)τ in the constitutive equation of sys-
tem (PTT), which is a big difference from the Oldroyd-B system. The limit system
as (a, b) → (0, 0) formally becomes the following three-dimensional incompressible
Oldroyd-B system without damping mechanism:⎧⎪⎪⎨⎪⎪⎩

ũt + ũ · ∇ũ − μ�ũ + ∇p̃ = μ1 div τ̃ , (t, x) ∈ R
+×R

3,
τ̃t + ũ · ∇τ̃ + Q(τ̃ ,∇ũ) = μ2D(ũ), (t, x) ∈ R

+×R
3,

div ũ = 0, (t, x) ∈ R
+×R

3,
ũ|t=0 = u0(x), τ̃ |t=0 = τ0(x), x ∈ R

3.

(OB)

The main objective of this paper is to show the relation of the PTT system to the
Oldroyd-B system (with or without damping mechanism). Until now, this question
actually remains open. In the sequence, we will give an overview on the study for
the PTT and Oldroyd-type models.

To begin, we review some mathematical works dedicated to the PTT model. To
the best of our knowledge, it is universally known that the PTT model has been
widely studied in numerical analysis (see [2, 16, 43]). The first mathematical work
devoted to the PTT system is by Masmoudi [41]. There, the global existence of weak
solutions was proven. Recently, Chen et al. [8] proved the global existence of strong
solutions for the periodic PTT system without damping mechanism (i.e. a = 0 and
b � 0). In a more general context, the global well-posedness of the Cauchy problem
for the linear and generalized PTT systems in the whole space was achieved by
Chen et al. [6, 9] in the critical Besov spaces and [7, 10] in Sobolev spaces. In
this paper, we would like to study in a sequel the limit process of the PTT system
with 0 � b � Ca when coefficients a and b go to 0 simultaneously (or, only b goes
to 0) and aim to prove in particular that the obtained limit is the solution of the
corresponding Oldroyd-B system.

We also review some mathematical works dedicated to the Oldroyd-type models.
For all we know, the related Oldroyd-type models have been analysed extensively
since 1990. The main breakthrough of the Oldroyd-B system was made by Guil-
lopé and Saut [17, 18]. In the above studies, they proved the local existence of
strong solutions and the global existence of one-dimensional shear flows. In the
multi-dimensional case, the local well-posedness in Sobolev spaces was first proven
by Fernández-Cara et al. [15]. Later, Chemin and Masmoudi [5] not only proved
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the local well-posedness in the critical Besov spaces, but gave a low bound for the
lifespan as well. Then, Feng et al. and Lei et al. gave some blow up criteria in [14,
31]. In [39], the global existence of weak solutions for general initial data in the co-
rotational system was studied by Lions and Masmoudi. In regard to strong solutions,
the global existence for small smooth perturbations of a stable equilibrium was first
presented in [36]. Surprisingly, there are a number of studies concerning the global
existence of strong solutions of the Cauchy problem with small initial data by using
different methods, for example, see [11, 32, 33, 36, 52, 54] and the references cited
therein. In particular, the global existence for the Oldroyd-B system without damp-
ing mechanism was discussed in [54]. We should mention here that He and Xu [19],
Lin and Zhang [37] and Sun and Zhang [48] have obtained similar results involving
the initial-boundary problem of the incompressible viscoelastic fluid models. For a
class of large initial data, Fang and Zi [13] and Jiang and Jiang [24] made some
contributions to the global existence of strong solutions. The optimal time decay
estimates have been established recently in [20] for the incompressible Oldroyd-B
system and similar results in [50] for the compressible case. For more results con-
cerning the related compressible viscoelastic fluids models, one may refer to [1, 22,
23, 40, 46, 53]. It has been shown that the weak solutions and strong solutions
exist globally in time.

In addition, we recall some results related to the limit problems. There has been
much progress on the limit problems of various flow models in the last few decades,
especially on incompressible limit. The mathematical studies of incompressible limit
were stated in [28, 38] for Navier–Stokes equations and in [21, 25] for magnetohy-
drodynamic equations. As for the Oldroyd-B system, incompressible limit problem
was investigated in [30, 33]. Besides, Ju et al. investigated the quasineutral limit
for the compressible Navier–Stokes–Poisson equations (for both isentropic and non-
isentropic cases) in [26, 27]. As in the previous works, the existence of global
classical (or weak) solutions for the incompressible case was shown via incompress-
ible limit. More results on the other limit problems of various flow models may be
found in [3, 12, 29, 34, 35, 49, 51]. Heuristically, we hope that the process of
the vanishing limit for the PTT system selects a physical relevant solution of the
corresponding Oldroyd-B system.

In this paper, we aim to establish the vanishing limit of the PTT system for
incompressible fluids. Let 0 � a � 1 and 0 � b � Ca, under the smallness assump-
tions on the initial data, our first aim is to prove the global existence of strong
solutions for the PTT system with the a priori estimates, uniformly with respect
to time t and coefficients a and b. Our second purpose is to prove the global exis-
tence for the limit system via the vanishing limit. Taking advantage of the uniform
energy and decay estimates stated earlier, it is possible to pass to the limit when
a and b go to 0 simultaneously (or, only b goes to 0). This result justifies that
the limit is indeed a strong solution of the corresponding Oldroyd-B system and
has the required regularity. In addition, we investigate the rate of convergence of
the PTT system towards the corresponding Oldroyd-B system for solutions having
the above regularity. We shall see that the rate strongly depends on time t and
coefficients a and b. Moreover, we prove the local a priori estimates in large norm.
A similar result holds true for some time interval [0, T ]. As a consequence, this is
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the first paper devoted to establishing a relation between the PTT system and the
Oldroyd-B system with or without damping mechanism.

Notation: We shall introduce some notations. Unless otherwise indicated, we omit
R

3 in the rest of the proof. For the sake of simplicity, we restrict our attention here
to the case where μ = μ1 = μ2 = 1. Throughout this paper, C denotes a generic
positive constant independent of t, a and b.

We can now describe our main results. We first state the following theorem, the
global well-posedness for system (PTT) with small initial data. In passing, we will
establish suitable a priori estimates, uniformly in both time t and coefficients a
and b.

Theorem 1.1. Let 0 � a � 1 and 0 � b � Ca. Assume that the initial data (u0, τ0)
satisfies div u0 = 0, (τ0)ij = (τ0)ji and (|∇|−1u0, |∇|−1τ0) ∈ H3(R3). There exists
a sufficiently small positive constant δ0, such that if

E(0) := ‖(|∇|−1u0, |∇|−1τ0)‖2
H3(R3) � δ0,

then the problem (PTT) admits a unique global classical solution (u, τ), which
satisfies

sup
0�s�t

(
‖|∇|−1u(s)‖2

H3(R3) + ‖|∇|−1τ(s)‖2
H3(R3)

)
+

∫ t

0

(
‖u(s)‖2

H3(R3) + a‖|∇|−1τ(s)‖2
H3(R3)

)
ds � C1E(0), ∀ t � 0,

where C1 is a positive constant independent of t, a and b. Moreover, the following
time decay estimates hold true:

‖∇u(t)‖2
H1(R3) + ‖P div τ(t)‖2

H1(R3) � C1E(0)(1 + t)−2, ∀ t � 0,

‖tr τ(t)‖2
H2(R3) � C1E(0) e−at, ∀ t � 0.

