
Glasgow Mathematical Journal (2023), 65, pp. 383–400
doi:10.1017/S0017089522000404

RESEARCH ARTICLE

Geometric filling curves on punctured surfaces
Nhat Minh Doan∗

Department of Mathematics, University of Luxembourg, Esch-sur-Alzette, Luxembourg and Institute of Mathematics, Vietnam
Academy of Science and Technology, Hanoi, Vietnam
E-mail: dnminh@math.ac.vn

Received: 18 December 2020; Revised: 8 October 2022; Accepted: 16 November 2022;
First published online: 15 December 2022

Keywords: hyperbolic surfaces, closed geodesics, geometric fillingcurves

2020 Mathematics Subject Classification: Primary - 30F10; Secondary - 32G15, 53C22

Abstract
This paper is about a type of quantitative density of closed geodesics and orthogeodesics on complete finite-area
hyperbolic surfaces. The main results are upper bounds on the length of the shortest closed geodesic and the shortest
doubly truncated orthogeodesic that are ε-dense on a given compact set on the surface.

1. Introduction

It is well known that if X is a complete finite-area hyperbolic surface, the set of closed geodesics is
dense on X and on the unit tangent bundle of X (see e.g. [4] or [7]). A type of quantitative density of
closed geodesics on closed hyperbolic surfaces was investigated by Basmajian, Parlier, and Souto in [3].
In particular, for any closed hyperbolic surface X and any positive number ε, they found an upper bound
on the length of the shortest closed geodesic that is ε-dense on X, by which it is meant that all points
of X are at a distance at most ε from the geodesic. This upper bound is recently used to estimate the
complexity of an algorithm of tightening curves and graphs on surfaces [6]. Our goal is to extend their
results to the case of complete finite-area hyperbolic surfaces in two directions. The first is that for any
complete finite-area hyperbolic surface and any positive number ε less than or equal to 2, we are going
to construct a closed geodesic γε so that γε is ε-dense on a given compact set of the surface and its length
is bounded above by a quantity that depends on the geometry of X and ε. The second is that we will
construct a doubly truncated orthogeodesic that is ε-dense and also of bounded length. These types of
orthogeodesics appear for instance in identities [9] related to McShane’s identity [8] and Basmajian’s
identity [1].

Let us begin with a few necessary notations so that one can understand the statement of the main
results. Let Mg,n be the moduli space of complete connected orientable finite-area hyperbolic surfaces
of genus g and n cusps. For any X in Mg,n and any positive number ξ ≤ 2, we define Xξ as a subset of
X such that each connected component of the boundary of Xξ is a horocycle of length ξ . A geodesic arc
on X is called a doubly truncated orthogeodesic on Xξ if it is perpendicular to the horocyclic boundary
of Xξ at its endpoints. Our main results are the following.

Theorem A. For all X ∈Mg,n there exists a constant CX > 0 such that for all 0< ξ ≤ 1 and all 0< ε≤ 2
there exists a closed geodesic γε that is ε-dense on Xξ and such that

�(γε) ≤ CX

1

ε

(
log

1

ε
+ log

1

ξ

)
.
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Theorem B. Let X ∈Mg,n, there exists a constant DX > 0 such that for all 0< ξ ≤ 1 and all 0<

ε≤ min

{
2 log

1

ξ
, 2

}
there exists a doubly truncated orthogeodesic Oε that is ε-dense on Xξ and such

that

�(Oε) ≤ DX

1

ε

(
log

1

ε
+ log

1

ξ

)
.

Our main ingredient in the proof of Theorem A and Theorem B is the following result.

Theorem 1. For any X ∈Mg,n, there exists a constant KX such that the following holds. For all 0< ε≤ 1,
0< ξ ≤ 1 and any finite collection {ci}N

i=1 of geodesic arcs of average length c̄ in Xξ , there exist a closed
geodesic γ of length at most

N

(
KX + c̄ + 10 log

1

ε
+ 8 log

1

ξ

)

containing {ci}N
i=1 in its 2ε-neighborhood.

