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Inferential statistics to verify prediction models 
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ABSTRACT. Models are powerful tools if their outputs a re relevant! 
Therefore, knowing the reliability of models is essentia l for people who wish to use 

them, as well as for resea rchers who a ttempt to improve them. Wh ateve r the nature of 
the model output, objective evalua tion consists of comparing predicted or calc ulated 
events with observed events. 

Such comparison can only focus on avai lable samples of observed event ·. Obviously, 
the results depend on the choice of the sample. However, inferential stat istics enable one to 
extend res ults obtained from a random sample to general use. 

An unbiased method of testing boolean avalanche-prediction models is suggested: the 
validity of this type of model should be characterized by the probability that the propor­
tion of co rrect forecasts is within a given confidence interval. This interva l is calcul ated 
from the sample size, according to the Gaussian tabl e. 

This unrestricted principle can be used to prove a ll kind of static models, if ever their 
outputs are verifiable, enabling one to calculate the ratios of correct forecasts as well as the 
ratios of well-predicted events and can also be extended to verify probabilistic predictions. 

INTRODUCTION 

The development of avalanche-forecast systems keeps a 
great number of snow scientists busy. And for a very good 
reason: these systems promise to be invaluable as support 
tools. They use various models which emulate reality. 
Although they a re becoming more and more sophisticated, 
these models are usually only very simplified ref1 ections of 
reality, either because reality is only partly understood or 
describable or because the calculation tools (theoreti cal or 
technical) cannot deal with more complex representations. 

Therefore, the following question must be answered: does 
the model give an appropriate refl ection of observed reality? 

It is obvious that this question cannot be avoided if the 
model is to become an operational tool. 

In this event, the model must be checked with the utmost 
n gour. 

But how can thi s verification be done ? 
In order to gua rantee objective checking, the calculated 

values of the model must be compared to those actuall y 
measured. This test cannot be exhaustive and consequently 
cannot be a full inventory, as all possible cases of reali ty a re 
not known (which is why a model is needed! ). The validity of 
the model must therefore be establi shed from verification of 
a restricted number of its assertions. 

Thus, verification qf a model is a survey based on a sample jJoLl, 
that is to say a problem of inferential statistics, a technique 
which has as its aim establishing the likely characteristics of 
a particular group by observing only a sample of that group. 

PRINCIPLES 

H ere, we shall deal with the verification of boo lean forecasts 
which predict either the occurrence or the non-occurrence 
of an event (the developed principles can be extended to 

other types offorecast). 

The verification qf a model providing boo! ean forecasts consists in 
estimating the proportion p qf comet forecasts which can be expected 
from the model, based on the proportion pi qfcorrectJorecasts which is 
calculated using an available sample S' qfsize n. 

Thus, p is the proportion of exact forecasts which could 
be calculated if absolutely a ll the forecasts that the model 
can ever provide could be verified . Therefore, p is an obj ec­
tive quantifier of the reliability of the model. 

Although p cannot be calculated, an approximation can 
be given. 

The sampl e is a finite set of forecasts which can be veri­
fi ed. It may appear as a collection of pairs (predicted event/ 
observed event). Provided that the composition of this 
sample is completely left to chance, it may be considered a 
random sample of the infinite number of predictions that 
ca n be made (Fig. I). 

Set of verified predictions 

C wrong prediction 
• right prediction 

Random sample of verified predictions 

.:::: unverified predictions 

Fig. 1. The sample S' usedJor the verification qf a model is a 
sub -set qf the infinite set S if past and futu re forecasts. To 
evaluate a model, it is possible to use either all verified fore ­
casts at our disposal, assuming that the corresponding situa­
tions have mndoml:J1 occurred, or on0' /Jal"t qf the verified 
fo recasts, in which case this /Jart must be a random sample. 
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As by definiti on, the probability of any forecast being ex­
act is p, and as the verification of each forecast is a test which 
is independent of the (n - 1) others and applied according 
to one of two modes, the number x of exact forecasts can be 
conside red a binomial random variable with mean np and 
variance np (1 - p). 

Consequentl y, the proportionp' equivalent to x/n is also 
a binomial random variable with mean np/n and variance 
np (1 - p)/n2, that is to say with mean p and variance 

p (1 - p)/n. 
If the value of n is large and ifp I is not close to 0 or I, the 

binomial di st ribution can be approximated by the normal 
d istribution. With the help of the table of the cumulative 
normal distribution function, interva ls containing p I with 
a certain probability, can be determined. These intervals 

a re usually called "confidence intervals". For instance: 
1 1 

(p - 2(p (1 - p)/n)'l ) < pi < (p + 2(p (1 - p) /n)'l), with 
a probability call ed a "coefficient of confidence" which is 
equal to 0.95. 

