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Abstract

Through-wall imaging is capable of detecting various living and non-living things behind the
wall. The characteristics of the wall under the investigation, amount of clutter and noise
govern the quality and reliability of the image as well as the detection ability of the targets
using through the wall imaging system. The characteristics of the wall are not known prior,
in the literature only the intensity profile is investigated for the unknown wall characteristics
using a single dielectric target and the effect of the wall characteristics on the contrast imaging
and impact on time or frequency domain features are not investigated. The target with less
dielectric is having less reflectivity; hence its detection in the presence of a high reflective tar-
get and a noisy environment becomes difficult. In this paper, to enhance the detection ability
of the imaging system attenuation constant (α) of the wall is estimated with the proposed wall
parameter estimation methods and used as a normalizing factor. To achieve effective beam-
forming different weighting strategies are developed and the obtained images are compared
with the traditional beamforming. Furthermore, a novel approach to finding the effective
rank in the low-rank estimation using a statistical model and multi-objective genetic algorithm
is proposed for de-noising.

Introduction

In civilian and military applications, through-wall imaging (TWI) is the popular technology in
rescue missions and target detection behind the wall. In locating and detecting the target, char-
acteristics of the wall such as thickness and dielectric constant play an important role [1].
Incorrect estimation of the wall characteristics can smear and blur the image quality and
also shift the target position. There are several studies available in the literature where the char-
acteristics of the wall are known in advance [2–4], but in real-time scenarios characteristics of
the wall are not known and hence autofocusing techniques become important to improve the
image quality. Autofocusing for TWI application using various methods is proposed in [2–9],
but these techniques do not estimate the wall parameters and hence, do not compensate for the
attenuation factor for the wall. To our knowledge many studies are performed with the same
dielectric constant target and the effect of the presence of contrast targets in microwave
imaging is missed out. To improve the intensity profile and to reduce the spreading of the
target in the image, standardized moments are used in [1], unlike this paper here standardized
moments are used to determine the parameters of the wall such as thickness and permittivity.
Once the parameters of the wall are estimated then attenuation due to the wall can be calcu-
lated and compensated. The image pixel value depends upon the complex composite signal
received from the target and neighboring scene and it consists of focusing delay, intensity pro-
file, and weights assigned to each pixel. To our knowledge very little work is available in the
literature on the contrast target imaging and decisions making of these weighing strategies,
hence weighing strategies based on the swath of the antenna is proposed in this paper.

TWI data are generally corrupted by the clutter and noise; to remove system inherent noise
external calibration and some pre-processing steps are required [3]. In this paper, to improve
the contrast target detection hybrid technique is proposed based on opt-shrink and wavelet
thresholding. Peak signal to noise ratio (PSNR) can be increased by the proper separation
between signal and noise, to recover signal matrix (X) from the noisy data matrix (Y) low-rank
approximation is a popular technique among signal and image processing researchers [10]. In
singular value decomposition (SVD), received signal (Y) is represented by separate right and
left singular matrixes as, Y = USVT = ∑min (m,n)

i=1 liuivTi , and λi the numbers of singular values
(SVs) are truncated by hard thresholding or soft thresholding. In a hard thresholding number
of SVs can be chosen by cross-validation but this approach is not reliable [11, 12]. In [13] it is
mentioned that in the case of TWI first eigenvalue from SVD corresponds to the wall and only
the second eigenvalue corresponds to the target. In [14] authors show that apart from the
second eigenvalue the target subspace is spread over all the eigenvalues in the noise subspace;
hence another efficient approach is required to exploit the signal from the noise. Opt-Shrink
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algorithm is proposed in [15] to approximate the SVs optimally
by weighing the singular vector from the measurement matrix
(S), this algorithm estimates the weights optimally in the form
of shrinkage and thresholding. Two threshold methods are dis-
cussed in the literature namely soft threshold also called shrinkage
function Ts(x) = sgn(x) × max(|x|− T, 0) and hard threshold
i.e. Th(x) = x × 1{|x| > T} otherwise Th(x) = 0. Soft threshold
shrinks SVs using the function l

_

i = li(1− t/li)+, where i is
the variable for each threshold value. Candès et al. [14] have pro-
posed a soft threshold τ > 0 by Stein’s unbiased risk estimate
(SURE). Dong et al. [16] extended the work done by Candès
et al. using the principle of wavelet Bayes-Shrink, which estimates
SVs based on local signal and overall noise variance. Xie et al. [17]
proposed that noise energy is distributed over all eigenvalues;
hence the relative significance of the SV in SVD is needed to be
estimated for effective de-noising.

In our proposed approach, the relative significance of SVs with
wall parameters is established to recover images better in terms of
PSNR using a multi-objective genetic algorithm (GA). To
improve the intensity profile proper threshold for the microwave
image is required. In [18] parameter “n” is defined in the function
l
_

i = li(1− tn/lni )+ to choose between the hard and soft thresh-
old, if “n” is ∞ then hard thresholding is selected and if it is 1
then soft thresholding is selected. A data-driven soft threshold
for image de-noising is proposed in [19], the framework for the
proposed threshold is Bayesian and it works on wavelet coeffi-
cients which are normally distributed (μ = 0, σ = 1). In the
above framework, the threshold is in closed form and also adap-
tive since it depends upon the data-driven estimates of the
parameter.

