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1. Let V be a free Z-module of rank 2n. Let G=Sp(2#x,Z) be the sym-
plectic modular group and let @ be the non-singular alternating bilinear form
on V left invariant by G. Let p=Z be a prime and let X be the set of all

endomorphisms & of V such that
D(£x, &y) = p0(x, y)

for all x,y= V. In the theory of transformation of theta functions [3] one
encounters the natural action of G on X by left multiplication. The number
of G orbits is known to be finite and the point of this note is a proof of the

following
TueorREM. The number of orbits of X under G is I1(1+p°)
i=1

The case m=2 is due to Hermite [2] and the case »n =3 to Weber [4] who
compute explicit sets of representatives for the orbits in these cases. The idea
in the present argument is to reduce the problem to a question about the finite
symplectic group Sp(2#, Fy). In the new situation Witt’s theorem is available
for counting purposes. The number I'ill(l +p') is the number of maximal
totally isotropic subspaces of a 2n dimét;sional symplectic space over Fj.

2. Let V be a free Z-module of rank 2n. Let @#: Vx V- Z be a non-

singular alternating bilinear form on V. We assume that V has a basis v,

., Uas such that the matrix of @(v;,v;) is

=5 0)

where [ is the identity matrix of degree n. We call vy, ..., 1, a symplectic

basis for V. The symplectic modular group Sp(2#, Z) consists of all automor-
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phisms = of V such that &(cx, ty) = 0(x, y) for all x,y= V. We let F =Z/pZ
denote the field of p elements and set E= V/pV. We view E as vector space
over F. The form @ defines, by reduction mod p, a non-singular alternating
bilinear form ¥: EFxX E -~ F. Similarly, an endomorphism of Homz(V, V) defines
an endomorphism of Home(E, E). In this way we get a homomorphism of
Sp(27,Z) into the group Sp(2#, F) of all non-singular F-linear transformations

of E which preserve the form ¥. A transvection
tt vovtadlv,ww weV,asl

of Sp(2#..Z) maps into a transvection of Sp(2n, F). Since every transvection
in Sp(2n, F) may be obtained in this way by reduction mod p, and since the
transvections generate Sp(2n, F) we see that the map Sp(2#,Z) - Sp(2n, F)

is an epimorphism. We use x - x* as a notation for each of the reductions
Z->F, V > E, Sp(2n, Z) > Sp(2x, F)

modulo p. We use those facts about symplectic spaces over a field which

center around Witt’s theorem. These facts are proved in [1].

LEmMMA 1. Let ey, ..., en be a symplectic basis for E. Then there exisis
a symplectic basis wi, . . ., win for V such that wi =e;.
Proof. Let v, ..., s be a symplectic basis for V. Then v, ..., v

is a symplectic basis for E. Define an F-linear transformation 8 of E by Buv/
=¢;. Then B =Sp(2n, F) and, since Sp(2n, Z) maps onto Sp(27n, F) we may
choose a=Sp(2n,Z) with a*=p. Set wi=avi. Then wy, ..., ww is a

symplectic basis for V and w; =a™v) = e;.

LemMA 2. Let £ X. Then Kert* and Imt™ are maximal totally isotropic
subspaces of E.

Proof. If a, b= Keré&* choose x,y€ V with x*=a, y*=b. Then éx,&ycpV

so éx=px', £y =py' for some x',y' = V. Then
P0(x, y) = O(&x, &y) =p°0(x!, ¥') € p*Z

so O(x, y) €pZ and ¥(a, b) =0. Thus Ker£* is totally isotropic. Similarly, if

a, b Im&* write a = &*x*, b=£%™* for some %,y € V and then

V(a, b) = 0(&x, £y)* = p*0(x, 9)* =0
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so that Im#£™* is totally isotropic. We must prove that dim Ker £*=#n=dim
Im &*,

Let -T be the matrix for £ in the symplectic basis v, ..., v Since
0(¢x, £y) = p0(x,y) we have TJT'=pJ where T' denotes the transpose of T.
Thus (det T)?=p"" so |det&|=p". Imbed V in the vector space V®Q over
the rational field Q. Then @ extends to a form, denoted again @, on V®Q
and ¢ defines a linear transformation, denoted again &, of V® Q. Then @(£x, £y)
=p0(x, y) for all x,y= V®Q. Since det £x0, £ is invertible, and for any

%, ve V we have
OE7'px, v) = O£ "px, £7'¢0) =p ' 0(px, Ev) =OD(x, EV) € Z

Now letting » range over a symplectic basis for V we see that £ 'pxe V.
Thus £¢7pVCV, so pVceV. Letd, ..., dineZ be the elementary divisors
of ¢ viewed as endomorphism of V, where we choose the d; non-negative and
such that d;.q divides d;. Choose Z-bases %, ..., %n and y;, ..., Yon for V
so that &x; =d;y;. Since pVCE&V we must have py; € Zd;y; so each d; divides
p. Butds, ..., din=I|deté|=»" so we have di= -+ =du=p and du1= -
-+ =dyy=1. Thus the elementary divisors of &* are dif= - =d; =0 and
dii= +++ =dj5=1. Thus £* has rank » and hence dim Ker ¢* =z =dim Im¢&*

This proves the lemma.

