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Abstract

Predicting the onset of shear localization is among the most challenging problems in machin-
ing. This phenomenon affects the process outputs, such as machining forces, surface quality,
and machined part tolerances. To predict this phenomenon, analytical, experimental, and
numerical methods (especially finite element analysis) are widely used. However, the limita-
tions of each method hinder their industrial applications, demanding a reliable and time-sav-
ing approach to predict shear localization onset. Additionally, since this phenomenon largely
depends on the type and parameters of the constitutive material model, any change in these
parameters requires a new set of simulations, which puts further restrictions on the applica-
tion of finite element modeling. This study aims to overcome the computational efficiency of
the finite element method to predict the onset of shear localization when machining Ti6Al4V
using machine learning methods. The obtained results demonstrate that the FCM (fuzzy c-
means) clustering ANFIS (adaptive network-based fuzzy inference system) has given better
results in both training and testing when it is compared to the ANN (artificial neural network)
architecture with an R2 of 0.9981. Regarding this, the FCM-ANFIS is a good candidate to cal-
culate the critical cutting speed. To the best of the authors’ knowledge, this is the first study in
the literature that uses a machine learning tool to predict shear localization.

Introduction

Ti6Al4V, which is known as the workhorse of the titanium industry (Leyens and Peters, 2003),
is the material of choice for many applications such as biomedical, aerospace, and aeronautics,
thanks to its excellent mechanical and chemical properties such as biocompatibility, high spe-
cific strength, high corrosion resistance, better fracture toughness, and fatigue behaviors
(Vanderhasten et al., 2007). Although these properties make the Ti6A14V a candidate material
for widespread applications, manufacturing parts from this alloy, especially when machining is
used, is quite challenging. Problems such as sticking to the cutting tool due to high chemical
reactivity (Umbrello, 2008; Oliaei and Karpat, 2017a), increased tool/workpiece, tool/chip
interface temperature due to low thermal conductivity and heat dissipation capacity, which
results in accelerated tool wear and short tool life make Ti6Al4V a difficult-to-machine mate-
rial (Hong et al., 1993).

Another challenge of machining titanium alloys is shear localization, resulting in serrated
chip formation. Serrated chip formation is a very important phenomenon that causes fluctua-
tions in the machining forces. These fluctuations, in turn, result in vibrations, tool wear and
deteriorate the surface quality of the machined components. The part tolerance and machining
accuracy are also adversely affected (Komanduri and Hou, 2002). Depending on the type of
material being machined, the earlier theories are based on two different mechanisms for ser-
rated chip formation (Komanduri and Brown, 1981). The first mechanism is introduced as
ductile fracture, based on the overstraining of the material under a compressive stress field.
The second mechanism relies on strain localization because of thermal softening. The latter
has been termed a high-speed ductile fracture (Aifantis, 1987).

In recent studies, two advanced theories describe the shear localization phenomenon.
Thermo-plastic instability (a.k.a. adiabatic shear instability) has been accepted by some
researchers (Komanduri and Brown, 1981; Komanduri and Hou, 2002), while some people
attribute it to the crack formation and propagation within the primary deformation zone
(Aifantis, 1987). The results of a study by Recht (1964) reveal that catastrophic failure occurs
when the decrease in the rate of flow stress of the material due to thermal softening exceeds its
increase due to the work hardening in the primary deformation zone.

Some researchers such as Recht (1964), Semiatin and Rao (1983), Bäker et al. (2002),
Komanduri and Hou (2002), and Wan et al. (2012) support the adiabatic shear band (ASB)
formation, while researchers like Elbestawi et al. (1996), Poulachon and Moisan (1998), and
Vyas and Shaw (1999) support the crack formation and propagation theory. Different
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approaches have been used to study the shear localization phe-
nomenon of cutting titanium alloys. These approaches mainly
rely on analytical solutions, experimental tests, or numerical
methods, especially finite element analysis. When these three
methods are compared, the widespread application of the finite
element method can be observed (Tay et al., 1974; Ceretti et al.,
1999; Komanduri and Hou, 2002; Calamaz et al., 2008;
Umbrello, 2008; Karpat, 2010; Sima and Özel, 2010; Wan et al.,
2012; Ye et al., 2014; Ducobu et al., 2015; Wang and Liu, 2015;
Li et al., 2019). This is mainly due to the superior performance
of the finite element model (FEM) in revealing a better and
more detailed understanding of the physics behind this process.
It is worth to be mentioned that, as the machining process is a
very complex process that includes several physics and nonlinear
behavior, the analytical methods lack revealing pertinent informa-
tion, as they need many simplifications for the problem. The
experimental test is quite time-consuming and costly and very
much depends on the test conditions. Additionally, measuring
parameters such as stress and strain distribution during the cut-
ting process is still very difficult and even impossible.