The objectives of this work are to determine the characteristics
of the wall under investigation and to detect the contrast target
behind the wall by removing the noise in the low-contrast part of
the image. The novelty of the work is (a) the parameters for the
wall under investigation are estimated using higher-order standar-
dized moments and estimation is improved further using GA. The
different weights based on the swath of the antenna and the dis-
tance of the target from the transceiver are proposed to improve
the quality and reliability of the image. (b) The hybrid technique
based on Opt-Shrink and Bayes-Shrink algorithms is developed to
reduce weak noise-like patterns in low-contrast parts of the
image. The limitation of this work is that the study for the charac-
terization of the wall is carried out for the homogenous wall if the
wall is inhomogenous computational complexity can be more.

This paper is organized as follows: Section “TWI experimental
setup and pre-processing” illustrates the TWI imaging setup used

in the experimental work and reviews de-noising related work
available in the literature. Section “Proposed wall characterization
and focusing weights assignment” demonstrates the wall
parameters estimation and the effect of the different weights
applied in TWI beamforming. Section “Proposed technique for
wall parameter estimation and image de-noising” describes the
proposed hybrid technique for wall removal and de-noising
using data-driven Bayes-Shrink in the wavelet domain. Section
“Conclusion” concludes the work.

TWI experimental setup and pre-processing

In our experimental work, raw data are acquired by scanning the
whole wall, TWI setup for which is shown in Fig. 1. It consists of a
single antenna and transceiver; the technique used is stepped fre-
quency continuous wave (SFCW). The raw data are collected for
the targets of different dielectrics such as metal (ε =∞), wood
(ε = 2.9), and Teflon (ε = 2.1) behind the wall at different dis-
tances. The transceiver is used to generate 201 numbers of points
in the frequency range 1–3 GHz and the reflection coefficient S11
is measured.

The combinations and arrangement of the targets behind the
wall are described in Table 1 and the transceiver system para-
meters are given in Table 2.

The antenna system is moved in the horizontal direction to
scan the whole wall. “L” locations xak (k = 1…L) are chosen at
equal distances of S = 5 cm; the imaging geometry for TWI is
shown in Fig. 2. Consider an antenna is placed at L positions
{xak = (xak, ( yoff + d))}, where k varies from 1 to L and yoff is the
standoff distance between the antenna and a uniform wall of
the thickness (d) and dielectric constant (εr) located in the x–y
plane.

In our experimental work, the bandwidth used for imaging is
2 GHz; at this bandwidth, the pixel size in the cross-range is
x = 2.5 cm and down-range is y = 3.75 cm, interested readers
may refer [20] for more details about cross-range and down-range
resolution. The imaging region lies along the positive y-axis and
can be divided into M*N pixels behind the wall as shown in
Fig. 3, along with cross-range and down-range. The wideband sig-
nal s(t) is assumed and wideband delay and sum beamforming
(DSBF) [21] is used for generating the image from the raw
data; this involves electronically focusing the beams across all
pixels of the scene. Each transmitter transmits a pulse s(t) with
relative time delays so that all pulses transmitted reach a particular
location simultaneously; for example, the qth pixel located at
xq = (xi, yj) with i varying from 1 to M and j varying from 1 to N.

Fig. 1. TWI setup and geometry.

International Journal of Microwave and Wireless Technologies 425

https://doi.org/10.1017/S1759078722000733 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078722000733


Table 1. Different combinations and arrangements for the targets behind the wall

Sr. no. Number of targets Type

The distance of the
targets from the

antenna mouth (m) Target size/thickness
Photographs for
the actual targets

1 1 Metal 2.3 17.5 cm × 14.5 cm/1 cm

2 1 Wood 1.5 Thick wood: 50 cm × 30 cm/2 cm

3 1 Teflon 1.5 50 cm × 40 cm/1 cm

4 2 Metal–metal 3 17.5 cm × 14.5 cm/1 cm

5 2 Metal–Teflon 2.3 and 3 17.5 cm × 14.5 cm/1 cm

6 2 Metal–wood 1.73 17.5 cm × 14.5 cm/1 cm;
wood: 50 cm × 30 cm/2 cm

7 2 Metal–wood 2.3 and 1.5 17.5 cm × 14.5 cm/1 cm;
wood: 50 cm × 30 cm/2 cm

8 2 Metal–Teflon 2.3 17.5 cm × 14.5 cm/1 cm;
50 cm × 40 cm/1 cm

(Continued )
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These focusing delays are applied on transmission and recep-
tion and adjusted to sweep the beams across all voxels in the
image. To control the shape and side-lobe structure of the
beams, additional weights further described in the Section
“Proposed wall characterization and focusing weights assignment”
can be applied.

