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The idea of orbital ion confinement dates back to 1923 when the orbital ion trap was proposed and 

implemented by Kingdon [1]. In the following several decades this principle was often used in ion 

spectroscopy but it was not until 1981 that Knight proposed a mass-selective orbital ion trap [2]. Similar 

to Kingdon trap, the ions were trapped revolving around a negatively biased wire. The ions generated by 

laser ionization were captured in the trap where rudimentary mass analysis was performed by means of 

resonance excitation of axial oscillations between two conical guarding electrodes that formed a quasi-

harmonic potential well. This first attempt demonstrated that the quality of mass analysis mostly 

depends on the trapping field accuracy, and particularly, on the isochronism of the axial oscillatory 

motion.  
 

The simplest axisymmetric electrostatic potential distribution with ideal isochronism in the axial 

direction 𝑧 is given by the formula 
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where 𝑟𝑚  and k0 are geometrical parameters and 𝑉𝑐 is the applied voltage. A detailed description of the 

ion dynamics in the quadro-logarithmic potential Eq. (1) can be found in the paper by Gall et al. [3]. The 

most important property of this unique potential distribution is that the motion equations are separable 

for the axial coordinate 𝑧 and the other coordinates (radius 𝑟 and the rotational angle 𝜓), and the axial 

motion is harmonic. The axial oscillation frequency in the ideal field is  

 

𝜔 = √𝑘0 𝑉𝑐(𝑞/𝑚)                                                                       (2) 
 

and thus depends on the ion’s mass-to-charge ratio 𝑚/𝑞 but not on the oscillation amplitude 𝑍 and the 

revolving radius. It means that a bunch of identical ions, once injected into the trap, keeps oscillating as 

a single packet preserving the phase coherency. Having detected the oscillation frequency, one can 

determine the mass-to-charge ratio of the ions and construct a mass spectrum of the analyte. The other 

important property of the quadro-logarithmic potential is the confinement in the radial pseudopotential  
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with 𝐾 being the conserved rotational momentum. This pseudopotential possesses a distinct minimum at  
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A stable orbit is restricted in-between the minimal and maximal radii 𝑟𝑚𝑖𝑛 and  𝑟𝑚𝑎𝑥 determined by the 

conserved radial full energy 𝑈0 through the equation 𝑈(𝑟𝑚𝑖𝑛) = 𝑈(𝑟𝑚𝑎𝑥) = 𝑈0. One can find a detailed 

analysis in [3, 4].   
 

 
 

Figure 1. Design of the Orbitrap mass 

analyzer. 1 – central electrode (𝜑 = −𝑉𝑐), 2,3 

– two halves of the outer electrode  (𝜑 ≈ 0) 

isolated by a quartz ring 4. The induced 

current is amplified and digitally processed to 

obtain a mass spectrum of the trapped ions.  

 

 
 

Figure 2. Ion injection scheme. Ions are stored and 

cooled in a gas-filled Paul trap 1 and then 

transversally ejected towards the injection slot 2 in 

the outer electrode 3. The retarding voltage 𝑉𝐷 on 

the deflection electrode 4 and the attracting 

potential −𝑉𝑐 of the central electrode 5 guide the 

ions into an orbit.  

 

 

For practical implementation, the field according to Eq. (1) is generated between two spindle-like 

electrodes manufactured to mimic two equipotential surfaces as shown in Figure 1. Ions are injected 

tangentially through a narrow slot in the outer electrode whilst the central electrode voltage is gradually 

decreasing until it reaches the nominal value −𝑉𝑐. This allows adiabatic radial squeezing of the ion 

orbits, so that the injected ions are safely separated from the outer electrode. Once injected, the ions 

remain trapped for a long time that is only restricted by residual gas collisions. With a typical vacuum 

10−10 Torr, the trapping time is as long as several seconds [5]. 