The studies related to the shear localization available in the lit-
erature have largely focused on the geometry of the chip serration.
Little work are devoted to predicting shear localization onset,
where the chip’s geometry changes from continuous to a shear
localized (serrated) type. This transition depends on the cutting
speed compared to other machining process parameters (Ye
et al., 2014). The cutting speed also significantly affects the peri-
odicity of the chip segmentation, where the nature of the chip
changes from ordered (periodic) to aperiodic disordered (aperio-
dic) when the cutting speed decreases. Semiatin and Rao (1983)
have defined the flow localization parameter (ɑ) to study the
shear localization onset of three different materials of commercial
purity titanium (RC-70), AISI 4340 steel (35 HRC), and AISI
1045 (90 HRB). The parameter is calculated as the ratio of the
normalized flow softening rate to the strain rate sensitivity. For
ɑ values equal to or greater than 5 shear localization is shown
to be evident. Although the authors have mentioned shear locali-
zation in Ti6Al4V titanium alloy, they did not report the shear
localization onset and flow localization parameters for Ti6Al4V.

Considering the profound effect of shear localization on
machining performance, cutting temperature, accelerated tool
wear, plastic localization, and fluctuations in the machining
force, its prediction seems to play a significant role in selecting
the proper combination of machining process parameters and
tool geometry. Although the finite element method is proven
effective in determining the onset of shear localization, finding
the critical cutting speed requires lots of simulations. Because
when using finite element (FE) simulations, one has to start
with a reasonable speed and then reduce it until serrated chips
disappear. This procedure highly increases the computational
time of prediction. Furthermore, the FE simulations largely
depend on the material model parameters, the geometry of the
cutting tool, and the friction at tool/chip and tool/workpiece
interfaces, which means that for any change in one of these
parameters, a new set of experiments are required. This high com-
putational time generally hinders the application of predictive
techniques in the industry. Therefore, the use of a computation-
ally efficient method of predicting shear localization onset
seems to be essential. For instance, Mohammed et al. (2021)
used finite element analysis (FEA) and machine learning to pre-
dict the casing buckling and deformation responses of shale gas
wells. Using artificial intelligence methods is quick, robust, and

accurate when compared with the FEA. Also, Saldaña-Robles
et al. (2020) used both FEA and ANN models to design an agri-
cultural backhoe. They claimed that ANN decreases the number
of numerical case studies and the solution time with satisfactory
results. Ahmad et al. (2022) used FEA and ANN methods to pre-
dict the ultimate response of concrete columns with glass fiber-
reinforced polymers. They also obtained results with a good
agreement of numerical results with the experimental results
and ANN results. Several researchers have been devoted to the
application of machine learning methods in the field of machin-
ing. Examples could be the low-carbon machining process plan-
ning (Chen et al., 2022), prediction of surface roughness in
high-pressure jet-assisted turning (Kramar et al., 2016), modeling
of charge geometry and parameters on the depth of penetration in
explosive cutting (Nariman–Zadeh et al., 2003), optimization of
machining process parameters (Famili, 1994; Pourmostaghimi
et al., 2020), development of support systems for the proper selec-
tion of machine tools and machining process parameters (Rojek,
2017), selection of the proper cutting fluids based on the machin-
ing process such as milling, grinding, honing, and lapping
(Mogush et al., 1988), prediction of the micro-end mill and
micro-drills failure (Sevil and Ozdemir, 2011), and development
of processing resource allocations for smart workshops in cloud
manufacturing and its optimization (Hui et al., 2021). However,
based on the authors’ knowledge, the use of machine-learning
to predict the onset of shear localization has not been reported
in the literature. In light of this, this study attempts to predict
the onset of shear localization by an adaptive network-based
fuzzy inference system (ANFIS). The network inputs are obtained
using a FEM of Yılmaz and Oliaei (2020), which is shown to have
a high level of accuracy in predicting shear localization onset. The
authors have performed FEA simulations for various material
models available in the literature and their results showed that a
modified Johnson-Cook material model proposed by Sima and
Özel (2010) reveals a good agreement with experimental observa-
tions. Therefore, in this study, this material model is selected and
used for all simulations.