In the following, we will give a brief outline of the arc-replacement idea in [3] for the case of closed
surfaces and explain how we adapt it to the case of punctured surfaces in the proof of Theorem 1.

Let X be a complete finite-area hyperbolic surface. When X is a closed surface, the steps in the proof
of [3, Theorem 2.4] can be described briefly as follows.

(i) Taking a filling closed geodesic γ0 on X which decomposes X into polygons.
(ii) For any ε > 0, we take a finite collection AN := {ci}N

i=1 of geodesic arcs such that the
ε-neighborhood of AN covers the whole surface X. The number of arcs in this collection is

roughly
1

ε
up to a constant depending on X.

(iii) Extending these arcs in both directions a certain distance rε of roughly log
1

ε
and then keep

extending them (at most a distance D the diameter of X) until they connect to γ0 with good
angles.

(iv) Constructing a closed piecewise geodesic forming from the collection of extended arcs and
suitable subarcs of the filling closed geodesic γ0. The resulting closed piecewise geodesic is
contained in the ε-neighborhood of the desired closed geodesic γε. The length of γε is bounded

above by CX

1

ε

(
log

1

ε

)
where CX is a constant depending on X.

When X is a punctured surface, we identify the main obstruction and propose the key idea in the
proof of Theorem 1 step by step as follows.

• Similar to steps (i) and (ii) above, we take a filling closed geodesic γ0 on S such that γ0 cuts S
into polygons and once-punctured polygons. For any ε > 0, we take a finite collection {ci}N

i=1 of
geodesic arcs on the truncated surface Sξ which contains Sξ in its ε-neighborhood.

• Major obstruction: it is almost surely possible to extend these arcs in both directions a certain
distance rε and then keep extending them until they connect to γ0 with good angles, but it is
not always possible to bound the lengths of these extended arcs since they can go into a cusp
region for a long time before connecting to γ0.

• Key idea: we replace the collection {ci}N
i=1 by a better one in the sense that the new collection,

denoted by {ζi}N
i=1, still contains {ci}N

i=1 in its ε-neighborhood and when we extend them, they
will not go too deep into the cusp region before connecting to γ0 with sufficiently big angles.
Denote the collection of these extended arcs by {ζ ′

i }N
i=1.

• Applying the step (iv) above for the collection {ζ ′
i }N

i=1.
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(a) (b)

Figure 1.

2. Geodesics and horocycles in the hyperbolic plane H and on surfaces

In this section, we introduce some elementary properties of geodesics traveling through subsurfaces
which we will use to prove Theorem 1. Let Pn be a hyperbolic subsurface with a single polygonal
boundary of n concatenated geodesic edges such that all angles are less than π . Figure 1(a) shows an
example of P1. The following lemma is an extended version of Lemma 1 in [3].

Lemma 1. There exists θP > 0 such that any geodesic arc c lying inside Pn with endpoints on edges of
the n-gons forms an acute angle of at least θP in one of its endpoints. Furthermore, the length of c is at
most a constant �P if one of the angles has value less than or equal θP.

Proof . We first label the vertices of the n-gonal boundary of Pn by A1, A2, ..., An consecutively. For
each i ∈ {1, 2, ..., n}, we can connect Ai to Ai+2 by a shortest geodesic arc lying inside the interior of Pn

(in which An+1 := A1 and An+2 := A2) such that there is no cusp or geodesic boundary component in the
resulting triangle AiAi+1Ai+2. We call each such resulting triangle to be an ear of Pn. In the set of angles
of the ears in Pn (three angles for each ear), we denote by θP their minimum value. Also, in the set of
sides of the ears in Pn, we denote by �P their maximum value.

Without loss of generality, we can assume that the geodesic arc c leaving from the point B on the
interior of a side A1A2 of the n-gons forms an angle θ of at most θP as in Figure 1(b). Since the triangle
BA2A3 is contained in the ear A1A2A3, Area(BA2A3) ≤ Area(A1A2A3). As these two triangles are sharing
an angle A2, by Gauss–Bonnet, the sum of the two remaining angles of BA2A3 is greater than or equal
the sum of the angles A1 and A3 of the ear. In other words, we have

�A2BA3 +�A2A3B ≥�A2A1A3 +�A2A3A1.