 

For the image current detection, the outer electrode is split into two halves which are electrically isolated 

with a quartz ring as shown in Figure 1. The halves are maintained at virtually zero potential up to the 

induced voltage. The induced voltage signal is amplified, digitalized, and Fourier transformed to 

produce a spectrum of ion oscillatory frequencies 𝜔 and the distribution of ionic species in 𝑚/𝑞. The 

mass resolving power 𝑅 = 𝑚/∆𝑚, where ∆𝑚 is the minimally resolved mass difference, is mostly 

determined by the signal acquisition time 𝑇 and the oscillation frequency as 𝑅 = 𝑇𝜔/2𝜋. Provided that 

the frequency 𝜔/2𝜋 ≥ 105𝐻𝑧 (in the 𝑚/𝑞 range below 1000 Th), the limiting mass resolving power 

can reach several hundreds of thousands.  
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If the signal acquisition time is not restricted by collisions or technical reasons, the signal duration and, 

therefore, the Orbitrap mass analyzer’s resolving power, are limited by imperfection of the field, which 

makes the oscillation frequency 𝜔 deviate from its ideal value Eq. (2). In case that the frequency 

acquires dependence on the orbital parameters 𝑍, 𝑟𝑚𝑖𝑛, and  𝑟𝑚𝑎𝑥, identical ions trapped on different 

orbits acquire slightly different frequencies with some dispersion 𝛿𝜔. The frequency spread causes the 

ions’ oscillation phases to randomize after 𝑇 = 2𝜋/𝛿𝜔 that is the actual acquisition time limit, after 

which the induced current can no longer be picked up. Consider the perturbed potential 

  

𝜑0(𝑧, 𝑟) + 𝛿𝜑(𝑧, 𝑟, 𝜓, 𝑡)                                                                       (5) 
 

where the perturbation 𝛿𝜑 depends on the coordinates 𝑧 and 𝑟, as well as the rotational angle 𝜓 and the 

time 𝑡. The field perturbation is mainly caused by the injection slot in the outer electrode, manufacturing 

and assembly imperfections, and Coulomb interactions between the ions. The perturbation is generally 

as small as 𝛿𝜑/𝑉𝑐 ≲ 10−3. As we are committed to the high mass resolving power in the range of 

𝑅 = 105 … 106, so that at least the first order perturbation with respect to 𝛿𝜑/𝑉𝑐 must be taken into 

account and, if possible, compensated.  

 

Ion motion in the perturbed potential Eq. (5) can be effectively decomposed into ideal motion and the 

relevant perturbation with the use of the substitution  

 

𝑧 =     𝑍(𝑡) 𝑐𝑜𝑠(𝜔𝑡 + 𝜁(𝑡))   ,                𝑑𝑧/𝑑𝑡 = −𝜔𝑍(𝑡) 𝑠𝑖𝑛(𝜔𝑡 + 𝜁(𝑡)),                        (6) 
 

where 𝑍(𝑡) is the oscillation amplitude, 𝜔 is the unperturbed frequency, and 𝜁(𝑡) is the phase offset. It 

should be noted that even in the ideal field the frequencies of rotation and radial oscillations are not 

constant, which means that the ion cloud becomes randomized over the ‘rings’ (𝜓, 𝑟) ∈ [0. .2𝜋] ×
[𝑟𝑚𝑖𝑛. . 𝑟𝑚𝑎𝑥] after a small number ~100 of axial oscillations. The averaged ion density is proportional 

to the time ∆𝑡 = ∆𝑟/𝑟̇ an ion spends within between  𝑟 and  𝑟 + ∆𝑟 and is given by the formula 𝜌(𝑟) =

𝜌0/√𝑈0 − 𝑈(𝑟), where 𝑈0 = 𝑈(𝑟𝑚𝑖𝑛) = 𝑈(𝑟𝑚𝑎𝑥) is the conserved radial full energy and 𝜌0 is a 

normalization constant. Accordingly, the perturbation potential can be averaged with weight 
 

𝛿𝜑̃(𝑧, 𝑡,   𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥) = ∫ 𝑑𝜓

2𝜋

0

 ∫ 𝑑𝑟 
 𝜌0

√𝑈0 − 𝑈(𝑟)
 𝛿𝜑(𝑧, 𝑟, 𝜓, 𝑡)

𝑟𝑚𝑎𝑥

𝑟𝑚𝑖𝑛

 ,                              (7) 

 

where a pair of more intuitive orbital parameters 𝑟𝑚𝑖𝑛 and 𝑟𝑚𝑎𝑥 is used instead of the motion integrals 

𝐾 and 𝑈0. The averaged perturbation determines evolution of the oscillation amplitude and phase: 
 

𝑑𝑍

𝑑𝑡
=

𝑞

𝜔𝑚

𝜕𝛿𝜑̃

𝜕𝑧
sin(𝜔𝑡 + 𝜁),           

𝑑𝜁

𝑑𝑡
=

𝑞

𝜔𝑚𝑍

𝜕𝛿𝜑̃

𝜕𝑧
cos(𝜔𝑡 + 𝜁)                             (8) 