A single point target located at position xq = (xi, yj), the output
of the delay-and-sum beam-former corresponding to the qth

voxel at xq is given in [21–23]:

zq(t) =
∑L
k=1

wka(xp)e
−a(2∗ lkq,wall)s(t − tk,p + tk,q) (1)

where a(xp) is the target reflectivity and wk is the weights applied
on transmit and receive antenna (both are same). α is the attenu-
ation constant of the wall, lkq, wall is the distance traveled by the
wave inside the wall on transmission and reception. τk,p is the
propagation delay encountered by the signal as it propagates
from the kth transmitter to the target and back to the kth receiver,
and τk,q is the aggregate focusing delay applied to the kth trans-
mitter and the output of the kth receiver. The propagation
delay and focusing delay is calculated for i = p and for i = q
respectively:

tk,i = 2∗lki,air,1
c

+ 2∗lki,wall
v

+ 2∗lki,air,2
c

(2)

where v = c/
���
1r

√
, i = p for the target and i = q for the qth pixel, c is

the velocity of light in free space, and the subscripts “air,1” “wall,”
“air,2” denote the distances before, through, and beyond the wall
respectively to xq for i = q and xp for i = p. The complex amplitude
image value I(xq) corresponding to the qth pixel is then computed
by applying a matched filter to zq(t), matched to s(t), and

Fig. 2. 2-D geometry for TWI scenario.

Table 1. (Continued.)

Sr. no. Number of targets Type

The distance of the
targets from the

antenna mouth (m) Target size/thickness
Photographs for
the actual targets

9 2 Metal–Teflon 2.3 and 1 17.5 cm × 14.5 cm/1 cm;
50 cm × 40 cm/1 cm

Table 2. Transceiver system parameters

Sr. no. Parameters Value

1 Radar type SFCW

2 Frequency range 1–3 GHz

3 Transmitted power 3 dBm

4 Number of frequency points 201

5 Bandwidth 2 GHz

6 Cross-range resolution 15 cm

7 Down-range resolution 7.5 cm

8 Polarization VV

9 Antenna type Horn

10 Gain of antenna 8 dBi

11 Beam-width (E and H) plane 15.92° and 17.02°
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sampling the filtered data, which is given by

I(xq) = zq(t)∗h(t)|t=0 (3)

I(xq) =
∑L
k=1

wk a(xp)e
−a(2∗ lkq,wall)s(t − tk,p + tk,q)

∗h(t)|t=0 (4)

where h(t) = s*(−t) is the impulse response of the matched filter,
the superscript * denotes complex conjugate, and “*” denotes con-
volution operator. To generate the complete image of the scene,
the process, described in equations (1)–(4), is performed for all
P pixels in the region of interest:

I(xq) =
∑L
k=1

∑p
p=1

wk a(xp)e
−a(2∗ lkq,wall)s(t − tk,p + tk,q)

∗h(t)|t=0 (5)

For a scene consisting of P point targets, the complex ampli-
tude pixel value I(xq) can be obtained by the superposition of
the target reflections. The equivalent frequency-domain represen-
tation of the qth voxel value can be expressed as

I(xq) =
∑L
k=1

∑p
p=1

wk · a(xp)e−a(2∗ lkq,wall) 1
2p∫1

−1
|S(v)|2 exp ( jv(t − tk,p + tk,q))

(6)

where, S(ω) is the Fourier transform of the transmitted signal s(t).
The exact knowledge about the dielectric constant and wall thickness
allows us to calculate focusing delays. Further pre- and post-
processing to remove system inherent noise and conversion from
the frequency domain to time domain and from the time domain
to spatial domain is carried out using different steps given in [3].

Calculation for wave propagation distances

First, we have to consider that the wave travels from the kth trans-
mit position xak to the qth voxel positioned at xq. The distances
lkq, air, 1, lkq, wall, and lkq, air, 2 are expressed as derived in [21, 22]:

lkq,air,1 =
yoff

cos(ukq)
(7)

lkq,wall = d
cos(wkq)

(8)

lkq,air,2 =
yj

cos(ukq)
(9)

If wkq is the refraction angle and θkq is the incidence angle, they
are evaluated by solving

n1 sin (umq) = n2 sin (wmq) (10)

If the exact focusing distance is not used, then there is a shift in
the actual position of the target, which causes huge errors in esti-
mating the exact position and size of the targets. This happens
because refraction phenomena occur through the wall. Although
exact calculation requires some computational burden, it cannot
be avoided if accurate results are required.

Autofocusing is a popular technique to eliminate the image
distortion caused by errors in wall parameter estimation. In [1]
different contrast measures are proposed to investigate the quality
and reliability of the TWI image. These contrast measures gener-
ally do not give satisfactory results so higher-order standardized
moments are proposed, both conventional and higher-order stan-
dardized moments are summarized here.

(1) Normalized sum of image intensity:

C1 =
∑Q

q=1 |I(xq)|2∑Q
q=1 |I(xq)|

( )2 (11)

where I(xq) = intensity of qth pixel and Q = total number of pixels
in the image.

(2) Normalized sum of squared intensity:

C2 =
∑Q

q=1 |I(xq)|4∑Q
q=1 |I(xq)|

( )4 (12)

Fig. 3. Formation of imaging grid.
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(3) Negative of image entropy:

C3 =
∑Q
q=1

ss(xq)ln(ss(xq)) (13)

where ss(xq) = |I(xq)|2∑Q

q=1
|I(xq)|

.