Materials and methods

Finite element procedure

The FEM of orthogonal cutting of Ti6Al4V has been considered,
where the workpiece is modeled as an elasto-plastic material. The
cutting tool is modeled as an elastic body made from cemented
tungsten carbide with the properties given in Table 1. The cutting
tool is modeled with a rake angle of 0°, a clearance angle of 7°, and
an edge radius of 25 μm measured by laser scanning microscopy
(LSM). The cutting tool geometry is selected to be the same as the
tool used in the experimental verification of the FEMs of Yılmaz
and Oliaei (2020) with an uncut chip thickness of 0.1 mm. The
procedure to find the critical speed for the onset of shear localiza-
tion starts at relatively higher speeds where chip serration occurs.
Then the speed is reduced gradually until the transition from

Table 1. Properties of the cutting tool material (Mabrouki and Rigal, 2006)

Density
(kg/m3)

Elastic
modulus
(GPa)

Poisson’s
ratio

Thermal
conductivity
(W/m K)

Specific
heat
(J/kg K)

11,900 534 0.22 50 400
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serrated chips to continuous chips occurs. In all FEMs, the same
boundary conditions and element sizes are used to obtain consis-
tent and repeatable results for the same workpiece and cutting
tool dimensions. The workpiece is meshed with 10,000 quadrilat-
eral elements. A mesh window is defined around the edge radius
of the cutting tool to have a fine mesh in the chip-forming area.
The uncut chip thickness is modeled using 20 square elements,
corresponding to an element edge length of 5 μm. Temperature-
dependent material properties such as elastic modulus, thermal
expansion, thermal conductivity, and heat capacity are used for
the workpiece as given in Table 2 (Mabrouki and Rigal, 2006).

The generic boundary conditions of the FEM are shown in
Figure 1. As seen, the cutting tool is fixed in X and Y directions
while the workpiece moves toward the cutting tool with a pre-
scribed velocity equal to the cutting speed. A heat transfer coeffi-
cient of 10,000 (W/m2°C) (Calamaz et al., 2008; Wang and Liu,
2015) is used in all simulations. It is worth mentioning that dif-
ferent heat transfer coefficients are used in the literature to simu-
late orthogonal cutting processes. For instance, Calamaz et al.
(2008) used a value of 20,000 (W/m2°C), Karpat (2010) used a
value of 10,000 (W/m2°C), Sima and Özel (2010) have used
1000 (kW/m2K), while Oliaei and Karpat (2017b) have used
5000 (W/m2°C). This is mainly because the simulation time for
the machining is very short. Consequently, there is not enough
time for heat to diffuse into the cutting tool to obtain a real
temperature distribution (Outeiro et al., 2015). Therefore, research-
ers have tried to tune the heat transfer coefficient to obtain reason-
able outputs. Fleischer et al. (2004) and Yen et al. (2004) use the
tuning of the heat transfer coefficient to accelerate the convergence
time.

Friction modeling

Friction in metal cutting at different interfaces has an important
effect on machining process outputs. Coulomb friction is gener-
ally used as the friction model in machining studies. To obtain
the Coulomb friction coefficient, the method explained by Guo
and Chou (2004) is used. In this method, the net cutting force
(Fc

c ) and thrust force (Fc
t ) components are obtained by subtracting

ploughing forces (Fp
c , Fp

t ) from measured forces (Fm
c , F

m
t ). The

components of the plowing forces (Fp
c , Fp

t ) are obtained using
the method of extrapolation to a zero uncut chip thickness. The
Coulomb friction model using net cutting and thrust force com-
ponents is used as follows:

m = Fc
c sin g+ Fc

t cos g
Fc
c cos g− Fc

t sin g
, (1)

where γ is the rake angle of the cutting tool. The average Coulomb
friction coefficient between titanium alloy and tungsten carbide
under dry machining conditions is found as 0.41 by using net
cutting and thrust force components. The results are in close
agreement with the result obtained for titanium/tungsten carbide
pairs under dry sliding conditions using a pin-on-disk method
reported by Niu et al. (2013).