 

Further we introduce the averaging technique for an approximate solution of these equations under the 

condition that the field perturbation leads to only small changes of the amplitude and phase during a 

single unperturbed period 𝜏 = 2𝜋/𝜔. Nevertheless, the effect is not neglected over large time intervals, 

since the changes may accumulate in the course of many oscillations. Consider changes ∆𝑍 =
𝑍(𝑡 + 𝜏) − 𝑍(𝑡) and ∆𝜁 = 𝜁(𝑡 + 𝜏) − 𝜁(𝑡) on a single period, and assuming these changes to be small, 

we introduce the averaged derivatives 𝑍̇ = ∆𝑍/𝜏 and 𝜁̇ = ∆𝜁/𝜏. Integration of the right-hand parts of 
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Eq. (8) over a period gives equations 
 

𝑍̇ =
𝑞

2𝜋𝜔𝑚
∫ 𝛿𝜑̃𝑧

′ (𝑍𝑐𝑜𝑠𝜒, 𝑡, … ) 𝑠𝑖𝑛 𝜒 𝑑𝜒

2𝜋

0

,          𝜁̇ =
𝑞

2𝜋𝜔𝑚𝑍
∫ 𝛿𝜑̃𝑧

′ (𝑍𝑐𝑜𝑠𝜒, 𝑡 , … ) 𝑐𝑜𝑠 𝜒 𝑑𝜒

2𝜋

0

.      (9) 

 

We will consider the case that the field perturbation results from the electrode imperfections and is thus 

static. Analysis of the Coulomb perturbation, which is time-dependent, appears more complicated and 

some particular cases have been considered in [6]. With the static perturbation only, the first equation in 

Eq. (9) immediately gives 𝑍̇ = 0, which is simply a manifestation of full energy conservation. The 

second equation is not so trivial and gives the oscillation frequency perturbation as a function of the 

three conserved orbital parameters: 

∆𝜔(𝑍, 𝑟 
𝑚𝑖𝑛, 𝑟 

𝑚𝑎𝑥)

𝜔
=

𝜁̇

𝜔
=  ∫  

 𝜌0

√𝑈0 − 𝑈(𝑟)
 𝛼(𝑍, 𝑟) 𝑑𝑟

𝑟 
𝑚𝑎𝑥

𝑟 
𝑚𝑖𝑛

                                            (10) 

where 

𝛼(𝑍, 𝑟) =
1

4𝜋2𝑘0𝑉𝑐 𝑍
∫ ∫ 𝛿𝜑𝑧

′  (𝑍 𝑐𝑜𝑠 𝜒 , 𝑟, 𝜓) 𝑐𝑜𝑠 𝜒 𝑑𝜒𝑑𝜓

2𝜋

0

2𝜋

0

                         (11) 

 

It is an extremely important fact that the non-zero 𝜓 -harmonics of the field perturbation are averaged 

out in Eq. (11). The same holds true for any z- antisymmetric part of 𝛿𝜑. As a result, all perturbations 

caused by inaccuracies of positions of the central and the outer electrodes, such as shifts and tilts, affect 

the oscillation frequency ω only in the second or higher orders of the perturbations theory, and their 

contributions can be neglected. It means that the Orbitrap mass analyzer is relatively insensitive to most 

common assembly inaccuracies (practically up to tens of micrometers). Nevertheless, the electrode 

manufacturing remains a subject of serious concern. 

  

Consider the field perturbation caused by the injection slot that represents an inevitable deviation of the 

outer electrode shape from the ideal equipotential surface. The electric field sags into the injection slot 

as illustrated in Figure 3. To simulate the effect, an imaginary axisymmetric surface was introduced to 

cover the injection slot, on which the potential error was calculated with the boundary element 3D 

algorithm as described in [7]. The zero axial harmonic of this error was considered as a boundary 

condition for an axisymmetric Dirichlet problem, which was solved using the finite-element method. 

The field perturbation 𝛿𝜑(𝑧, 𝑟) was averaged in accordance with Eq. (11) in the region actually 

occupied by the ions to obtain the function 𝛼(𝑍, 𝑟). 
 