(4) Ratio of standard deviation to mean amplitude:

C4 =

����������������������������������������∑Q
q=1 |I(xq)| − (1/Q)

∑Q
q=1 |I(xq)|

[ ]2√
∑Q

q=1 |I(xq)|
(14)

(5) Higher-order metrics:

gn =
∑Q

q=1 (P(xq)− m̂)n

(Q− 1)ŝn (15)

Skew[P] = g3 = gn =
∑Q

q=1 (P(xq)− m̂)3

(Q− 1)ŝ3 (16)

Kurt[P] = g4 − 3 =
∑Q

q=1 (P(xq)− m̂)4

(Q− 1)ŝ4 − 3 (17)

where γ denotes the higher order metrics, σ is the standard devi-
ation, and μ is the mean, while m̂ is the estimated mean. In this
paper, unlike [1] we have used the above measures to estimate
the thickness and dielectric constant of the wall when the
either-or parameter is considered [24]. In the category of higher-
order metrics, Kurtosis is the fourth-order moment and gives
greater details about the probability distribution of the data
hence it is considered in the estimation for wall parameters.

The raw image is obtained by DSBF; generally, this image is
corrupted by clutter and noise, due to this clutter and noise detec-
tion of weak targets such as Teflon or wood in the presence of
strong target such as metal becomes difficult. The major clutter
contribution in the TWI image is from the wall, clutter removal
techniques based on eigenvalue decomposition such as SVD is
the popular technique. SVD truncates the SVs by hard threshold-
ing; authors in [20] show that SVD cannot detect weak targets
when eigenvalue truncates with hard thresholding; hence in this
paper a hybrid technique based on Opt-Shrink and data-driven
adaptive thresholding is proposed.

Opt-Shrink shrinkage and thresholding algorithm

Opt-Shrink algorithm has been introduced recently in [15] to
truncate eigenvalues from the noisy measurement matrix by soft
thresholding; the principle of the random matrix theory is used
in this paper for characterization of a large matrix. The Opt-
Shrink algorithm optimally weights the coefficients obtained for
the large class noise model such as i.i.d. Gaussian noise case.
D-transform is the natural choice in the Opt-Shrink algorithm;
it is an analog form of the log-Fourier transforms which gives a
relation between the distribution of independent and individual

singular matrices. If the pre-processed raw image matrix is R; dif-
ferent steps for the implementation of Opt-Shrink algorithm are
as follows:

(1) Estimate the effective rank for low-rank signal matrix
(2) Compute SVD for R by R̂ = ∑q

i=1 l̂iûiv̂
T
i

(3) Compute
∑

r̂ = diag(l̂r+1 . . . l̂q) [ R(n−r̂)×(m−r̂)

(4) Compute D-transform for D̂(l̂i,
∑

r̂ ) and D̂′(l̂i,
∑

r̂ )

D̂(z, x) = 1/nTr(z(z2I − xxH)
−1
) · 1/mTr(z(z2I − xHx)

−1
)

D̂′(z, x)= 1/nTr((z(z2I− xxH)
−1
).1/mTr(−2z(z2I− xHx)

−2
)

+ (z2I− xHx)
−1
)+ 1/mTr (z(z2I− xHx)−1)

· 1/nTr(−2z2(z2I− xxH)−2+ (z2I− xHx)−1

(5) Compute v
opt
i,r̂ = −2 D̂(l̂i,

∑
r̂ )/D̂

′(l̂i,
∑

r̂ )

(6) Evaluate Ŝopt =
∑r̂

i=1 v
opt
i,r̂ ûiv̂

T
i

To estimate the effective rank, a novel approach based on
multi-objective GA optimization is proposed in this paper.
Opt-Shrink algorithm is principally based on SVD in terms of
least squares. As stated in [25] mean square error (MSE) for
these methods is larger than the Bayesian estimator, also these
methods give higher outlier values and generate weak noise-like
patterns in low-contrast areas of the image [10]. To remove
these weak noise patterns effective thresholding is required.

Wavelet-based Bayesian data adaptive thresholding

Consider the received signal at the antenna is
{Sij, i, j = 1 to N}∃N = i2 where i is the integer. If this received
signal is corrupted by i.i.d. Gaussian noise (0, σ2), our goal is to
remove the noise and estimate Ŝij which minimizes MSE:

MSE(Ŝ) = 1/N2
∑N
i,j=1

(Ŝij − Sij) (18)

A data-driven Bayesian technique is proposed in [19] to
remove the weak noise from low-contrast areas of the image. In
this paper, wavelet de-noising is carried out for Ŝopt received by
Opt-Shrink after modifying for TWI application. Let G is the
received signal corrupted by noise, S is the original signal, and
€ is the additive noise the boldfaced letters represent matrix
under consideration:

G = S+ € (19)

Let Z =WG, where Z is the wavelet transform output, G is the
wavelet coefficients derived from 2D-orthogonal dyadic wavelet
W; reference [26] may be referred by interested readers for
more details about the dyadic wavelet transform. Wavelet filters
give estimate Ẑ for each coefficient Z, this estimate for the
de-noised wavelet transform output is obtained by Ŝ = W−1X
where W−1 is the inverse wavelet transform and X is the input
matrix. Wavelet thresholding keeps low-resolution coefficients
intact while removing noise from the detail coefficients. This is
the main reason to remove weak noise from low-contrast areas

International Journal of Microwave and Wireless Technologies 429

https://doi.org/10.1017/S1759078722000733 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078722000733


wavelet de-noising is selected, which can be helpful in the detec-
tion of low-dielectric and contrast targets in TWI successfully.