Remark 1.2. We should mention that the assumption 0 � a � 1 of theorem 1.1 is
reasonable. In this paper, one of the questions to consider is the vanishing limit for
system (PTT) when a tends to zero, so here we assume that 0 � a � 1. The results
of the case a = 0 were proven in some earlier works, see [7, 8, 10, 54] for more
details.

Remark 1.3. We should also point out that 0 � b � Ca is a reasonable technical
assumption for our limiting problem. In the case a = 0 and b > 0, we see that the
solution of system (PTT) will blow up in finite time if the initial data tr τ0(x) < 0,
which have been discussed in [7, 8, 10]. Indeed, the authors in [8] only have to
consider the initial data tr τ0(x) > 0 in the periodic domain T

3. If we assume that
τ0 ∈ Hs(R3), then limx→+∞ τ0(x) = 0 which contracts to tr τ0(x) > 0. Moreover,
under the assumption that tr τ0(x) > 0, the authors in [7, 10] obtained the global
existence of strong solutions provided that the initial data are close to a nontrivial
particular solution (depending only on t) in the whole space R

3. It makes no sense
to consider the global well-posedness for system (PTT) with small initial data
(|∇|−1u0, |∇|−1τ0) ∈ H3(R3) in the case a = 0 and b > 0.
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Remark 1.4. Compared with [7, 10, 54], here our eventual goal is to prove the
convergence of the solution (u, τ) to system (PTT) with 0 � b � Ca when coef-
ficients a and b tend to zero simultaneously (or, only b tends to zero). To prove
this, we shall establish the uniform estimates for system (PTT) with respect to t, a
and b.

Remark 1.5. Actually, besides the assumptions of theorem 1.1, we assume that
(u0, τ0) ∈ L1(R3). For any fixed constant coefficients a � 0 and 0 � b � Ca, we
deduce not only that there exists a unique global classical solution (u, τ), but that
the following time decay estimates hold true:

‖∇u(t)‖H1(R3) + ‖P div τ(t)‖H1(R3) � C1(1 + t)−(5/4), ∀ t � 0,

where C1 is a positive constant which does not depend on t, a and b. This conclusion
may be proved by using standard energy method, the proof of which is similar to
that of this paper. We omit the details, since this is not what we focus on in this
paper.

Remark 1.6. Furthermore, if we also assume that (u0, τ0) ∈ L1(R3). For any fixed
constant coefficients a > 0 and 0 � b � Ca, we can infer that the following optimal
time decay estimates, for k = 0, 1, 2:

‖∇ku(t)‖L2(R3) + ‖∇kτ(t)‖L2(R3) � C2(1 + t)−(3/4)−(k/2), ∀ t � 0,

where C2 is a positive constant independent of t, but may depend on a and b. The
proof is similar to that of the work in [20].

We are concerned with the vanishing limit for system (PTT) in the sequel.
According to theorem 1.1, we shall prove the convergence of the solution (u, τ)
to system (PTT) with 0 � b � Ca when (a, b) tends to (0, 0). The aim is to show
that when (a, b) tends to (0, 0), the global solution (u, τ) of system (PTT) with
0 � b � Ca converges to some limit solution (ũ, τ̃), which is a global solution of
system (OB).

Theorem 1.7. For any T > 0, let (u, τ) be a strong solution of system (PTT) in
the time interval [0, T ] given by theorem 1.1. Then there exists (ũ, τ̃) such that for
0 � b � Ca, if (a, b) → (0, 0), it holds true for any s ∈ (0, 1/2),

|∇|−1u → |∇|−1ũ strongly in C([0, T ];H3−s
loc (R3)),

|∇|−1τ → |∇|−1τ̃ strongly in C([0, T ];H3−s
loc (R3)).

Moreover, (ũ, τ̃) is a strong solution of system (OB) in the time interval [0, T ],
and satisfies

|∇|−1ũ ∈ C([0, T ];H3(R3)) ∩ C1([0, T ];H1(R3)), ũ ∈ L2((0, T );H3(R3)),

|∇|−1τ̃ ∈ C([0, T ];H3(R3)) ∩ C1([0, T ];H2(R3)).

In addition, there exists a positive constant C1, independent of t, a and b, such that

‖|∇|−1ũ(t)‖2
H3(R3) + ‖|∇|−1τ̃(t)‖2

H3(R3) +
∫ t

0

‖ũ(s)‖2
H3(R3) ds � C1E(0), ∀ t � 0.

https://doi.org/10.1017/prm.2023.27 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.27


Vanishing limit for PTT system 679

Finally, we investigate the rate of convergence of system (PTT) towards system
(OB) for solutions having the above regularity. We shall see that the rate strongly
depends on t, a and b.

Theorem 1.8. Let (u, τ) be a strong solution of system (PTT) given by theorem
1.1 and (ũ, τ̃) be a strong solution of system (OB) given by theorem 1.7. Then there
exists a positive constant C1, independent of t, a and b, such that

‖(u − ũ, τ − τ̃)(t)‖2
H1(R3) � C1

(
a2 + b2

)
t eC1(t+1), ∀ t � 0.

Remark 1.9. On the one hand, there is no derivative in the additional term b(tr τ)τ
of system (PTT), in contrast to the Oldroyd-B system. Then the proof of local well-
posedness for system (PTT) is similar to that of the Oldroyd-B system. For any
fixed constant coefficients 0 � a � 1 and 0 � b � Ca, let (u, τ) be a local solution
of system (PTT) in the time interval [0, T ] with the general initial data, there exists
(ũ, τ̃) be a local solution of system (OB) in the time interval [0, T ] if (a, b) → (0, 0).
Further, then there exist some T > 0 and a positive constant C̃1, independent of a
and b, but may depend on T , such that for any 0 � t � T , we have

‖(u − ũ, τ − τ̃)(t)‖2
H1(R3) � C̃1

(
a2 + b2

)
.

The proof of the above estimate may be obtained by arguing as in theorem 1.8,
which will not be explained in detail in this paper. In fact, it turns out to be a
simpler problem.