Material model

The constitutive material model is the core of machining simula-
tions using finite element analysis. Two approaches can be used to
model shear localization through finite element modeling. One
method relies on the artificial modification of the material flow
stress at a higher level of strains, while the second approach is
to include a damage model in the simulation. These approaches
have resulted in the development of different material models to
study serrated chip formation. Yılmaz and Oliaei (2020) have
conducted an extensive study to understand the capabilities of
existing material models to predict shear localization onset.
Based on their verified results, the modified material model pro-
posed by Sima and Özel (2010) is shown to reveal the best results.
This material model considers a temperature-dependent over-
arching modifier by choosing a temperature-dependent D and p
parameters as D = 1− (T/Tm)

d, and p = (T/Tm)
b. In this way,

Sima and Özel (2010) are supposed to enhance the softening
behavior of the flow stress at elevated temperatures. Their pro-
posed material model is given in Eq. (2):

s = [A+ B1n] 1+ C ln
1̇

1̇0

[ ]
1− T − Tr

Tm − Tr

( )m[ ]

× D+ (1− D) tanh
1

(1+ p)r

( )[ ]s[ ]
, (2)

where A = 724.7 MPa, B = 683.1 MPa, n = 0.47, m = 1, S = 5, r = 1,
and d = 0.5.

Soft computing methodology

Soft computing transforms linguistic concepts into mathematical
formats for complicated engineering problems. Two main advan-
tages of this approach are solving nonlinear problems, for which
mathematical models are not available, and introducing human
knowledge such as cognition and recognition. Common artificial
intelligence systems are artificial neural networks (ANNs), neuro-
fuzzy systems (ANFIS), fuzzy logic systems, and particle swarm
optimization. In this study, ANN and ANFIS techniques are
used to develop an optimization method. In this part of the
study, the theory behind the artificial intelligence system is dis-
cussed by utilizing ANN and ANFIS algorithms; more results
can be extracted compared to conventional numerical techniques.

Fuzzy c-means clustering
Fuzzy c-means (FCM) is a clustering method that puts data points
into one of the predetermined clusters. The working principle of
FCM is computing the degree of membership function, which
describes how much the data point belongs to a certain cluster.
In this study, ANFIS with FCM clustering is utilized to obtain a
small number of fuzzy rules (Abdulshahed et al., 2015; Altaher
and BaRukab, 2017). In Figure 2, the basic structure of
FCM-based ANFIS is depicted.

The FCM method classifies the n vectors into fuzzy groups and
determines a cluster center for each group such that the objective

Table 2. Temperature-dependent material properties of Ti6Al4V (Mabrouki and Rigal, 2006)

Thermal expansion (1/°C) Thermal conductivity (W/m/K) Heat capacity (N/mm2/°C) Elastic modulus (MPa)

α(T ) = 3 × 10−9T + 7 × 10−6 λ(T ) = 0.015T + 7.7 Cp(T ) = 2.7e
0.0002T E(T ) =−57.7T + 111,672
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function of the dissimilarity measure is reduced (Abdulshahed
et al., 2015). The FCM algorithm’s mathematical process is
given in Figure 3.