Proposed wall characterization and focusing weights
assignment

The raw data are collected for materials having different dielectric
constants such as Teflon, wood, and metal at different distances
from the wall having 2n− 1 = 7 combinations where n is the num-
ber of targets, using our TWI system. Raw images developed using
the DSBF algorithm for Teflon, metal, and contrast targets such as
wood and metal are shown in Figs 4(a), 4(b), and 4(c), respect-
ively, for illustrative purposes; it can be seen from the raw
image that the edge details are completely lost and actual length
of the target cannot be identified hence post-processing is neces-
sary to improve the image quality and is described further.

Wall effect minimization

Accurate wall attenuation is always difficult to predict without
effective modeling due to a broad variety of building materials.
Properties for the wall depend upon the architectural need,
the electromagnetic properties such as complex propagation con-
stant (γ), the transmission coefficient (T ), and reflection coeffi-
cient (Γ) show large variation with different building materials.
Electrical characteristics (μ, ε, σ) show varied and random

effects with the variation of building material hence becomes
very difficult to predict. Complex propagation constant
g = �����������������

m0mr(1− js/v
√

) = a+ jb where α is the attenuation
constant (Np/m), β = phase shift (rad/m), σ is the conductivity;
σ =∞ for a perfect conductor and σ = 0 for a perfect dielectric.
Most of the time building materials are lossy and having finite
ε and σ. The ratio of two (ε/σ) called relaxation time (τ′) and if
σ≫ ωε or if ωτ≪ 1 then the material is a good conductor. In
the case of lossless material, there will only be phase shift while
for lossy material amplitude accompanies by the phase shift. In
this paper, we concentrate on the attenuation constant (α) as it
impacts intensity profile of the image majorly and velocity correc-
tion is done using estimated permittivity value for the wall.

In [24], the attenuation of different types of concrete and brick
walls is estimated in the frequency range 1–5 GHz. In equation (5)
there is a term e−a(2∗ lkq,wall) related to attenuation due to wall and to
nullify the effect of this factor we have to multiply I(xq) with
ea(2

∗ lkq,wall). The attenuation corrected image amplitude is given
by final imaging equation:

I(xq) = I′(xq). ea(2
∗ lkq,wall)I′(xq)

=
∑L
k=1

∑p
p=1

wk · a(xp) 1
2p

∫1
−1

|S(v)|2 exp ( jv(t − tk,p + tk,q))

(20)

Fig. 4. Raw images using DSBF: (a) target ID 03: Teflon, (b) target ID 01: metal, and (c) target ID 7: metal and wood.
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Correct estimation of the wall characteristic is important to
determine the attenuation constant (α) and to develop a quality
image using the TWI system. When various contrast measures
mentioned in the Section “TWI experimental setup and
pre-processing” are calculated for metal target and Teflon target
different relations are obtained between the actual value and
estimated value defined as estimation error (Er) for the dielectric
constant and thickness of the wall. First, we consider the thickness
of the wall is known i.e. (d = 14 cm) which is a normal brick wall
used in the experimental work. The relations obtained for the
dielectric constant of the wall are shown in Figs 5 and 6, the con-
trast measures attained minimum or maximum value within some
range depending on the type and number of targets.

The corresponding value of the dielectric constant further
considered for estimating the thickness of the wall. In this case,
the contrast measures attained either minimum or maximum
value in the range 12–15 cm and this can be observed in Figs 7
and 8.

It can be observed in Figs 5–8 that the estimation error (Er) for
kurtosis at different values of wall thickness and dielectric con-
stant attained some minimum or maximum value at different
wall parameters depending upon the reflectivity of the target
placed behind the wall.

The intensity profile is responsible for the variation in the
error values as shown in Fig. 9. The attenuation factor for the
wall is estimated after estimating the wall parameters by observing
Figs 5–8. The estimation error governs the PSNR for the devel-
oped microwave image. To improve the wall parameter prediction,
we further investigate the effect of the above estimation error on
the received PSNR values with different combinations for the
dielectric constant and thickness of the wall. PSNR is defined as

PSNR =10 log10(1/MSE)

MSE =1/M∗N(im− îm)2
(21)

Fig. 5. Variation of contrast measures with a dielectric
constant for metal target.

Fig. 6. Variation of contrast measures with a dielectric
constant for Teflon target.

Fig. 7. Variation of contrast measures with wall thick-
ness for metal target.
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where im = raw image, îm = estimated image, M is the number of
horizontal scanning points, and N is the number of vertical scan-
ning points.

It can be observed in Table 3 that PSNR = 15.5694 is optimum
for the contrast target at wall dielectric (εr = 5.3) and thickness
(d = 13.5 cm). The attenuation constant (α) for the wall parameter
values is 0.54695 from [24]. This value of α can be put in equation
(20) to compensate for the attenuation due to the wall, processed
images after amplitude attenuation correction are shown in
Fig. 10.