LemMma 3. Suppose &, n€ X. If Ker&* = Kery™ then & and 4 are in the same
orbit under G.

Proof. Lemma 2 tells us that D = Ker£™* is a maximal totally isotropic
subspace of E. The theorem on Witt decomposition of symplectic spaces over

a field asserts the existence of a maximal totally isotropic subspace D' of E

such that E= D+ D', direct sum. Furthermore there exist bases e;, ..., e
for D and en+1, . .., @s for D' such that e;, ..., e, is a symplectic basis
for E. Lemma 1 shows the existence of a symplectic basis wi, ..., wes for

V such that w =e¢;. Define §< X by

fw; = pw; i=1,...,n

Ow; = w; i=n+1...,2n

Then Ker6* = D. Since Im£*=£*D' and Im6* = 6*D' we see from Lemma 2

that £*D’ and 6*D' are totally isotropic subspaces of E of the same dimension
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n. Define a non singular F-linear transformation 8: £*D'— 6*D' by p&*e; = 0%¢;
for i=n+1,..., 2n. Since £*D' and 6*D' are totally isotropic, 8 is an iso-
metry, and, by Witts theorem, may be extended to an element, denoted again
B. of Sp(2#n, F). Since both £* and 6* annihilate D we have B%%e; =6%e; for

alli=1,..., 2n so Bt =0* Choose « €Sp(2%, Z) with «®*=p5. Then (a2)*
= q™¢* = 0* In particular afw;i€pV for =1, ...,n. Define s € Homz(V, V)
by
aw;=la5w,' i=1,...,n
b
ow; = asw; i=n+1,...,2n

Then a¢ =6 so
O(abx, afy) = O(alx, aky) = pO(x, y) = O(0x, 0y)

for all x,y= V. Since 8V has finite index in V the bilinearity of @ implies
O(ox, oy) = 0(x,y) for all x,ye V. Now, as in the proof of Lemma 1, we con-
clude det s=1 so that = G. Thus we have shown the existence of a, =G
with af =40. Similarly there exist 8, r€ G with Byp=r0. Then ="t 'at

so that &, » lie in the same orbit under G.

ProrosiTioN. The map & —» Ker&* induces a one to ome correspondence be-

tween orbits of X uhder G and maximal totally isotropic subspaces of E.

Proof. If £, 7€ X lie in the same orbit, say ¢ = ry with t € Sp(2n, Z). Then
¢* = ™p*  Since t*=Sp(2#x, F) is non-singular we have Ker ¢* = Ker»*. Thus
¢ - Ker " induces a map of orbits into the set of maximal totally isotropic
subspaces of E. By Lemma 3 the map is one to one. To see that every
maximal totally isotropic subspace D occurs as a kernel of some &* construct
a Witt decomposition E= D+ D' as in the proof of Lemma 3, and note that

the element 6 € X satisfies Ker6* = D. This completes the proof.

3. We have thus reduced the problem to computing the number ¢ of
maximal totally isotropic subspaces of a 27 dimensional symplectic space over
F. The finite group Sp(2#n,F) acts as a permutation group on the set of
maximal totally isotropic subspaces of E. By Witt’s theorem this permutation

group is transitive, hence

t=1G: H|
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where H is the group of all r € Sp(2#n, F') which leave globally invariant a given
maximal totally isotropic subspace D. The restriction map 7 - r|D defines a
homomerphism of H into the full linear group GL(D)=GL(#n,F). By Witt’s
theorem this is an epimorphism. The kernel K consists of those elements of
Sp(2#n, F) which fix D. It is known, and it is easy to compute directly, that
K is isomorphic to the additive group of #nx# symmetric matrices over F so
that K has order | K| =p"""""2 Thus

t= ‘Sp(‘z n, F) H GL(7n, F) l‘lp‘n(nn\,/g

If we insert the known formulas
lsp@n,FH=p“[£uW—1)
|GL(n, F)| = p" " V21T (p'~ 1)
i=1

we find

n

t= 1(1+p‘)

i=

This proves the theorem.
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