Remark 1.10. We notice that the PTT system reduces to the well-known Oldroyd-
B system when b = 0. It goes without saying that similar results may be obtained
for a > 0 and only set b → 0. It is more of a physical significance with damping term
no matter whether it is the PTT system or the Oldroyd-B system. In addition, we
may get a better rate of convergence, the proof of which is actually quite similar to
that of theorems 1.1, 1.7 and 1.8, because the nonlinear term b(tr τ)τ of the PTT
system can be controlled by the damping term aτ .

In the last part of this section, we present the main ideas of the proofs of theo-
rems 1.1, 1.7 and 1.8. From the point of view of the limit system (OB), it will be
difficult to establish the a priori estimates, uniformly in both time t and coefficients
a and b, because system (OB) (i.e. a = 0 and b = 0) loses damping influence about
τ . In order to overcome this difficulty, motivated by the result presented in [54], we
study the following linearized system:{

ut −�u = P div τ,
τt = D(u),

where P := I −�−1∇div is the Leray projection operator. We decouple the lin-
earized system and find that both u and P div τ satisfy the following damped wave
equation:

Wtt −�Wt − 1
2
�W = 0.

Therefore, we could obtain the time decay estimates of u and P div τ , which are
useful to deal with the nonlinear terms.
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More specifically, the standard energy method be performed in system (PTT)
then gives a bound on

‖|∇|−1u‖L∞
t (H3) + ‖|∇|−1τ‖L∞

t (H3) + ‖u‖L2
t (H3) + a‖|∇|−1τ‖L2

t (H3).

Due to the presence of coefficient a in the dissipative term for τ , the standard energy
estimates above alone is not enough to prove the global-in-time estimates, uniformly
in coefficients a and b. Indeed, the nonlinear terms u · ∇u, u · ∇τ , Q(τ, ∇u) and
b(tr τ)τ cannot be dealt with here. For this, we use the equation for u in system
(PTT) to get the dissipation estimate for P div τ . In fact, due to the loss of the
dissipation estimate for τ , we will establish the time decay estimates of u and
P div τ to deal with the nonlinear terms u · ∇u, u · ∇τ and Q(τ, ∇u). It suffices to
prove a bound on

sup
0�s�t

(1 + s)2
(‖∇u(s)‖2

H1 + ‖P div τ(s)‖2
H1

)
+

∫ t

0

(1 + s)2
(‖∇2u(s)‖2

H1 + ‖∇P div τ(s)‖2
L2 + a‖P div τ(s)‖2

H1

)
ds.

Note that, however, it does not seem possible to handle the nonlinear term
b(tr τ)τ . This is another difficult task. To achieve this, we may use a method as
in [7, 8, 10]. We shall make full use of the structure of the constitutive equation
of system (PTT) to obtain the time decay estimate of the unknown good quantity
tr τ . As a consequence, we prove the global-in-time estimates for system (PTT)
with small initial data, uniformly in coefficients a and b (see theorem 1.1). More-
over, we prove the convergence of the global solution (u, τ) to system (PTT) with
0 � b � Ca when (a, b) → (0, 0), and the global solution (ũ, τ̃) is obtained by pass-
ing to the limit. Hence, (ũ, τ̃) be a global solution of system (OB) (see theorem 1.7).
In addition, a rate of convergence involving explicit norms will be obtained by using
energy estimate (see theorem 1.8). On the one hand, according to the local well-
posedness for the PTT system with general initial data, we also obtain the similar
results (see remark 1.9). We mention in passing that in the case a > 0 and only set
b → 0, similar results are also true (see remark 1.10).

The rest of this paper is arranged as follows. In §2, we recall a few basic lemmas.
Section 3 is devoted to proving the suitable a priori estimates for the PTT system,
which will be useful for proving our main results. The proofs of theorems 1.1, 1.7
and 1.8 are presented in § 4.

2. Preliminary

In this section, we recall some very basic facts. The first lemma has been proven in
[8, 54]; the details of the proof are omitted.

Lemma 2.1 [8, 54]. For any smooth tensor field [τij ]3×3 and three-dimensional
vector field u, it always holds that

P div(u · ∇τ) = P(u · ∇P div τ) + P(∇u · ∇τ) − P(∇u · ∇�−1 div div τ),

P div((tr τ)τ) = P((tr τ)P div τ) + P(τ · ∇(tr τ)) − P(∇(tr τ)�−1 div div τ),
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where

(∇u · ∇τ)i =
∑

j

∂ju · ∇τij , (∇u · ∇�−1 div div τ)i = ∂iu · ∇�−1 div div τ.

We introduce the following so-called Aubin–Lions lemma, which will be useful
for proving theorem 1.7.

Lemma 2.2 [47]. Assume that X ⊂ Y ⊂ Z are Banach spaces and X ⊂⊂ Y , then
the following embeddings are compact:

{
f
∣∣f ∈ Lq((0, T );X), ft ∈ L1((0, T );Z)

} ⊂ ⊂Lq((0, T );Y ), if 1 � q � ∞,{
f
∣∣f ∈ L∞((0, T );X), ft ∈ Lr((0, T );Z)

} ⊂ ⊂C([0, T ];Y ), if 1 < r � ∞.

3. Apriori estimates

In this section, we want to send (a, b) to (0, 0) in system (PTT) with 0 � a � 1 and
0 � b � Ca. For this, we shall need some uniform estimates for smooth solutions
with respect to a and b. Before going into further detail, we give some basic energies
and time-weighted energies as follows:

E(0) := ‖|∇|−1u0‖2
H3 + ‖|∇|−1τ0‖2

H3 ,

E1(t) := sup
0�s�t

(‖|∇|−1u(s)‖2
H3 + ‖|∇|−1τ(s)‖2

H3

)
+

∫ t

0

(‖u(s)‖2
H3 + ‖|∇|−1

P div τ(s)‖2
H2 + a‖|∇|−1τ(s)‖2

H3

)
ds,

E2(t) := sup
0�s�t

(1 + s)2
(‖∇u(s)‖2

H1 + ‖P div τ(s)‖2
H1

)
+

∫ t

0

(1 + s)2
(‖∇2u(s)‖2

H1 + ‖∇P div τ(s)‖2
L2 + a‖P div τ(s)‖2

H1

)
ds,

E3(t) := sup
0�s�t

(
eas‖tr τ(s)‖2

H2

)
.

We begin by proving the a priori estimates for smooth solutions. The follow-
ing proposition 3.1 is useful for proving the existence theorem (see theorem 1.1).
There, the positive constant C∗ that we obtained below does not depend on t,
a and b, so that we may pass to the limit in system (PTT) with 0 � b � Ca when
(a, b) goes to (0, 0), which then allows us to get a solution of system (OB) (see
theorem 1.7). Moreover, a rate of convergence involving explicit norms will be
obtained (see theorem 1.8).