Application of weights (wk)

Earlier in the section, Fig. 4 shows raw images developed by scan-
ning the whole wall using M number of horizontal and N number
of vertical points hence 2D data of dimension MN is obtained.
Raw images developed using all MN data produce smooth
edges, image saturation, and consume a lot of time for the data
collection. To reduce the computation time as well as to produce
an image with a minimum error weighing system is proposed. To

overcome the effect of unnecessary rounding effect instead of
assigning uniform weights wk = 1, we assign weights based on
the swath of the antenna which is calculated by the following
equation and performance is compared using parameters like tar-
get size, shape, and PSNR:

Dswath = 2∗[yoff · tan(ukq)+ Dwall · tan(wkq)+ yjtan(ukq)] (22)

where yoff = distance of antenna from wall, Dwall = the thickness
of wall, yj = distance of pixel for which weight needs to be

Fig. 8. Variation of contrast measures with wall thickness for Teflon target.

Fig. 9. Intensity profile for different targets behind the wall.

Table 3. PSNR values when the thickness of the wall (d ) or dielectric constant
(εr) of the wall is known

When the thickness of the wall is known (d = 14 cm)

Wall dielectric (εr) PSNR (dB) of the image

4.7 15.254

4.9 15.3505

5.1 15.4737

5.3 15.5694

5.5 16.8033

5.7 15.514

5.9 15.5798

When the dielectric constant of the wall is known (εr = 5.3)

Wall thickness (d ) PSNR (dB) of the image

12 15.6653

12.5 15.3955

13 15.4453

13.5 15.5694

14 15.4675

14.5 15.4954

15 15.7197
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estimated, θkq = incidence angle = beam-width/2, wkq = refraction
angle through wall where, θkq and wkq are related by Snell’s law:

����
1air

√ ∗ sin (ukq) = �����
1wall

√ ∗ sin (wkq)

Figure 11 shows the assignment of the weights for each pixel
coming within the swath of the antenna; weights for each pixel
can be governed by the following relations.

(i) Linear weights: In this scheme, when we are calculating the
intensity corresponding to an image pixel, we give maximum
weight to the nearest antenna present in front of the pixel
and linearly decrease weights to the antennas further away
from the pixel in all directions. It means we keep on decreas-
ing the weights as we take readings from the antenna above
and below the pixel as well as toward the right or left of the
pixel.

For the computation of these weights, we assign linear values
to only those antenna positions which are within the swath. So
now, if there are Nt antennas with wk = 1, then

wt(i) = 1− |mid − i| · p
mid − 1

(23)

where mid = (Nt + 1)/2; p = slope parameter to decide the extent
of variation, it is calculated using the Pythagorean theorem,
where the vertical distance is the d (target distance from the
antenna) and the horizontal distance is S = 5 cm (antenna move-
ment for scanning) hence the run: d2 + S2 = slope length2.

(ii) Gaussian weights: In this scheme, the distribution of the
weights is done like the above-described procedure but
instead of linearly decreasing the weights, they are decreased
according to the Gaussian distribution i.e. in addition to find-
ing the swath and the exact number of antennas lying within
the swath, we give more weight to the antenna closest to the
desired pixel and less weight to the farthest (according to
Gaussian distribution). A simple Gaussian distribution is

Fig. 10. Processed TWI raw images for (a) target ID 3: Teflon and (b) target ID 1: metal
after wall amplitude attenuation correction.

Fig. 11. Weight assignment strategy.
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given by

f (x|m, s2) = 1������
2ps2

√ e−(x−m)2/2s2

wt(xi) = f (x)|x=xi

(24)

where i varies from 1 to Nt scanning antenna locations.

(iii) Euclidean weights: In this scheme, the weight distribution is
done by considering a straight-line distance between the two
points in Euclidean space. If the antenna is placed at location
xk(x, y) = xk(xi, yj) and desired pixel is at location q = xq(xj, yj)
in Fig. 12 then the Euclidean distance between location p and
q is given by the shortest distance between the two points and
maximum weight is assigned to the minimum Euclidean

distance among the number of points present in the pixel:

d( p, q) = d(q, p) =
���������������∑Nt

i=1

(qi − pi)
2

√√√√ (25)

Table 4 gives a comparison between the different PSNR values
obtained after applying focusing delay, corrected attenuation coef-
ficient, and different weights. We can infer that the images by
applying linear weights are better in terms of PSNR.

It can be seen in Figs 13(a) and 13(c) that even though the
intensity and resolution of the targets are improved compared
to raw images apart from the target, weak noise, and strong reflec-
tions due to the wall are also present. To remove the wall clutter
and weak noise-like pattern novel hybrid technique is proposed in
the next section.

Proposed technique for wall parameter estimation and
image de-noising

In this section, hybrid technique using the Opt-Shrink algorithm
modified for the TWI application and data-driven Bayes shrink
algorithm is proposed. Opt-Shrink algorithm gives optimal
weights for the coefficients from the large class of noise models
so Opt-Shrink algorithm is a good choice for de-noising of the
TWI images. Implementing the steps for the conventional
Opt-Shrink algorithm is described in the Section “TWI experi-
mental setup and pre-processing” and the processed TWI images
with the conventional algorithm are shown in Fig. 14.