Since B is on the interior of the side A1A2, we have�A2A3B<�A2A3A1 and thus�A2BA3 >�A2A1A3.
Hence, �A2BA3 > θP ≥ θ and c lies inside BA2A3. This implies that c also lies inside the ear, and
the triangle BA2C is contained in the ear. By the same argument, we can show that the angle at C (i.e.,
the remaining angle formed by c and an edge of the n-gons) is greater than θP. The fact c lies inside the
ear also tells us that the length of c has to be less than or equal at least one of three sides of the ear,
hence �(c) ≤ �P. Note that θP and �P are optimal as the inner sides of the ears are admissible geodesic
arcs.

In this paper, we only need to focus on the case of once-punctured polygons. We also refer the reader
to [5, Chapter 2] and [4, Chapter 7] for all necessary trigonometric fomulae. The following lemma will
give us an upper bound on the length of the geodesic arc that traverses inside the polygon with endpoints
lying on the boundary of the polygon.
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Figure 2.

Lemma 2. Let P be a once-punctured polygon and ψ ∈
[
0,
π

2

)
a constant. Let h be a closed horocycle

lying inside P. Let d be the maximal distance from a point on ∂P to h. Then for any geodesic arc c in P
with two end points on ∂P and θ := �(c, h) ≤ψ , we have

�(c) ≤ arccosh
(

2e2d

cos2 ψ
− 1

)
.

Proof . We lift to H as in Figure 2.
A lift of c is contained in the geodesic segment with endpoints i and B + i, where

A2 + 1 =
(

ed

cos θ

)2

, and B = 2A.

Hence,

cosh �(c) ≤ cosh(dH(2A + i, i)) = 1 + |2A|2

2
= 2e2d

cos2 θ
− 1 ≤ 2e2d

cos2 ψ
− 1.

The next lemma describes some properties in a certain type of quadrilateral. Let h1 and h2 be two
disjoint horocycles in H. Let A1A2 be the common orthogonal between h1 and h2. For i = 1, 2, let Bi, Ci

be points on hi so that B1B2C2C1 becomes a quadrilateral with two horocyclic edges {B1C1, B2C2} and
two geodesic edges {B1B2, C1C2}.

Lemma 3. Suppose the inner acute angles of the quadrilateral B1B2C2C1 are of the same value ψ .
Then

�(B1C1) = �(B2C2) = 2
√

tan2 ψ + e−�(A1A2) + 1 − 2 tanψ .

Furthermore, every geodesic segment, which only meets h1 and h2 at its endpoints, lies totally inside the
quadrilateral if and only if each of two acute angles at the endpoints are of value at least ψ .

Proof . Denote by u the length of A1A2. Let h1 be the horizontal line y = ieu, h2 be the horocycle
centered at 0 and going through i as in Figure 3. We can also suppose that A1 = ieu, A2 = i, hence
C1 = �eu + ieu where � is defined by the length of the horocyclic segment A1C1. By symmetry of the
quadrilateral, we can find an involution f which is a nonorientation-preserving isometry sending A1

to A2, B1 to B2, and C1 to C2. By a standard computation, f (z) = az̄ + b

cz̄ + d
where a = d = 0, b = e

u
2 , and

c = e
−u
2 . As a consequence,

C2 = f (C1) = f (�eu + ieu) = �

�2 + 1
+ i

�2 + 1
.
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Figure 3.

Let x be a point on the real line of H such that the Euclidean distances from C1 and C2 to x are the
same. By computation, x = (�2+1)eu+1

2�
. Now applying the Euclidean trigonometric formula for the shaded

Euclidean right triangle in Figure 3, noting that value of the angle at C1 of this triangle is exactly ψ , we
get

tanψ =
(�2 + 1)eu + 1

2�
− �eu

eu
= −�2 + 1 + e−u

2�
.