Proposition 3.1. Suppose that (u, τ) is a solution of system (PTT) in the time
interval [0, T ] and satisfies the assumptions of theorem 1.1. There exists a positive
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constant δ0, such that if

E1(t) + E2(t) + E3(t) � 4C∗δ0, ∀ t ∈ [0, T ], (3.1)

then

E1(t) + E2(t) + E3(t) < 4C∗δ0, ∀ t ∈ [0, T ],

where C∗ is a positive constant independent of t, a and b.

3.1. Estimate of E1(t)

First of all, we shall prove the following standard energy estimates.

Lemma 3.2. Under the assumptions of proposition 3.1, it holds that

E11(t) � E(0) + C
(
E3/2
1 (t) + E3/2

2 (t)
)

, (3.2)

where C is a positive constant independent of t, a and b, and

E11(t) := sup
0�s�t

(‖|∇|−1u(s)‖2
H3 + ‖|∇|−1τ(s)‖2

H3

)
+ 2

∫ t

0

(‖u(s)‖2
H3 + a‖|∇|−1τ(s)‖2

H3

)
ds. (3.3)

Proof. Applying the operator |∇|−1∇k (k = 0, 1, 2, 3) to system (PTT), and taking
the L2 inner product with |∇|−1∇ku and |∇|−1∇kτ , respectively, we find that

1
2

d
dt

(‖|∇|−1u‖2
H3 + ‖|∇|−1τ‖2

H3

)
+ ‖u‖2

H3 + a‖|∇|−1τ‖2
H3

=
3∑

k=0

∫ (∇k|∇|−1(div τ) · ∇k|∇|−1u + ∇k|∇|−1(D(u)) · ∇k|∇|−1τ
)
dx

− b

3∑
k=0

∫
∇k|∇|−1 ((tr τ)τ) · ∇k|∇|−1τdx

−
3∑

k=0

∫
∇k|∇|−1 (u · ∇u) · ∇k|∇|−1udx

−
3∑

k=0

∫
∇k|∇|−1 (u · ∇τ + Q(τ,∇u)) · ∇k|∇|−1τ dx

:= I1 + I2 + I3 + I4. (3.4)

According to div u = 0 and τij = τji, and integrating by parts in the first term, we
get I1 = 0. Using the facts that div u = 0, τij = τji and 0 � b � Ca, and integrating
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by parts, we deduce that∫ t

0

|I2|ds � Cb

∫ t

0

‖|∇|−1τ(s)‖2
H3‖τ(s)‖H2 ds

� Cb sup
0�s�t

‖|∇|−1τ(s)‖H3

∫ t

0

‖|∇|−1τ(s)‖2
H3 ds � CE3/2

1 (t),

∫ t

0

|I3|ds � C sup
0�s�t

‖|∇|−1u(s)‖H3

∫ t

0

‖u(s)‖2
H3 ds � CE3/2

1 (t).

To deal with the last term I4, we use Hölder’s inequality to get∫ t

0

|I4|ds � C

∫ t

0

‖|∇|−1τ(s)‖2
H3

(
‖∇2u(s)‖H1 + ‖∇u(s)‖1/2

L2 ‖∇2u(s)‖1/2
L2

)
ds

� sup
0�s�t

‖|∇|−1τ(s)‖2
H3

{(∫ t

0

(1 + s)−2 ds

)1/2

×
(∫ t

0

(1 + s)2‖∇2u(s)‖2
H1 ds

)1/2

+
(∫ t

0

(1 + s)−(3/2) ds

)1/2 (∫ t

0

(1 + s)‖∇u(s)‖2
L2 ds

)1/4

×
(∫ t

0

(1 + s)2‖∇2u(s)‖2
L2 ds

)1/4
}

� C
(
E3/2
1 (t) + E3/2

2 (t)
)

,

which in the last inequality we have used for the fact that∫ t

0

(1 + s)‖∇u(s)‖2
L2 ds � C

(∫ t

0

‖u(s)‖2
L2 ds

)1/2 (∫ t

0

(1 + s)2‖∇2u(s)‖2
L2 ds

)1/2

.

Integrating (3.4) with respect to t, and plugging the above inequalities into the
resulting inequality, we get the desired inequality (3.2). �

Next, we aim to recover the dissipation estimate for P div τ .

Lemma 3.3. Under the assumptions of proposition 3.1, it holds that

E12(t) � E(0) + CE11(t) + C
(
E3/2
1 (t) + E3/2

2 (t) + E3/2
3 (t)

)
, (3.5)

where C is a positive constant independent of t, a and b, and

E12(t) := − sup
0�s�t

2∑
k=0

∫
|∇|−1∇ku · |∇|−1∇k

P div τ(s) dx

+
1
2

∫ t

0

‖|∇|−1
P div τ(s)‖2

H2 ds. (3.6)
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Proof. Applying the operator |∇|−1∇k
P (k = 0, 1, 2) to the first equation of system

(PTT), we obtain the equation that

|∇|−1∇kut + |∇|−1∇k
P(u · ∇u) − |∇|−1∇k�u = |∇|−1∇k

P div τ.

Taking the L2 inner product with |∇|−1∇k
P div τ , and summing up k from 0 to 2,

we find that

‖|∇|−1
P div τ‖2

H2 =
2∑

k=0

∫
|∇|−1∇kut · |∇|−1∇k

P div τ dx

+
2∑

k=0

∫
|∇|−1∇k

P (u · ∇u) · |∇|−1∇k
P div τ dx

−
2∑

k=0

∫
|∇|−1∇k�u · |∇|−1∇k

P div τ dx

:= J1 + J2 + J3. (3.7)

In order to deal with J1, we turn the time derivative of u to τ . Hence, we can
transform the time derivative to the spatial derivative, i.e.

J1 =
d
dt

2∑
k=0

∫
|∇|−1∇ku · |∇|−1∇k

P div τ dx

−
2∑

k=0

∫
|∇|−1∇ku · |∇|−1∇k

P div τt dx

:= J11 + J12.

Applying the operator |∇|−1∇k
P div (k = 0, 1, 2) to the second equation of system

(PTT), we see that

|∇|−1∇k
P div τt =

1
2
|∇|−1∇k�u − a|∇|−1∇k

P div τ

− |∇|−1∇k
P div (u · ∇τ + Q(τ,∇u) + b(tr τ)τ) .

Now, using the facts that 0 � a � 1 and 0 � b � Ca, we have∫ t

0

|J12|ds � C

∫ t

0

(‖u(s)‖2
H2 + a2‖|∇|−1τ(s)‖2

H3

)
ds + C

∫ t

0

(‖u(s)‖2
H2‖τ(s)‖H2

+‖|∇|−1u(s)‖H2‖τ(s)‖H2

(‖∇2u(s)‖H1 + b‖∇tr τ(s)‖H1

))
ds

� CE11(t) + C

∫ t

0

‖|∇|−1u(s)‖H3 (‖u(s)‖H2 + ‖τ(s)‖H2)

× (‖∇2u(s)‖H1 + b‖tr τ(s)‖H2

)
ds
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� CE11(t) + C sup
0�s�t

(‖|∇|−1u(s)‖2
H3 + ‖τ(s)‖2

H2

)
×

{
sup

0�s�t

(
eas/2‖tr τ(s)‖H2

) ∫ t

0

b · e−(as/2) ds

+
(∫ t

0

(1 + s)−2 ds

)1/2 (∫ t

0

(1 + s)2‖∇2u(s)‖2
H1 ds

)1/2
}

� CE11(t) + C
(
E3/2
1 (t) + E3/2

2 (t) + E3/2
3 (t)

)
.