Fig. 12. Geometry for different weighting strategies: (a) linear, (b) Gaussian, and (c) Euclidean.

Table 4. PSNR values in different scenarios

Sr.
no. Condition to develop TWI image

PSNR
(dB)

1 Raw image 18.05

2 Focusing delay and attenuation coefficient
corrected image (uniform weights)

21.94

3 Euclidean weights 26.53

4 Linear weights 31.75

5 Gaussian weights 25.58

Fig. 13. TWI images for the target ID 1: metal target with different weights: (a) linear, (b) Gaussian, and (c) Euclidean.
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It can be seen by inspection that the noise is reduced com-
pared to images in Fig. 13 still strong reflections from the wall
are present as well as weak noise is present in the low-contrast
areas of the images. In our earlier work [20] we mentioned that
the first eigenvalue from low-rank approximation corresponds
to the homogenous wall so Opt-Shrink algorithm for TWI can
be modified as follows.

Steps to remove wall clutter and finding the optimum rank

The different steps for the implementation for Opt-shrink
algorithm is given in the Section “Opt-shrink shrinkage and
thresholding algorithm,” where we can modify steps 2 and 6
to remove wall clutter by ignoring the first eigenvalue correspond-
ing to the wall i.e. R̂ = ∑q

i=2 ŝiûiv̂
T
i and evaluate

Ŝopt =
∑r̂

i=2 v
opt
i,r̂ ûiv̂

T
i where r̂ is the effective rank, as mentioned

in [14, 27] target sub-space is not spanned by 1D but by multi-
dimensional sub-space and these sub-spaces split into signal
and noise depending upon the factors like target electrical prop-
erty, target location, target size, and the number of targets in
the scene. In [15] it is recommended that multi-dimensional sub-
space can be estimated from eyeballing the “knee” of the SV plot
or from a random matrix theory-based test. This approach is not

adequate for estimating the effective rank; hence in the next sec-
tion we propose a novel approach using a GA to estimate the
effective rank.

Estimation for effective optimum rank for low-rank signal
matrix and improved wall parameter estimation

In this section, to estimate the effective rank for low-rank estima-
tion we use the fourth moment statistical measure known as
Kurtosis. The effective rank (r̂) is to be determined at maximum
PSNR value for different wall parameters such as thickness and
permittivity. As discussed in the Section “Proposed wall charac-
terization and focusing weights assignment,” these parameters
are decided at minima or maxima for the estimation error.

A GA is a popular choice to find the local minima or maxima
for any function. We will investigate the use of GA to find
the effective rank at maximum PSNR value for the image by
solving the multi-objective function in terms of thickness and
permittivity. To find the optimum effective rank, evaluate

Ŝopt =
∑r̂

i=1 v
opt
i,r̂ ûiv̂

T
i for the corresponding eigenvalue using

Fig. 14. TWI images for (a) target ID 3: Teflon target and (b) target ID 1: metal target using conventional Opt-Shrink algorithm.

Table 5. PSNR values for different values of rank (r̂) at εr = 5.3

Rank (r̂)

Obtained wall thickness (cm) Obtained PSNR (dB)

Metal target Metal target

1 13.63 25.1036

2 13.70 25.1479

3 14.27 25.5001

4 13.34 24.9187

5 13.93 25.2879

6 13.58 25.0705

7 13.18 24.8193

8 14.53 25.0630

9 13.20 24.8334

10 14.59 25.4031

Table 6. PSNR values for different values of rank (r̂) at d = 14 cm

Rank (r̂)

Obtained permittivity Obtained PSNR (db)

Metal target Metal target

1 4.78 19.6622

2 5.18 19.8609

3 5.54 20.1218

4 4.38 19.4706

5 5.67 20.1215

6 4.73 19.6361

7 4.34 19.4539

8 4.70 19.6188

9 5.57 20.0642

10 5.52 20.0387
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SVD. To achieve this following fitness function is defined:

[a, b] = max
r̂ ≥ 1

∑̂r

i=1

vi,r̂ ûiv̂
T
i (26)

i.e. F(r̂) = [ f1(r̂)], 1 ≤ (r̂) ≤ length(vi,r̂) (27)

such that f1(r̂) = 1 i.e.maximum normalized PSNR for

the target image

where vi,r̂ is the diagonal eigenvalue matrix using SVD, this
eigenspace is split into signal and noise; hence effective rank esti-
mation is necessary to improve the PSNR. GA is implemented for
fixed value of b (either thickness or permittivity) and a is
obtained within the bound i.e. for the wall thickness (13–15 cm)
and the permittivity (4–6) as obtained by higher-order

Fig. 15 (a) Relationship between rank and wall characteristics. (b) Plot for estimated rank versus PSNR.

Table 7. Comparison between different rank estimation methods

Sr. no. Rank estimation method
Estimated
rank range

Average PSNR
for contrast
targets (db)

1 Hard thresholding [11] 6 10.05

2 Soft thresholding [12] 5–6 15.94

3 Candès’ method (SURE) [14] 8 20.53

4 Eyeballing [15] 10 16.75

5 Dong method [16] 7 22.58

6 Our method 3–5 24.98

Fig. 16. Flow chart for proposed methodology includ-
ing hybrid technique.
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standardized moments in the Section “Proposed wall character-
ization and focusing weights assignment.” To verify the proposed
method, we measured the wall parameters without placing any
target and found that the simulated value for the wall permittivity
is 5.3419 and thickness is 13.70 which are nearer to the actual
values of the wall used in the experiment.