From this, we obtain the value of � in terms of ψ and u.
For the second part, we fix an angle φ of value between ψ and

π

2
at one endpoint of c and observe

what happens to the acute angle at the other endpoint of c while moving c along the horocycles and
keeping the value of the angle φ. The behavior of the values of the remaining acute angle is exactly that
of a concave function. By symmetry of the quadrilateral, c lies inside the quadrilateral if and only if
both acute angles at the endpoints are of value at least ψ .

Next we recall two useful facts.

Lemma 4. [3, Lemmas 2.2] Let
π

2
≥ θ0 > 0, and set m(θ0) := 2 log

(
1

sin θ0

)
+ 2 log(1 + cos θ0). If c is

an oriented geodesic segment in H of length at least m(θ0) between two (complete) geodesics γ1, γ2 such
that the starting (resp. end) point of c lies on γ1 (resp. γ2) and �(c, γi) ≥ θ0 for i = 1, 2, then γ1 and γ2

are disjoint.

Lemma 5. [3, Lemmas 2.3] Let
π

2
≥ θ0 > 0 be a fixed constant. Let c be a geodesic segment in H and

γc the complete geodesic containing c. Fix ε ∈ (0, 2] and let γ1 and γ2 be geodesics that intersect γc such
that intersection points p1, p2 lie on different sides of c. There exists an rε (depending only on ε and θ0),
so that if �(γi, γc) ≥ θ0 and d(c, pi) ≥ rε, for i = 1, 2, then γ1 and γ2 are disjoint.

Furthermore, for any geodesic γ intersecting both γ1 and γ2, we have the following properties:
(P1) c ⊂ Bε(γ ).
(P2) The image of the orthogonal projection of c on γ is contained in the middle part of γ (i.e., it

lies between γ1 and γ2).

Proof . The properties: “γ1 and γ2 are disjoint” and (P1) are proved in [3, Lemma 2.3], here we will
fix a minor mistake in their proof to obtain a correct value of rε under the requirement that 0< ε≤ 2.

(P1) Keeping all notations introduced in [3, Lemma 2.3], from the proof we already had:

cosh
�(μ)

2
= cosh

(
rε + �(c)

2

)
sin(θ0) ; sinh d′ = 1

sinh �(μ)
2

; sinh h′ = sinh d′ cosh
�(c)

2
. (2.1)
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In [3], the authors deduced from Equalities (2.1) the following incorrect relation:

sin(θ0) cosh

(
rε + �(c)

2

)
sinh h′ = cosh

�(c)

2

In the end of their proof, they deduced the following relation

rε ≥ log

(
1

ε

)
+ log

(
4

sin θ0

)
,

which holds for any ε > 0. Then they chose rε := log

(
1

ε

)
+ log

(
4

sin θ0

)
. Fortunately, this incor-

rect value of rε does not affect the overall conclusion of the main theorems since later on one will
see that the condition 0< ε≤ 2 is necessary and then the correct value of rε can be chosen as

log

(
1

ε

)
+ log

(
2e

sin θ0

)
. From Equalities (2.1), we deduce that

sinh2(h′) = sinh2(d′) cosh2

(
�(c)

2

)
=

cosh2

(
�(c)

2

)

cosh2

(
�(μ)

2

)
− 1

=
cosh2

(
�(c)

2

)

cosh2

(
rε + �(c)

2

)
sin2(θ0) − 1

.

We want to show that h′ ≤ ε

2
thus that

cosh2

(
�(c)

2

)

cosh2

(
rε + �(c)

2

)
sin2(θ0) − 1

≤ sinh2

(
ε

2

)
(2.2)

and Inequality (2.2) is equivalent to the following:

cosh2

(
rε + �(c)

2

)
≥

cosh2

(
�(c)

2

)
+ sinh2

(ε
2

)

sinh2
(ε

2

)
sin2

(θ0)
.