Considering that the maximal value ofp(l - p) is 0.25, 

we get: \p- K /n1) <pi < (p+ K /n1),. that is to say 
(pi _ K /n'i ) < p < (pi + K /n2) , where K IS a real number 
depending on the chosen coeffi cient of confidence and where 
K /n~ is the accuracy of estimation ofp. 

Therefore, it is possible to estimate p depending on n 
and pt, without overestimating the value of p. For instance: 

p = pi ± 1/n1 with a minimum probability of 0.95, (1) 

p = pi ± 1.3/n~ with a minimum probability of 0.99. 

It is not surprising that the accuracy of the verification 
increases with the size of the sample (Fig. 2). Thus, for a pro­
portion pi = 50% recorded from a sample of 100, it is pos­

sible to assert tha t the odds are at least 95 out of 100 that the 
reliability of the tested model lies between 40 % and 60%. 
The same proportion p " recorded from a sample of 1000 
would allow one to assert, with the same probability, that 
the reliability of the model is between 47% and 53% 
(rounded values ). In fact , the accuracy varies in proportion 
to the square root of the ample size. Thus, in order to double 
the accuracy, the size of the sample must be multiplied by 4: 
accuracy turns out to be "expensive". Certainty is also ex­
pensive: to reach a probability of 99% instead of 95% for 
the preceding estimation, the sample size has to be 
increased to 1877 instead of 1000. 

In order to ca rry out a verifi cation which might be 
usable in making forecasts, it is necessary to know the pro­
portion of exact forecasts which can be expected from the 
model for the two form s of the forecast (occurrence a nd 
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Fig. 2. Minimal accuracy if a model reliability estimation, 
depending on the size if the verification sample with various 
coifficients if corifidence. 
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observation 

prediction 
o I 

°ffiBb 
1 c d 

o = non-occurrence 

1 = occurrence 

PI = (d/( b + d)) ± K /( b + d) ~ 
1 

P2 = (a/(a + c)) ± K /( a + c)'I 

Fig. 3. Verification if a modeljor practical use. PI is the pro­
portion rifcorrect occurrenceforecasts and P2 is the proportion 
cif correct non-occurrence forecasts which can be expected from 
the model. 

non-occurrence of the event). So it is necessary to evaluate 
the proportions of exact forecasts PI and P2 from the propor­
tions of exact forecasts PI' and P2', calculated respectively 
from a sample of occurrence and non-occurrence predic­
tions (Fig. 3). These proportion Pl and P2 will show the 
model user how much he can trust a given forecast. 

APPLICATION 

The following example is given to show the use of inferential 

statistics in verifying predictions. A very simple model has 
been outlined which is expected to provide forecasts from 
cursory data. This model predicts whether at least one ava­
lanche will occur in a given area during a given day. The 
model is based on the fact that most avalanches occur either 
during snowfalls, when snow is melting or after heavy snow 

transport by wind. This suggests that the occurrence of ava­
lanches is a function of the thickness of the top layer of non­
cohesive snow, on one hand, and of the intensity of the snow 
drift, on the other hand, which can be translated into the 
following formula: 

A = (Ps > a)V (FFt > (3) 

with A, occurrence of at least one avalanche during the next 
hours; P s, sinking of the fi rst ram-penetrometer tube; F Ft , 
amount of snow caught by the driftometer (Bolognesi, 1997) 
in 24 hours; 0', f3 reals. 

This simple model will now be evaluated according to 
the principles laid down previously. We have at our disposal 
a number of cases for which the forecasts can be produced 
(the necessa ry data being available) and verified (the oc­
currence like the non-occurrence of avalanches being estab­
lished by the success or failure of daily trials to trigger 
avalanches in all of a given group of couloirs). Each of the 
forecasts established by the model will be verified in the fol­
lowing way: an occurrence forecast will be declared exact if 
at least one avalanche takes place either naturally or during 
trials, and a non-occurrence forecast will be classified as ex­
act if no avalanche occurs in spite of release attempts. 

In total, 278 such verified forecasts are available (this re­
presents more than 5000 attempts to trigger avalanches! ). 