Here, we can deal with the remaining two terms J2 and J3 as follows:∫ t

0

|J2|ds � C

∫ t

0

‖u(s)‖2
H2‖|∇|−1

P div τ(s)‖H2 ds

� C sup
0�s�t

‖|∇|−1
P div τ(s)‖H2

∫ t

0

‖u(s)‖2
H2 ds � CE3/2

1 (t),

∫ t

0

|J3|ds � C

∫ t

0

‖∇u(s)‖H2‖|∇|−1
P div τ(s)‖H2 ds

� 1
2

∫ t

0

‖|∇|−1
P div τ(s)‖2

H2 ds + C

∫ t

0

‖∇u(s)‖2
H2 ds

� 1
2

∫ t

0

‖|∇|−1
P div τ(s)‖2

H2 ds + CE11(t).

Substituting the above estimates of J1, J2 and J3 into (3.7), we obtain (3.5)
immediately. �

With the help of lemmas 3.2 and 3.3, we infer the following lemma.

Lemma 3.4. Under the assumptions of proposition 3.1, it holds that

E1(t) � CE(0) + C
(
E3/2
1 (t) + E3/2

2 (t) + E3/2
3 (t)

)
. (3.8)

Proof. Now, adding (2η/(1 − Cη))×(3.5) to (3.2), and choosing η suitably small,
one obtains that

sup
0�s�t

(‖|∇|−1u(s)‖2
H3 + ‖|∇|−1τ(s)‖2

H3

− 2η

1 − Cη

2∑
k=0

∫
|∇|−1∇ku · |∇|−1∇k

P div τ dx

)

+
∫ t

0

(
2‖u(s)‖2

H3 + 2a‖|∇|−1τ(s)‖2
H3 +

η

1 − Cη
‖|∇|−1

P div τ(s)‖2
H2

)
ds

� CE(0) + C
(
E3/2
1 (t) + E3/2

2 (t) + E3/2
3 (t)

)
.
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Since
2∑

k=0

∣∣∣∣∫ |∇|−1∇ku · |∇|−1∇k
P div τ dx

∣∣∣∣ � C‖|∇|−1u‖2
H2 + C‖τ‖2

H2 ,

then there exist two positive constants c1 and c2, independent of t, a and b, such
that

c1

(‖|∇|−1u(s)‖2
H3 + ‖|∇|−1τ(s)‖2

H3

)
� ‖|∇|−1u(s)‖2

H3 + ‖|∇|−1τ(s)‖2
H3

− 2η

1 − Cη

2∑
k=0

∫
|∇|−1∇ku · |∇|−1∇k

P div τ dx

� c2

(‖|∇|−1u(s)‖2
H3 + ‖|∇|−1τ(s)‖2

H3

)
,

provided that η is suitably small. Therefore, we get (3.8) immediately. �

3.2. Estimate of E2(t)

According to the estimate of E1(t) in § 3.1, we see that it is necessary to prove
some time decay estimates as E2(t).

Lemma 3.5. Under the assumptions of proposition 3.1, it holds that

E ′
21(t) � C (‖u‖H2 + ‖τ‖H2)

(‖∇2u‖L2 + ‖∇P div τ‖L2 + b‖∇tr τ‖H1

)
× (‖∇2u‖H1 + ‖∇P div τ‖L2

)
, (3.9)

where C is a positive constant independent of t, a and b, and

E ′
21(t) :=

1
2

d
dt

(‖∇u‖2
H1 + 2‖P div τ‖2

H1

)
+ ‖∇2u‖2

H1 + 2a‖P div τ‖2
H1 . (3.10)

Proof. Applying the operator ∇k+1 (k = 0, 1) to the first equation of system (PTT)
and ∇k

P div (k = 0, 1) to the second equation of system (PTT), we see that⎧⎪⎨⎪⎩
∇k+1ut + ∇k+1(u · ∇u) −∇k+1�u + ∇k+1∇p = ∇k+1 div τ,
∇k

P div τt + a∇k
P div τ + ∇k

P div (u · ∇τ + Q(τ,∇u) + b(tr τ)τ)

=
1
2
∇k�u.

(3.11)

Taking the L2 inner product of the first equation of (3.11) with ∇k+1u and the
second equation of (3.11) with 2∇k

P div τ , we arrive at

1
2

d
dt

(‖∇u‖2
H1 + 2‖P div τ‖2

H1

)
+ ‖∇2u‖2

H1 + 2a‖P div τ‖2
H1

=
∑

k=0,1

∫ (∇k+1 div τ · ∇k+1u + ∇k�u · ∇k
P div τ

)
dx

−
∑

k=0,1

∫
∇k+1 (u · ∇u) · ∇k+1u dx
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−
∑

k=0,1

2
∫

∇k
P div (u · ∇τ + Q(τ,∇u)) · ∇k

P div τ dx

−
∑

k=0,1

2b

∫
∇k

P div ((tr τ)τ) · ∇k
P div τ dx

:= K1 + K2 + K3 + K4. (3.12)

Observe that the divergence-free and symmetry conditions, and by using integration
by parts, we deduce that K1 = 0. For the second term K2, we readily have

|K2| � C‖u‖H2‖∇2u‖L2‖∇2u‖H1 .

We now turn to the toughest term K3. By taking advantage of lemma 2.1, Hölder’s
inequality and Gagliardo–Nirenberg–Sobolev inequality, we can conclude that

|K3| � C‖∇u‖L6‖∇τ‖L3/2‖P div τ‖L6 + ‖τ‖L3‖∇2u‖L2‖P div τ‖L6

+ ‖∇u‖L∞‖∇2τ‖L2‖∇P div τ‖L2 + ‖∇2u‖L3‖∇τ‖L6‖∇P div τ‖L2

+ ‖τ‖L∞‖∇3u‖L2‖∇P div τ‖L2

� C‖τ‖H2‖∇2u‖H1‖∇P div τ‖L2 .

For the last term K4, we easily get that

|K4| � Cb‖∇tr τ‖H1‖τ‖H2‖∇P div τ‖L2 .

Combining the above estimates, we get inequality (3.9). �

Next, we recover the dissipation estimate for P div τ .