By using the identities cosh(2x) = 2 cosh2(x) − 1 = 2 sinh2(x) + 1, the last inequality can be expressed
differently as follows:

2rε ≥ arccosh

⎛
⎜⎝cosh �(c) + cosh ε

sinh2
(ε

2

)
sin2(θ0)

− 1

⎞
⎟⎠ − �(c). (2.3)

The right hand of Inequality (2.3) can be considered as a function:

f (x) = arccosh(ax + b) − arccosh x

on the domain [1, ∞), in which

a = 1

sinh2
(ε

2

)
sin2(θ0)

> 0,

b = cosh ε

sinh2
(ε

2

)
sin2(θ0)

− 1 ≥ cosh ε

sinh2
(ε

2

) − 1 = 1 + 1

sinh2
(ε

2

) > 1.
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Figure 4. The worst-case scenario.

This function reaches its maximum x = 1. Hence, Inequality (2.3) will hold if

2rε ≥ arccosh

⎛
⎜⎝ 1 + cosh ε

sinh2
(ε

2

)
sin2(θ0)

− 1

⎞
⎟⎠ . (2.4)

For simplicity, we set A := 1 + cosh ε

sinh2
(ε

2

)
sin2(θ0)

. Note that

arccosh(A − 1)< arccosh A = log
(

A + √
A2 − 1

)
< log(2A)

and

log(2A) = log

⎛
⎜⎝ 2 + 2 cosh ε

sinh2
(ε

2

)
sin2(θ0)

⎞
⎟⎠ = 2 log

(
2

sin θ0

)
+ 2 log

(
eε + 1

eε − 1

)

in which log

(
eε + 1

eε − 1

)
< log

(
1

ε

)
+ 1 for all ε ∈ (0, 2].

Thus Inequality (2.4) certainly holds provided

rε ≥ log

(
2

sin θ0

)
+ log

(
1

ε

)
+ 1.

Hence, we set

rε := log

(
1

ε

)
+ log

(
2e

sin θ0

)
.

(P2) We consider the worst-case scenario: c is a complementary θ0-transversal of γ1 and γ2 (see Figure 4).
Consider the limit case which is when γ and γ2 are ultra-parallel. Now we orient c from γ1 to γ2. Let
ψ denote the angle between γ and the geodesic segment connecting the endpoint of γ on γ1 and the
starting point of the oriented geodesic segment c. Let θ denote the angle between the extended part of c
toward γ2 and the geodesic ray starting at the endpoint of c and ending at the endpoint of γ at infinity.
Notice that the image of the orthogonal projection of c on γ lies between γ1 and γ2 if and only if the
angle ψ is acute. Since the sum of four inner angles in a quadrilateral is always less than 2π , ψ ≤ π

2
holds if θ <

π

4
. By using the same formula as in the proof of Lemma 4, we have

cos θ = tanh rε − cos θ0

1 − tanh rε cos θ0

.
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Hence, θ <
π

4
holds provided

tanh rε − cos θ0

1 − tanh rε cos θ0

>
1√
2

. (2.5)

By a small manipulation, Inequality (2.5) is equivalent to the following:

rε >
1

2
log

(
1

sin θ0

)
+ log(1 + √

2) + log(1 + cos θ0).

And this last inequality holds by definition of rε.

3. Main tools

Moduli space Mg,n we think of as the space of complete hyperbolic structures up to isometry on a
punctured orientable topological surface �g,n of genus g with n punctures (with 2g + n ≥ 3). A cusp
region of area ξ is a portion of the surface isometric to {z : Imz ≥ 1}/z �→ z + ξ . For any X in Mg,n and
any positive number ξ ≤ 2, we can define

Xξ := cl(X \ {all cusp regions of area ξ}).
In other word, Xξ is a surface of genus g with n boundary components and each connected component of
its boundary is a horocycle of length ξ . The following theorem is the main technical part in this paper:

Theorem 1. For any X ∈Mg,n, there exists a constant KX such that the following holds. For all 0< ε≤ 1,
0< ξ ≤ 1 and any finite collection {ci}N

i=1 of geodesic arcs of average length c̄ in Xξ , there exists a closed
geodesic γ of length at most

N

(
KX + c̄ + 10 log

1

ε
+ 8 log

1

ξ

)

which contains {ci}N
i=1 in its 2ε-neighborhood.