It is of profound importance that the field perturbation can be controlled by applying a certain voltage 

𝑉𝐷 to the deflection electrode placed above the injection slot. Figure 4 shows the radial dependence of 

the coefficient 𝛼 for different values of 𝑉𝑑. Though complete cancelation of the field perturbation in the 

entire volume of the mass analyzer is impossible, the deviation of the integral characteristic 𝛼 can be 

reduced to ~10
-6

 at certain 𝑉𝐷
 = 𝑉𝐷

∗. In our particular case, the ‘golden’ ratio of voltages was 𝑉𝐷
∗/𝑉𝑐 =

423𝑉/3500𝑉 ≈ 0.121.  Note that the compensating voltage 𝑉𝐷
∗ generally differs from the optimal 

value for ion injection which is normally in the range 0 − 100𝑉. This contradiction can be removed by 

switching the deflection electrode voltage to 𝑉𝐷
∗  after all ions have been injected.   
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Figure 3. Scheme of the injection slot field 

simulation combining 3D and 2D solvers. 1 – 

outer electrode, 2 – central electrode, 3 – 

deflection electrode, 4 – imaginary surface 

separating the 2D simulation region, 5 – 

populated orbits, 6 – distribution of populated 

amplitudes (simulation).  

 
 

Figure 4. Dimensionless coefficient 𝛼(𝑍, 𝑟) 

under different deflection electrode voltages 

𝑉𝐷 = 373 𝑉 (1a,b,c), 𝑉𝐷 = 423 𝑉 (2a,b,c), and  

𝑉𝐷 = 473 𝑉 (3a,b,c). Lines with indexes ‘a’ 

correspond to the section Z=4.6 mm, ‘b’ – Z=4.8 

mm, and ‘c’ – Z=5.0 mm within the populated 

range of orbital amplitudes.  𝑉𝑐 = 3500 𝑉 

 

The injection slot is not the only source of the field inaccuracy. Nowadays technology allows to 

fabricate the electrodes with tolerances as small as one micrometer, which constitutes approximately 

10−4 of the trap’s dimension (compare to 10 mm external electrode radius). However, planning for the 

mass resolving powers as high as 105 − 106 requires special measures to make the function Eq. (11) as 

flat as possible in the range of orbital parameters occupied by the injected ions. Note that the average 

value of ∆𝜔 can easily be calibrated by an appropriate choice of the central electrode voltage 𝑉𝑐, but its 

dispersion 𝛿𝜔2 = 〈∆𝜔2〉 − 〈∆𝜔〉2  is a subject to optimization. The potential penetration through the 

injection slot can be turned to advantage, so that a deliberate deviation of the deflection electrode 

voltage from 𝑉𝐷
∗ compensates for the geometry imperfections. Though the field perturbation cannot be 

cancelled out uniformly in the entire volume of the trap, the dispersion of 𝛼(𝑍, 𝑟) can be minimized in a 

particular region of orbital parameters. As the populated domain of the amplitude 𝑍 and the orbit radius 

𝑟 is relatively small, a proper compensation can be achieved if both components of the gradient of ∇𝑍𝛼 

and ∇𝑟𝛼 vanish.  

 

Complete control over the frequency dispersion is only possible if we have at least two independent 

tuning parameters which generate perturbations 𝛼 with non-collinear gradients in the point of interest. 

Fortunately, the design under consideration offers a possibility of adjusting the quartz ring thickness by 

several micrometers in both directions. A shift of the outer electrode halves inwards or outwards induces 

another well-controlled smooth field perturbation as shown in Figure 5A. This perturbation, as well as 

the parasitic perturbations induced by the surface defects (e.g. shown in Figure 5B), can be simulated 

using the Bruns-Bertein method [8]. Figure 6 illustrates compensation of a parasitic perturbation by an 

optimal adjustment of both 𝑉𝐷
  and the quartz ring thickness. This procedure effectively flattens out the 

function 𝛼 in the populated domain of the ions’ orbits. The estimate mass resolving power R has 

increased from 80,000 (without compensation) to 300,000.      
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Figure 5. Electric field perturbation generated by small inward displacement of the outer electrode 

halves (A) and a step-shaped, 1 m high, inaccuracy of the central electrode (B).   
 

 

 

 
   

Figure 6. A – function 𝛼(𝑍, 𝑟) in case of uncorrected 1 m step perturbation as shown in Figure 5B. 

B – corrected with -50V deviation of 𝑉𝐷 and 8 m shift of the outer electrode halves.   

 

Conclusions: Only two parameters, separation of the outer electrode halves and the voltage of the 

deflection electrode, are sufficient to effectively compensate for the perturbations of the oscillation 

frequency during the signal acquisition. The mass resolving power of a compensated Orbitrap mass 

analyzer is as high as several hundred thousand. 
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