Lemma 3.6. Under the assumptions of proposition 3.1, it holds that

E ′
22(t) �

(‖∇2u‖2
H1 + a2‖P div τ‖2

L2

)
+ C (‖u‖H2 + ‖τ‖H2)

× (‖∇2u‖L2 + ‖∇P div τ‖L2 + b‖∇tr τ‖H1

) ‖∇2u‖H1 , (3.13)

where C is a positive constant independent of t, a and b, and

E ′
22(t) := − d

dt

∫
∇u · ∇P div τ dx +

1
2
‖∇P div τ‖2

L2 . (3.14)

Proof. Applying the operator ∇P to the first equation of system (PTT), we obtain
the equation that

∇ut + ∇P(u · ∇u) −∇�u = ∇P div τ.

Taking the L2 inner product with ∇P div τ , we find that

‖∇P div τ‖2
L2 =

∫
∇ut · ∇P div τ dx +

∫
∇P (u · ∇u) · ∇P div τ dx

−
∫

∇�u · ∇P div τ dx

:= L1 + L2 + L3. (3.15)
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To deal with the first term L1, we use integration by parts to get

L1 =
d
dt

∫
∇u · ∇P div τ dx −

∫
∇u · ∇P div τt dx := L11 + L12.

Applying the operator P div to the second equation of system (PTT) yields

P div τt + aP div τ + P div (u · ∇τ + Q(τ,∇u) + b(tr τ)τ) =
1
2
�u,

from which it follows that

L12 = −
∫

�u ·
(

P div (u · ∇τ + Q(τ,∇u) + b(tr τ)τ) + aP div τ − 1
2
�u

)
dx.

According to lemma 2.1, we have

|L12| � C
(‖∇2u‖2

L2 + a2‖P div τ‖2
L2

)
+ C‖∇2u‖L2 (‖u‖L∞‖∇P div τ‖L2

+‖∇u‖L∞‖∇τ‖L2 + ‖τ‖L∞‖∇2u‖L2 + b‖τ‖H2‖∇tr τ‖H1

)
.

Next, we treat the second term L2 and the last term L3. We infer that

|L2| � C
(‖u‖L∞‖∇2u‖L2 + ‖∇u‖L∞‖∇u‖L2

) ‖∇P div τ‖L2 ,

|L3| � C‖∇3u‖L2‖∇P div τ‖L2 � 1
2
‖∇P div τ‖2

L2 + C‖∇3u‖2
L2 .

Utilizing the above estimates in (3.15), it is easy to get (3.13). �

In view of lemmas 3.5 and 3.6, we obtain the following lemma.

Lemma 3.7. Under the assumptions of proposition 3.1, it holds that

E2(t) � CE(0) + CE1(t) + C
(
E3/2
1 (t) + E3/2

2 (t) + E3/2
3 (t)

)
. (3.16)

Proof. As above two lemmas, together with (3.9) and η× (3.13), using the facts
that 0 � a � 1 and 0 � b � Ca, and choosing η suitably small, this ensures that

E ′
2(t) :=

1
2

d
dt

{
‖∇u‖2

H1 + 2‖P div τ‖2
H1 − 2η

∫
∇u · ∇P div τ dx

}
+

1
2
‖∇2u‖2

H1 + a‖P div τ‖2
H1 +

η

2
‖∇P div τ‖2

L2

� C
(‖∇2u‖H1 + ‖∇P div τ‖L2

)
(‖u‖H2 + ‖τ‖H2)

× (‖∇2u‖L2 + ‖∇P div τ‖L2 + b‖∇tr τ‖H1

)
.

Since ∣∣∣∣∫ ∇u · ∇P div τ dx

∣∣∣∣ � ‖∇u‖2
L2 + ‖∇P div τ‖2

L2 ,
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then we have

1
2

(‖∇u‖2
H1 + 2‖P div τ‖2

H1

)
� ‖∇u‖2

H1 + 2‖P div τ‖2
H1 − 2η

∫
∇u · ∇P div τ dx

� 3
2

(‖∇u‖2
H1 + 2‖P div τ‖2

H1

)
.

The key to the proof is a weighted energy estimate. By multiplying the time weight
(1 + t)2 and integrating directly in time, we obtain that

sup
0�s�t

(1 + s)2
(‖∇u(s)‖2

H1 + 2‖P div τ(s)‖2
H1

)
+

∫ t

0

(1 + s)2
(‖∇2u(s)‖2

H1 + ‖∇P div τ(s)‖2
L2 + a‖P div τ(s)‖2

H1

)
ds

� CE(0) + 2
∫ t

0

(1 + s)
(‖∇u(s)‖2

H1 + 2‖P div τ(s)‖2
H1

)
ds

+ C

∫ t

0

(1 + s)2
(‖∇2u(s)‖H1 + ‖∇P div τ(s)‖L2

)
(‖u(s)‖H2 + ‖τ(s)‖H2)

× (‖∇2u(s)‖L2 + ‖∇P div τ(s)‖L2 + b‖∇tr τ(s)‖H1

)
ds

� CE(0) + CE1/2
1 (t)E1/2

2 (t) + CE1/2
1 (t)

∫ t

0

(1 + s)2(‖∇2u(s)‖2
H1

+ ‖∇P div τ(s)‖2
L2)ds + Cb2E1/2

1 (t)
∫ t

0

(1 + s)2‖∇tr τ(s)‖2
H1 ds

� CE(0) + CE1/2
1 (t)E1/2

2 (t) + C
(
E3/2
1 (t) + E3/2

2 (t) + E3/2
3 (t)

)
.

Note that in the above inequality we have used the facts that

∫ t

0

(1 + s)
(‖∇u(s)‖2

H1 + 2‖P div τ(s)‖2
H1

)
ds

� C

{(∫ t

0

(‖u(s)‖2
L2 + ‖|∇|−1

P div τ(s)‖2
L2

)
ds

)1/2

+
(∫ t

0

(‖∇2u(s)‖2
L2 + ‖∇P div τ(s)‖2

L2

)
ds

)1/2
}

×
(∫ t

0

(1 + s)2
(‖∇2u(s)‖2

L2 + ‖∇P div τ(s)‖2
L2

)
ds

)1/2

� CE1/2
1 (t)E1/2

2 (t),
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and

b2

∫ t

0

(1 + s)2‖tr τ(s)‖2
H2 ds

� Cb2 sup
0�s�t

(
eas‖tr τ(s)‖2

H2

) ∫ t

0

(1 + s)2 e−as ds � CE3(t).

Since 0 � a � 1 and 0 � b � Ca, then lima→0((1 − e−at)/a) = lima→0 e−at � 1, we
have

b2

∫ t

0

(1 + s)2 e−as ds

= −b2

a

(
(1 + t)2 e−at − 1 − 2

∫ t

0

(1 + s) e−as ds

)
= −b2

a

(
(1 + t)2 e−at − 1 +

2
a

(
(1 + t) e−at − 1 −

∫ t

0

e−as ds

))
= −b2

a
((1 + t) e−at − 1) − 2b2

a2
((1 + t) e−at − 1) +

2b2

a2

(1 − e−at)
a

� C.