Proof . The proof is structured in three parts. The first part will introduce some necessary geometric
quantities and a classification of geodesics traveling through (punctured) polygons on the surface X
forming big or small angles with the sides of the polygons. The second part is about the details of the
arc-replacement technique and some upper bounds of length of extended arcs. The final part is a recap
of parts 1 and 2 followed by the construction of the closed geodesic γ .

Part 1: Setup.

We take a closed geodesic γ0 on X of minimal length such that X \ γ0 consists of a finite collection of
ordinary polygons {Pi}i∈I and once-punctured polygons {Pi}i∈J (I and J are two disjoint finite index sets).
Recall that, for each polygon Pi(i ∈ I ∪ J) we have the constants θPi and �Pi as mentioned in Lemma 1.
Also in each ordinary polygon Pi, we denote by DPi the value of its intrinsic diameter. Note that there is
no intrinsic diameter in once-punctured polygons. We define:

θ0 := min
i∈I∪J

{
θPi

}
and D := max

i∈I,j∈J

{
DPi , �Pj

}
.

In this part, we aim to define a classification for geodesics traveling through polygons in the following
way.

We begin by defining a closed horocycle that lies inside a once-punctured polygon (hence γ0 and
this horocycle have no intersection) such that the distance between this horocycle and the horocycle of
length ξ (namely hξ ) is at least

rε := log

(
1

ε

)
+ log

(
2e

sin θ0

)
.
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Figure 5. Case 1.

Figure 6. Case 2.

Since γ0 wraps around each cusp at most once, it will not cross transversely the horocycle of length 1 in
each cusp region. We also note that ξ is less than 1. Hence, one option that satisfies the above condition
is the horocycle which is at distance rε from hξ . We denote this horocycle by h. Since the decay of length
of horocycle in a cusp is e,

�(h) = ξ

erε
= εξ

2e
sin θ0.

Now, let c be an arbitrary geodesic arc on X, we extend c by rε in one direction to get a new arc c′ and
the new endpoint p′. Then we continue to extend c′ from p′. In the process of extending, the geodesic
can intersect γ0 several times and form angles. An intersection is called a good intersection if the acute
angle at it is at least θ0, and otherwise, it will be called a bad intersection. The extension will stop at the
first good intersection from p′. By Lemma 1, the extensions can be divided into 5 cases as follows:

1. From p′, the previous intersection is bad and the next intersection is good (see Figure 5).
2. From p′, the previous intersection is good, and the next intersection is bad (see Figure 6).
3. p′ lies inside an ordinary polygon, the previous intersection and the next intersection are both

good (see Figure 7).
4. p′ lies inside a once-punctured polygon P, the previous intersection, and the next intersection are

both good (see Figure 7) and so that the geodesic arc, namely c′′, between these two intersections
is not too long, more precisely, this arc either intersects the horocycle h at an angle less than a
given angle ψ or does not intersect h.

5. p′ lies inside a once-punctured polygon and if we continue to extend c′ from p′, it will intersect
the horocycle h at an angle at least ψ (see Figure 7).
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Figure 7. Cases 3, 4, and 5, respectively.

Now in order to stop the extension, by Lemma 1 and the definition of D above, the distance we need
to extend from p′ is at most D (in cases 1 and 3) and 2D (in case 2). In case 4, let s0 ∈ ∂P such that

dX(s0, h) = max
s∈∂P

{dX(s, h)}.
Let dP be the distance from s0 to the closed horocycle of length 1 of the same cusp. Note that the distance

between this horocycle and h is log

(
2e

εξ sin θ0

)
. Thus,

dX(s0, h) = dP + log

(
2e

εξ sin θ0

)
.