The proportion of exact forecasts which was calculated 
from a random sample of 100 forecasts, with 0' = 0.05 and 
f3 = 0, is 0.8. 

The hypothesis according to which the proportion p' of 
correct forecasts is a random variable approximately Gaus­
si an is perfectly plausible, as shown by the distribution func­
tion of this variable (Fig. 4). 
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Fig. 4. DistributionJunction ( diagram) and cull1uLative distri­
butionJunction cP (curve) of the random variabLe p'(P(p/) 
assumed equivalent to calculatedJrequencies qf p/ ). 

So we can state, with a probability of at least 0.95, that 
the proportion of exact forecasts which we can hope for in 

applying the model proposed above, lies between 0.7 and 
0.9 (see Equation (I)). 

The proportions of exact forecasts calcu lated from a 
random sample of 100 occurrence forecasts and from a ran­
dom sample of 100 non-occurrence forecasts are both nearly 
equal to 0.8. This information is vital when using the model 
for operational forecasts: for instance, the user knows that 
occurrence predictions have to be taken into account 
because they are often right. 

DISCUSSION 

The method of verification proposed here can be used to 
prove all types of models (which do not include any auto­
matic learning procedure), providing that their forecasts or 
diagnoses are verifiable, that is to say, comparable to 
observed events or measured values. However some authors 

use other verification procedures if this requirement is not 

fulfilled (Bois and Obled, 1976; Giraud and others, 1994; 
Fbhn and Schweizer, 1995). 

This method is designed to help to make use of a modeL by indicat­
ing the probabiLity that a predicted event will occur; therefore this 
indication is of great interest to forecasters who have to know 

how much they can trust a given prediction. However, know­
ing the probabilities that events will be predicted is a prere­
quisite to evaluating whether a model is usabl e or not. These 
probabilities can be calculated according to the same princi­
ples. Let us imagine a first (realistic ) practical case: 1450 pre­
dictions from an avalanche-forecasting model are compared 

to observed events; this comparison shows that 350 ava­
lanches occurred, whereas 400 avalanches were predicted 
and that 50 unexpected avalanches occurred (Fig. 5a). 

We can infer from this comparison that: 

The probability of any prediction being exact is 0.90 ± El. 

The probability of any occurrence prediction being ex­

act is 0.75 ± E2. 

The probability of any non-occurrence prediction bei ng 
exact is 0.95 ± E3. 

The probability of any avalanche being predicted is 

0.86 ± E4. 

The probability of any non-occurrence being predicted 
is 0.91 ± 105. 

According to these results, we can consider that this 
model is of interest to forecasters. 

Now, let us imagine a second practical case: we have to 
evaluate a model which invariably predicts that no ava-
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0 L 0 L 

obs. 0 1000 100 1100 0 1100 0 1100 

50 300 350 350 0 350 

L 1050 400 1450 L 1450 0 1450 

a b 

Fig. 5. (a) Conlingenq table showing an imperfect but usable 
lIlodel. (b) Contingency table showing aJancifuL and unusa­
ble model whir!zyetgives a high ratio q/conect jnedictiolls. 

lanche will occur (Fig. 5 b ). Because avalanches are not fre­

quent events (24% in our example), thi model seems to be 

reliable: the probability of any prediction being COITect is 
0.76 ± E. But the probability of any occurrence prediction 
being exact cannot be calculated and the probability that 
at least one avalanche will be predicted is 0 1 Consequently 
we can consider that such a model is fanciful. 

Finally, the method can be extended to verify probabilis­

tic forecasts. In order to do this, we have to compare prob­
abilities to frequencies of events. \ Ve would be able to claim 
that the model is perfect if, for m occurrences predicted with 
probability P, mP occurrences are obseryed when m tends 

towards infini t y and this whatever may be the value of P. 
So to makc a reliability measure of a probabilistic pre­

diction model, it will be sufficient to estimate the probable 
frequencies of the occurrence of the evem (according to the 
principles presented in section 1) for the various classes of 
probabilities calculated by the model. 

CONCLUSION 

The verification of a prediction model is neither a simple 
task nor an insignificalll operation capable of being reduced 
to a few improvised tests. 

Verification requires consistent samples, the gathering of 

which may demand more time (and money) than the crea­
tion of the model itself. Therefore, the design of the verifica­
tion procedures should be an imperative pl'eliminary stage 
fOl' all sciel1lific modelling projects, for it is true that it is fu­
tile to create a model incapable of being verified. 
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