Adaptive network-based fuzzy inference system
The ANFIS method was first introduced by Jang in 1993 (Jang
et al., 1997). The ANFIS is a hybrid method that combines fuzzy
logic with a neural network to improve system performance and
predictive power based on the concept of fuzzy set theory, fuzzy
if-then rules, and fuzzy reasoning (Saeed et al., 2013). In ANFIS,
the training is based on the backpropagation method. In the
model training phase, rule parameters and membership functions
are defined. For a system that has three inputs (x, y, and z) and
one output (O), a typical rule set can be defined as follows:

Rule 1: If (x = A1) and (y is B1), then f1 = p1x + q1y + r1, (3)

Rule 2: If (x = A2) and (y is B2), then f2 = p2x + q2y + r2. (4)

In these equations, A1, A2, B1, and B2 are nonlinear, and the
others are linear parameters. In Figure 2, Sugeno model ANFIS
structure is shown, which comprises two inputs, two rules, and

one output. The fuzzy sets are characterized by membership func-
tions. The most common membership functions are triangular,
trapezoidal, Gaussian, generalized bell, and sigmoidal (Pourtousi
et al., 2015). Triangular and trapezoidal MFs (membership func-
tions) are not smooth at the corner points, whereas Gaussian and
bell functions are smooth and concise. The system comprises the
following five layers: fuzzification layer, product layer, normalized
layer, defuzzification layer, and total output layer. The first layer is
the fuzzification layer, and each node is an adaptive node with the
function of (Pourtousi et al., 2015; Gupta et al., 2017):

O1,i = mAi
(x) for i = 1, 2 orO1,i = mBi−2

(y) for i = 3, 4, (5)

where x and y are the input at ith node and mBi−2
is the linguistic

label. O1,i is the membership grade of fuzzy set A.
Product layer: The input of the product layer is incoming sig-

nals from the fuzzification layer and the output of this layer is
given by:

O2,i = wi = mAi
(x)mBi (y), i = 1, 2. (6)

The third layer is the normalized layer that makes normaliza-
tion for the weight functions that come from the product layer.

Figure 1. Representation of boundary conditions of the finite element model.

Figure 2. ANFIS architecture.
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The expression is given in Eq. (7):

O3,i = wi = wi

w1 + w2
, i = 1, 2. (7)

Layer 4 is the defuzzification layer. Every node in this layer is
the adaptive node with a node function:

O4,i = wifi = wi( pix + qiy + ri), (8)

where pi, qi, ri are the consequent parameters. Layer 5 is the total
output layer: In the output layer, there is a fixed node that makes a
summation of the signals given in Eq. (9):

O5,i =
∑
i

wifi =
∑

i wifi∑
i wi

. (9)

Until Layer 4, the forward pass method is used and variables
are recognized by the least-squares error estimation method.
Then, using the backward pass, the error rates propagate back-
ward. Error is calculated using the consequent parameters
obtained in the third layer. The premises parameters, which are
parameters of the first layer, are updated by the gradient descent.
In this problem, 10 inputs related to material properties are used,
and the output is the Vc. To predict the Vc, 80% of the data is
used for training and the remaining 20% is used for testing the
model. To detect the most favorable architecture with high perfor-
mance, the exponential factor and the number of clusters are

optimized in a range of 1.5 < e < 2 and 2 < cluster number < 40,
respectively, as depicted in Table 3. In this parametric study,
199 different cases are tried in the ANFIS phase. After setting
the input parameters in the FCM-ANFIS model, the models are
adjusted using a hybrid learning scheme. Gaussian function is
selected as a membership function as it is smooth and non-zero
at each point (Wang et al., 2006; Abdulshahed et al., 2013). The
R2 and MAPE is calculated for each trial. By varying the simula-
tions, the best predictive model is detected.

ANN method
ANN was introduced by McCulloch and Pitts (Wang et al., 2006)
in 1943 by relating logical operations to nervous activity. ANN is
inspired by the neurons in the brains of living things, which com-
prise a great number of neurons aligning in sequential order.

Figure 3. FCM algorithm steps.

Table 3. Test matrix for ANFIS (adaptive network-based fuzzy inference system)

Exponential factor Number of clusters

Case 1:39 1.5 2,3,4….40

Case 40:79 1.6 2,3,4….40

Case 80:119 1.7 2,3,4….40

Case 120:159 1.8 2,3,4….40

Case 160:199 1.9 2,3,4….40

Case 200:39 2.0 2,3,4….40

Artificial Intelligence for Engineering Design, Analysis, and Manufacturing 5
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Similar to our brains, neurons are connected in an order and they
have a network that enables them to work together in the ANN
structure. ANN, which keeps knowledge with connection weights,
learns by experience and, using previous experiences, generates
new values (Varol et al., 2007). ANN network is shown in
Figure 4 with three inputs and several outputs. The column of
neurons formed is known as layers, where the first layer is the
input layer, and the last layer is the output layer. The layer
between the input and output is known as the hidden layer.
The input variables taken into the input layer are converted to
mathematical functions in the hidden layers. In the output
layer, results are given to the user (Aylı, 2020).