Combining the above estimates, and recalling the definition of E2(t), it is easy to
deduce estimate (3.16). �

3.3. Estimate of E3(t)

Since what we obtained above is the dissipation estimate for P div τ , but rather
than τ . In order to control the nonlinear term b(tr τ)τ , we need further and more
arguments. Here, we shall make full use of the structure of system (PTT) to obtain
‖tr τ‖H3 decays exponentially.

Lemma 3.8. Under the assumptions of proposition 3.1, it holds that

E3(t) � E(0) exp
{

CE1/2
2 (t) + CE1/2

3 (t)
}

, (3.17)

where C is a positive constant independent of t, a and b.

Proof. Applying the operator tr to the second equation of (PTT), and using the
fact that div u = 0, we may write

(tr τ)t + (a + btr τ) tr τ + u · ∇tr τ = 0,

with the following standard estimate:

d
dt

‖tr τ‖2
H2 + a‖tr τ‖2

H2

=
2∑

k=0

∫
∇k (u · ∇tr τ) · ∇k(tr τ) dx − b

2∑
k=0

∫
∇k

(
(tr τ)2

) · ∇k(tr τ) dx

� C
(‖∇u‖L∞ + ‖∇2u‖L3 + b‖tr τ‖H2

) ‖tr τ‖2
H2 .
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Consequently, the above inequality reads

d
dt

(
eat‖tr τ‖2

H2

)
� C

(
b‖tr τ‖H2 + ‖∇u‖L∞ + ‖∇2u‖L3

) (
eat‖tr τ‖2

H2

)
.

Gronwall’s lemma now provides the bound

eat‖tr τ(t)‖2
H2 � ‖tr τ0‖2

H2 exp
{

C

∫ t

0

(‖∇u(s)‖L∞ + ‖∇2u(s)‖L3

)
ds

+Cb

∫ t

0

‖tr τ(s)‖H2 ds

}
. (3.18)

It is then obvious that∫ t

0

(‖∇u(s)‖L∞ + ‖∇2u(s)‖L3

)
ds

� C

(∫ t

0

(1 + s)−2 ds

)1/2 (∫
(1 + s)2‖∇2u(s)‖2

H1ds

)1/2

� CE1/2
2 (t).

In fact, due to 0 � b � Ca, we have

b

∫ t

0

‖tr τ(s)‖H2 ds � b sup
0�s�t

(
eas/2‖tr τ(s)‖H2

)∫ t

0

e−(as/2) ds

� 2b

a
E1/2
3 (t) � CE1/2

3 (t).

Returning to (3.18), and combining the estimates above, we get (3.17) immediately.
�

3.4. Closure of the estimates

With the help of the estimates of Ei(t) (i = 1, 2, 3), we start to prove proposition
3.1.

Proof of proposition 3.1. Together with all the estimates of Ei(t) (i = 1, 2, 3), this
gives that

E1(t) + E2(t) + E3(t)

� C∗
(
E(0) + E3/2

1 (t) + E3/2
2 (t) + E3/2

3 (t)
)

+ C∗E(0) exp
{

CE1/2
2 (t) + CE1/2

3 (t)
}

.

Using the bootstrap assumption (3.1), we then get

C∗
(
E(0) + E3/2

1 (t) + E3/2
2 (t) + E3/2

3 (t)
)

� C∗δ0 + Cδ
3/2
0 ,

C∗E(0) exp
{
CE1/2

2 (t) + CE1/2
3 (t)

}
� 2C∗δ0.
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Hence,

E1(t) + E2(t) + E3(t) � 3C∗δ0 + Cδ
3/2
0 < 4C∗δ0,

provided that δ0 is sufficiently small. This completes the proof of proposition 3.1.
�

4. Proofs of main results

Thus far, we have established the uniform estimates for smooth solutions with
respect to t, a and b. In this section, we pay attention to the proofs of theorems 1.1,
1.7 and 1.8. Indeed, proposition 3.1 in § 3 leads us to prove theorem 1.1.

Proof of theorem 1.1. In contrast to the Oldroyd-B system, however, there is no
derivative in the additional term b(tr τ)τ of system (PTT). The proof of local well-
posedness for system (PTT) is similar to that of the Oldroyd-B system, and will
thus be omitted. Then there exists a positive time T such that, for any 0 � t � T ,
we have

E1(t) + E2(t) + E3(t) � 4C∗δ0. (4.1)

Let T ∗ denote the maximal time of existence of solutions with (4.1) holds true. We
claim that T ∗ = +∞. Thanks to proposition 3.1, we have

E1(t) + E2(t) + E3(t) < 4C∗δ0. (4.2)

A standard continuous argument leads to T ∗ = +∞, which completes the proof of
theorem 1.1. �

Next, we employ once again proposition 3.1, combined with Aubin–Lions lemma
(see lemma 2.2), to complete the proof of theorem 1.7.

Proof of theorem 1.7. For any T > 0, let (u, τ) be a solution of system (PTT) in
the time interval [0, T ] with the initial data (|∇|−1u0, |∇|−1τ0) belongs to H3. We
immediately deduce from proposition 3.1 that the following uniform estimates:

‖(|∇|−1u, |∇|−1τ)(t)‖2
H3

+
∫ t

0

(‖u(s)‖2
H3 + a‖|∇|−1τ(s)‖2

H3

)
ds � CE(0), ∀ t ∈ [0, T ].

Furthermore, being able to use the structure of system (PTT), we get

‖|∇|−1ut(·, t)‖H1 � CE(0), ‖|∇|−1τt(·, t)‖H2 � CE(0), ∀ t ∈ [0, T ].

The application of the above uniform estimates and lemma 2.2 implies that there
exists a subsequence still denoted by (u, τ) such that for 0 � b � Ca, when (a, b)
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goes to (0, 0), then

|∇|−1u → |∇|−1ũ strongly in C([0, T ];H3−s
loc ),

|∇|−1τ → |∇|−1τ̃ strongly in C([0, T ];H3−s
loc ),

with s ∈ (0, 1/2), and

a|∇|−1τ → 0 strongly in L2((0, T );H3
loc),

b|∇|−1((tr τ)τ) → 0 strongly in L2((0, T );H3
loc).

This allows us to pass to the limit in system (PTT) with 0 � b � Ca when (a, b)
goes to (0, 0) and to conclude that the limit (ũ, τ̃) is indeed a solution of system
(OB). This completes the proof of theorem 1.7. �

Finally, we use energy estimate again to show the rate of convergence for any
positive time.