Table 5 shows the result obtained using GA for the estimation
of low rank when permittivity is considered as a constant in the
case of metal target.

It can be observed in Table 5 that maximum PSNR is obtained
at wall thickness d = 14.27 cm which is approximately the same as
obtained in the Section “Wall effect minimization.” Furthermore,
we verify permittivity value for the wall by considering the wall
thickness as constant and found it also the same as shown in
Table 6.

At these parameter values, the effective rank can be deter-
mined and the same procedure can be repeated for Teflon and
contrast targets. The estimated effective rank bound for the targets
under investigation is shown in Fig. 15(a). It can be observed that
it is in the range 3–5 and individual evaluated value is put for Ŝopt
in step 6 of the Section “Steps to remove wall clutter and finding
the optimum rank.” The plot for the different rank estimation
methods for detecting the contrast targets in our experimental
work at maximum PSNR is shown in Fig. 15(b). It is observed
that PSNR is decreasing after the 10th eigenvalue in all cases.
The comparison between the different methods for rank estima-
tion available in the literature and our method is illustrated in
Table 7.

Removal of the weak noise pattern and artifacts

After computing the Ŝopt by using the above approach mentioned
in the Sections “Steps to remove wall clutter and finding the opti-
mum rank” and “Estimation for effective optimum rank for low-
rank signal matrix and improved wall parameter estimation,” the
next task is to remove the artifacts due to large MSE. After critic-
ally analyzing available filtering techniques in literature [28], we
choose Daubechies wavelet filter bank which gives the orthogonal
multi-resolution analysis in terms of low-pass and high-pass filter
coefficients. The detail and approximate coefficients for the opti-
mum eigenvalues then can find out using multilevel 2D wavelet
decomposition. As mentioned in the Section “TWI experimental
setup and pre-processing” wavelet thresholding keep low-
resolution coefficient intact while filtering detail wavelet coeffi-
cients. We use wavelet Bayesian thresholding [19] modified as
data-driven Bayesian thresholding for estimating the low-
resolution coefficients. The data-driven parameters such as stand-
ard deviation and noise variance can be estimated as follows.

Estimating the data parameters
In this subsection, we will describe the method for effective
thresholding of the image. If we consider the noise is i.i.d.
Gaussian then observation model is represented as Y = X +V,
with X and V are independent. To estimate the σx i.e. standard
deviation, noise variance σ2 determined first from the detail wave-
let coefficient of the high-pass filter at level 1 of the filter bank

Fig. 17. Final TWI images: (a) target ID 3: Teflon target, (b) target ID 1: metal target, (c) target ID 7: metal and wood target, and (d) target ID 2: wood target using
the proposed hybrid technique.
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using robust median estimator [29, 30]:

s_ = median(Yij)

0.6745
Yij [ subband HH1 (28)

s2
Y = s2

X + s2 (29)

s2
Y is the variance of Y having zero mean hence:

s2
Y = 1

n2
∑n
i,j=1

Y2
ij (30)

n × n is the size of sub-band then

Th(sX) = s2/s2
Y (31)

where

sX =
�������������������
max (s2

Y − s2, 0)
√

(32)

If σ2 > s2
Y then Th(σX) = 0, otherwise max(|Yij|).

The flow chart for the overall methodology along with the pro-
posed hybrid technique is shown in Fig. 16. After implementing the
procedure described for wall characterization and weighting in
the Section “TWI experimental setup and pre-processing” and
de-noising procedure in the Sections “Steps to remove wall clutter
and finding the optimum rank,” “Estimation for effective optimum
rank for low-rank signal matrix and improved wall parameter esti-
mation,” and “Removal of the weak noise pattern and artifacts,” the
final images obtained using the TWI system are shown in Fig. 17.

Conclusion

Through the wall imaging is becoming a popular technology in
military and civilian applications. In real-time scenario character-
istics of the wall are not known “a priori.” The characteristics of
the wall used in the experimental work are estimated and verified
with the thickness of the wall having characteristics d = 14 cm and
εr = 5.3. The thickness of the wall obtained in the simulated result
is d = 13.5 cm hence the error is less than 4% using higher-order
standardized moments. The method we proposed to estimate dif-
ferent characteristics of the wall can be generalized for any type of
wall. We observed an improvement in the image quality com-
pared to a raw image when the estimated attenuation coefficient
and linear weights are incorporated in the imaging process.

To remove the wall reflection from the image conventional,
Opt-Shrink algorithm is modified for TWI application and wall clut-
ter is removed successfully. To improve the PSNR of the developed
microwave image noise space in the eigenvalue decomposition must
be exploited effectively, this effective rank in Opt-Shrink algorithm is
estimated using multi-objective GA. The hybrid technique based on
Opt-Shrink and data-driven Bayesian thresholding is implemented
which will be able to detect low-dielectric (low contrast) and high-
dielectric (high contrast) targets successfully.
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