In the FE analysis extensively, the feed-forward backpropaga-
tion (FFBP) algorithm is used. To increase the predictive power
of the ANN architecture, the number of hidden layers and the
training model are two parameters that need to be optimized.
The stated problem has an input layer with ten neurons, the last
layer with one output in the output layer, and the layers between
them are the hidden layers. The first parameter that is optimized
is the number of hidden layers. The hidden layer number is varied
between 1 and 15. Additionally, the effect of the training model on
its performance is another parameter that is under investigation. In
the Matlab user guide (Beale et al., 1992), various training algo-
rithms are suggested for different problems. In this study, three dif-
ferent training models are tried: Levenberg–Marquardt, Bayesian
Regularization, and Scaled Conjugate Gradient, as shown in
Table 4. In total, 47 different ANN architectures are tried to find
the system with the highest accuracy.

Levenberg–Marquardt (LM) algorithm is suitable for problems
in which the network has fewer than 100 weights. However, in a

problem with 30 hidden layer networks, the LM method is not
suitable; the SCG method gives better accuracy levels and is
appropriate for function approximation problems (Varol et al.,
2007). LM algorithm is designed to provide second-order training
speeds without using the Hessian matrix (Gang and Wang, 2013;
Baghirli, 2015).

As Newton’s method has higher accuracy and less computa-
tional cost, the system would like to shift toward the Newton’s
model as quickly as possible. For this purpose, μ is reduced in
each step toward 0, and by this way, the network error function
will always be reduced. In the SCG (Scaled Conjugate Gradient)
model, it produces the fastest convergence while preserving
error minimization. In this method, the step size is varied in
each trial. The step size is determined by minimizing the perfor-
mance function in each direction. Instead of using the Hessian
matrix, the step size is determined by using the searching tech-
nique. The general procedure for determining the new search
direction is to combine the new steepest descent direction with
the previous search direction. The BR (Bayesian Regularization)
method is a developed model of the LM, as this model updates
the weights and bias values according to the LM method. It mini-
mizes a combination of squared errors and weights and then
determines the correct combination. To minimize the objective
function, Hessian matrix calculations take place.

Performance evaluation
Root mean square error (RMSE) and coefficient of determination
(R2) are used to evaluate the prediction ability of the machine
learning techniques. There are defined as follows:

RMSE =
��������������������
1
N

∑N
i=1

Re − Rp

Re

( )2
√√√√ , (10)

R2 = 1−
∑N

i=1 (R
e
i − Rp

i )
2

∑N
i=1 (R

e
i )
2 , (11)

where N is the number of input values. Re denotes the exact value
of the training data, while Rp is the predicted data.

Figure 4. Schematic view of the ANN model (Nsaif,
2019).

Table 4. ANN test case matrix (artificial neural network)

Number of hidden layer Training model

Case 1:15 1,2,3….15 Levenberg–Marquardt

Case 16:31 1,2,3….15 Bayesian Regularization

Case 32:47 1,2,3….15 Scaled Conjugate Gradient
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Results and discussion

Finite element results

A set of finite element simulations are performed to predict the
critical cutting speed for various material model parameters and
frictions at the tool–chip and tool–workpiece interface. Table 5
summarizes the critical cutting speed values obtained under dif-
ferent conditions. For each parameter, five levels are considered.
The original material model parameter given by Sima and Ozel
has been set as the reference value. The other levels are obtained
by considering ±10% and ±20% deviation from the reference
value. The reference value for the friction is used as 0.3. When
all parameters are set at the reference value, a critical cutting
speed of 2.8 m/min is achieved. This value has already been ver-
ified by the experimental results of Yılmaz and Oliaei (2020). This
reference value has been given for each parameter for comparison.