Proof of theorem 1.8. Let (u, τ) and (ũ, τ̃) be two solutions of system (PTT) and
system (OB) with the same initial data, respectively. Indeed, according to theorem
1.1, we have, for any t � 0,

‖u(t)‖2
H2 + ‖τ(t)‖2

H2

+
∫ t

0

(‖u(s)‖2
H3 + a‖τ(s)‖2

H2 + (1 + s)2‖∇2u(s)‖2
H1

)
ds � CE(0), (4.3)

and

‖ũ(t)‖2
H2 + ‖τ̃(t)‖2

H2 +
∫ t

0

‖ũ(s)‖2
H3 ds � CE(0). (4.4)

Define

v := u − ũ, σ := τ − τ̃ .

We shall focus on the rate of convergence of (u, τ) towards (ũ, τ̃) in H1 norm. To
prove this, we write the evolution equation for (v, σ) that

⎧⎪⎪⎨⎪⎪⎩
vt + u · ∇v + v · ∇ũ −�v + ∇p −∇p̃ = div σ,
σt + u · ∇σ + v · ∇τ̃ + aτ + b(tr τ)τ + Q(σ,∇u) + Q(τ̃ ,∇v) = D(v),
div v = 0,
v|t=0 = 0, σ|t=0 = 0.

(4.5)

https://doi.org/10.1017/prm.2023.27 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.27


694 Y. Chen et al.

Taking the L2 inner product of the first equation of system (4.5) with v and the
second equation of system (4.5) with σ, because of div v = 0 and σij = σji, we get

1
2

d
dt

(‖v‖2
L2 + ‖σ‖2

L2

)
+ ‖∇v‖2

L2

= −
∫

((v · ∇ũ) · v + (v · ∇τ̃) · σ) dx − a

∫
τ · σ dx − b

∫
(tr τ)τ · σ dx

−
∫

(Q(σ,∇u) · σ + Q(τ̃ ,∇v) · σ) dx

:= M1 + M2 + M3 + M4.

Using the energy estimates (4.3) and (4.4), we have

|M1| � C (‖∇ũ‖L3‖v‖L2 + ‖∇τ̃‖L3‖σ‖L2) ‖v‖L6

� 1
4
‖∇v‖2

L2 + C
(‖v‖2

L2 + ‖σ‖2
L2

)
,

|M2| � Ca‖τ‖L2‖σ‖L2 � a2 + C‖σ‖2
L2 ,

|M3| � Cb‖τ‖L3‖τ‖L6‖σ‖L2 � b2 + C‖σ‖2
L2 ,

|M4| � C‖σ‖2
L2‖∇u‖L∞ + C‖σ‖L2‖∇v‖L2‖τ̃‖L∞

� 1
4
‖∇v‖2

L2 + C‖σ‖2
L2 + C‖∇2u‖H1‖σ‖2

L2 .

Together with the above estimates, this enables us to conclude that

d
dt

(‖v‖2
L2 + ‖σ‖2

L2

)
+ ‖∇v‖2

L2

�
(
a2 + b2

)
+ C

(‖v‖2
L2 + ‖σ‖2

L2

)
+ C‖∇2u‖H1‖σ‖2

L2 . (4.6)

Similar arguments lead to

1
2

d
dt

(‖∇v‖2
L2 + ‖∇σ‖2

L2

)
+ ‖∇2v‖2

L2

= −
∫ t

0

(∇(v · ∇ũ) · ∇v + ∇(v · ∇τ̃) · ∇σ) dx − a

∫ t

0

∇τ · ∇σ dx

− b

∫ t

0

∇ ((tr τ)τ) · ∇σ dx −
∫ t

0

(∇Q(σ,∇u) · ∇σ + ∇Q(τ̃ ,∇v) · ∇σ) dx

−
∫ t

0

((∇u · ∇v) · ∇v + (∇u · ∇σ) · ∇σ) dx

:= N1 + N2 + N3 + N4 + N5.

https://doi.org/10.1017/prm.2023.27 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.27


Vanishing limit for PTT system 695

Taking advantage of the energy estimates (4.3) and (4.4), we infer that

N1 � C (‖∇ũ‖L3‖∇v‖L2 + ‖∇τ̃‖L3‖∇σ‖L2) ‖∇v‖L6

+ C
(‖∇2ũ‖L2‖∇v‖L2 + ‖∇2τ̃‖L2‖∇σ‖L2

) ‖v‖L∞

� 1
4
‖∇v‖2

H1 + C
(‖∇v‖2

L2 + ‖∇σ‖2
L2

)
,

N2 � Ca‖∇τ‖L2‖∇σ‖L2 � a2 + C‖∇σ‖2
L2 ,

N3 � Cb‖τ‖L3‖∇τ‖L6‖∇σ‖L2 � b2 + C‖∇σ‖2
L2 ,

N4 � C‖∇σ‖2
L2‖∇u‖L∞ + C‖σ‖L6‖∇2u‖L3‖∇σ‖L2

+ C‖∇σ‖L2‖∇v‖L6‖∇τ̃‖L3 + C‖∇σ‖L2‖∇2v‖L2‖τ̃‖L∞

� C‖∇2u‖H1‖∇σ‖2
L2 + C‖∇2v‖L2‖∇σ‖L2

� 1
4
‖∇v‖2

H1 + C‖∇σ‖2
L2 + C‖∇2u‖H1‖∇σ‖2

L2 ,

N5 � C‖∇u‖L∞
(‖∇v‖2

L2 + ‖∇σ‖2
L2

)
� C‖∇2u‖H1

(‖∇v‖2
L2 + ‖∇σ‖2

L2

)
.

Hence, the above estimates yield

d
dt

(‖∇v‖2
L2 + ‖∇σ‖2

L2

)
+ ‖∇2v‖2

L2

� 1
2
‖∇v‖2

H1 +
(
a2 + b2

)
+ C

(‖∇v‖2
L2 + ‖∇σ‖2

L2

)
+ C‖∇2u‖H1

(‖∇v‖2
L2 + ‖∇σ‖2

L2

)
. (4.7)

Together (4.6) with (4.7), this implies that

d
dt

(‖v‖2
H1 + ‖σ‖2

H1

)
+

1
2
‖∇v‖2

H1

�
(
a2 + b2

)
+ C

(
1 + ‖∇2u‖H1

) (‖v‖2
H1 + ‖σ‖2

H1

)
.

As we have∫ t

0

‖∇2u(s)‖H1 ds

� C

(∫ t

0

(1 + s)2‖∇2u(s)‖2
H1 ds

)1/2 (∫ t

0

(1 + s)−2 ds

)1/2

� CE(0),

then Gronwall’s lemma thus leads to

‖(v, σ)(t)‖2
H1 � C

(
a2 + b2

)
t eC(t+1), ∀ t � 0, (4.8)

for some positive constant C, independent of t, a and b. This completes the proof
of theorem 1.8. �
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