Each parameter of the model has been studied individually, mean-
ing that, for instance, to study parameter “n”, it has been varied in
the desired range, while all other parameters are set at reference
value. In some cases, finding the critical cutting speed for the
onset of shear localization required almost 15 simulations, show-
ing the requirement for fast prediction tools.

In order to obtain the critical cutting speed, several finite ele-
ment simulations are performed, where the simulations start at a
higher speed where serrated chips are forming. Then, the speed
was reduced until chip serration disappeared. The cutting velocity
where the transition from serrated chip to continuous chip is
achieved is recorded as a critical cutting speed. Figure 5 shows
an example of finding the critical cutting speed for n = 0.376.
As can be seen, the simulation is started at a cutting speed of
4 m/min, where a serrated chip has been formed, and then the
speed is gradually reduced. The chip becomes continuous when

Table 5. Critical cutting speed for various parameters

Parameter

Vc (m/min)

Parameter

Vc (m/min)

Parameter

Vc (m/min)A B C

579.6 10.5 546.48 10.5 0.028 1.6

652.23 4.5 614.79 2.9 0.0315 2.65

724.7 2.8 683.1 2.8 0.035 2.8

797.17 0.95 751.41 1.9 0.0385 2.9

869.64 0.45 819.72 4.5 0.042 2.75

Parameter

Vc (m/min)

Parameter

Vc (m/min)

Parameter

Vc (m/min)n m S

0.376 0.65 0.8 2.1 4 4.2

0.423 0.75 0.9 3.3 4.5 3.7

0.47 2.8 1 2.8 5 2.8

0.517 2.4 1.1 2.4 5.5 2.5

0.564 1.75 1.2 1.75 6 7.5

Parameter

Vc (m/min)

Parameter

Vc (m/min)

Parameter

Vc (m/min)r d Friction

0.8 45 0.4 26 0.33 9

0.9 33 0.45 24 0.37 5

1 2.8 0.5 2.8 0.41 2.8

1.1 20 0.55 31 0.45 2.1

1.2 4.2 0.6 34 0.5 0.9

Figure 5. Finding the critical cutting speed for n = 0.376.
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the speed reaches 0.65 m/min. Figure 6 illustrates the effect of the
friction coefficient on the onset of shear localization. It can be
seen that at a constant speed of 2.8 m/min, as the friction coeffi-
cient increases the degree of serration also increases. This can be
attributed to the heat generation at higher frictions, meaning that
as more heat is deposited to the primary deformation zone, ther-
mal softening occurs, and consequently the degree of serration
increases.

Machine learning results

ANN and ANFIS architectures are designed and trained to predict
the cutting speed that the shear localization starts. The input layer

consists of 10 inputs and the output layer contains one target.
In order to determine the optimum number of hidden layers
for three different learning algorithms, the number of hidden
layer is varied between 1 and 15. MRE (mean relative error) is
used as a statistical tool for selecting the best architecture. The
results from Figure 7 shows that when the number of hidden
layer is between 5 and 10 for all of the algorithms MRE decreases
and R2 tends to increase. Up to the number of hidden layer is
equal to 13, MRE values increases for three of the method.
Comparisons between the three graphics shows that the number
of hidden layer trend is similar to each other whether the training
model changes. After 15 hidden layers, MRE increases to the fact
that the model overfits the training data and cannot generalize the

Figure 6. Effect of friction on serrated chip formation.
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rules to new data as well. According to the statistical results, the
Bayesian Regularization training model with a number of a hid-
den layer of 14 gives better results than other architectures.

In Figure 8, the numerical cutting velocity values are compared
with the best architecture (Bayesian Regularization, number of
hidden layer = 14) ANN results. The figure shows that the linear

line fitted to ANN data is close to the numerical data. In other
words, it is seen that, when the number of hidden layers and
the training function is optimized to obtain the best architecture,
the ANN model can predict the cutting velocity with new input
conditions. For the best architecture, R2 and RMSE values are
0.9056 and 0.913, respectively.

Figure 7. Effect of the training model and the number of
hidden layer on ANN performance .

Figure 8. Comparison of ANN and numerical results.
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In order to obtain output with higher accuracy, different multi-
ple ANFIS architectures are tried as it is depicted in Table 3. For
each individual ANFIS architecture, exponential factor and num-
ber of cluster is varied. It is found that the Gaussian MF produced
the best predictions of critical cutting speed. In Figure 9, number
of cluster and exponential factor on prediction performance is
shown as a function of MRE. This figure demonstrates that
increasing the number of cluster decreases the MRE values and
better prediction ability is achieved. For all of the tried models,
convergence has been achieved after 2000 epochs. When the effect
of the number of cluster to the accuracy is investigated, it is seen
that cluster number effect does not have a trend. Therefore, this

parameter should be optimized for each of the problems. For
this problem, the number of cluster is chosen as 40 and exponen-
tial factor is 2.

Figure 10 shows the accuracy of the ANFIS predictions.
Testing results show that for the chosen ANFIS structure, R2 is
0.998 and MRE value is reduced to 0.0064. Therefore, it can be
claimed that ANFIS can reliably recognize the critical cutting
speed that shear localization starts. It is important to notice
that, if the architecture parameters are not optimized for each
problem, the performance of the ANN and ANFIS methods
will be reduced.

In Table 6, ANN and ANFIS prediction performance is com-
pared with each other. The obtained results demonstrate that the
FCM clustering ANFIS has given better results both in training
and testing when it is compared to the ANN architecture
with an R2 of 0.9981. Regarding to this, the FCM-ANFIS is a
good candidate to calculate the critical cutting speed. When the
computational cost is examined, ANN time is less than the
ANFIS and CFD. For 100 epochs, the time difference between
ANN and ANFIS is nearly 98 s. But also, it should be noted
that, although the ANFIS model predicts the critical cutting
speed better and the ANN model when the appropriate MF
type is not chosen, some of the ANN architectures can give better
distribution than ANFIS. Therefore, optimizing the ANN and
ANFIS parameters is crucial to obtain minimum error and
maximum R2 values.

Figure 9. Effect of ANFIS parameters on prediction performance.

Figure 10. Comparison of ANFIS and numerical results.

Table 6. Performance comparison of statistical and artificial approaches

Case number R2 RMSE

ANN 0.9038 0.911

ANFIS 0.9981 0.484
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Conclusions

Several FEMs are used to analyze the effect of friction and mod-
ified Johnson–Cook material model parameters on the critical
speed for the onset of shear localization. Each parameter has
been changed in five levels with ±10% and ±20% deviations
from the reference values. It has been observed that in some sit-
uations finding the onset of shear localization requires up to 15
simulations which are quite time-consuming. Therefore, to reduce
the computational cost, machine learning methods are tried to
predict shear localization with high accuracy in a little time. For
that purpose, ANN and ANFIS architectures are designed and
trained to predict the cutting speed that the shear localization
starts. The main findings can be given as follows:

• The proposed machine learning methods are shown to reveal an
accurate prediction of the onset of shear localization that over-
comes the computational efficiency of the finite element
method.

• There is no distinct rule to develop a machine learning structure
that gives the best and the most accurate results. Therefore, the
effect of the critical parameters on the performance is exam-
ined. For instance, the robustness of the architecture is a func-
tion of the number of hidden layers and training models in the
ANN tool.

• For ANFIS, to increase the prediction ability of the architecture,
exponential factor and number of clusters should be optimized.
For this problem, the number of clusters is chosen as 40 and the
exponential factor is 2.

• The rapid and accurate predictive capabilities of the developed
ANFIS model suggests that such models can be used for real-
time optimization and control. The RMSE and R2 value of
the ANFIS model is 0.484 and 0.9981, respectively.

• Results demonstrate that with the increase of the friction factor,
the degree of serration also increases. The reason for this situa-
tion can be be attributed to the heat generation at higher fric-
tions, meaning that as more heat is deposited to the primary
deformation zone, thermal softening occurs, and consequently
the degree of serration increases.

• The time-saving aspect of soft computing for this application
(and possibly other areas) is significant. Each analysis in FEA
takes 5 h while 7 min for ANFIS and 5 min for ANN.
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