Then applying Lemma 2 and the inequality arccosh(x − 1)< log(2x) we have

�(c′′) ≤ arccosh

⎛
⎜⎜⎜⎜⎝

2e
2dP+2 log

⎛
⎜⎝

2e

εξ sin θ0

⎞
⎟⎠

cos2 ψ
− 1

⎞
⎟⎟⎟⎟⎠< 2dP + 2 log

(
2e

εξ sin θ0

)
+ 2 log

(
2

cosψ

)
. (3.1)

Note that, in part 2, we will define ψ as the angle formed by h̃ and η̃1 (see Figure 8). By simple
computations, we obtain

ψ = arccos

⎛
⎜⎜⎝

εξ

e
sin θ0

1 + ε2ξ 2

4e2
sin2(θ0)

⎞
⎟⎟⎠ .

From there we have

2 log

(
2

cosψ

)
= 2 log

(
1 + ε2ξ 2

4e2
sin2(θ0)

)
+ 2 log

(
2e

εξ sin θ0

)
< 2 + 2 log

(
2e

εξ sin θ0

)
. (3.2)

Combining (3.1) and (3.2), one has

�(c′′)< 2dP + 4 log

(
2e

εξ sin θ0

)
+ 2.

Moreover, if one denotes by dγ0 the maximal value of {dPi}i∈J , then

mA := 2D + 2dγ0 + 2 + 4 log

(
2e

εξ sin θ0

)

is an upper bound on the length of the extension in class A (i.e., cases 1, 2, 3, and 4). Note that, in class
B (i.e., case 5), the length of the extension is unbounded when �(c′, h) goes to

π

2
.
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Figure 8. Lifting to H in Case B. The shaded part is a lift of polygon P.

Part 2: Replacements and estimates.

Now, let c be an arbitrary geodesic arc in the collection {ci}N
i=1. Denote the two endpoints of c by

p and q. We extend c by rε in both directions to get a new geodesic arc c′. We now look at different
cases.

Case A: The extensions in both directions are in class A.

In order to get good intersections in both directions, we need to extend c′ by at most mA for each of
its directions. Hence, an upper bound on the length of c after being extended is

�(c) + 2rε + 2mA

or more precisely,

�(c) + 10 log
1

ε
+ 8 log

1

ξ
+ 4D + 4dγ0 + 4 + 10 log

(
2e

sin θ0

)
. (3.3)

Case B: There is a direction where the extension is in class B.

Let p′ be the endpoint of c′ in this direction, we can suppose p′ lies inside a once-punctured polygon,
namely P.

What we aim to do is to replace c by another geodesic arc, which is very close to c and controlled
in both directions (i.e., the extension in each direction is in class A). Denote the complete geodesic

containing c by γc. We assume that the horizontal line y = 2e

εξ sin θ0

i, namely h̃, is a lift of the closed

horocycle h of length
εξ

2e
sin θ0 in P. From there we can suppose the complete geodesic γ̃c with an

endpoint at 0, forming an angle at least ψ with h̃, is a lift of γc. Hence, γ̃c lies between η̃1 and η̃2, in

which η̃1 and η̃2 are the complete geodesics with a common endpoint at 0, containing
2e

εξ sin θ0

i + 1 and

2e

εξ sin θ0

i − 1, respectively.
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Now we construct lifts of other points from there. Let p̃ and q̃ be lifts of p and q, respectively (see
Figure 8). Let γ̃1 and γ̃2 be geodesics going though p̃ and q̃, respectively, and orthogonal to the axis
x = 0. Let p̃i := γ̃1 ∩ η̃i and q̃i := γ̃2 ∩ η̃i, for i = 1, 2.

For i = 1, 2, we denote by piqi the projection of p̃iq̃i to the surface X. Extend the geodesic arc piqi

by rε in both directions to get a new geodesic arc p′
iq

′
i. If p′

i /∈ P, we only need to extend by an extra at

most
εξ

e
sin θ0 + 2�(γ0) to get into P. This can be proved by using the inequality in the triangle formed

by η̃i, the geodesic segment p̃i
′p̃′ and a lift of γ0 (one of the boundary components of the shaded part in

Figure 8).
There are two different subcases of case B:
Subcase BA: The extension in the direction of either q1 or q2 is in class A.
Without loss of generality, we assume that the extension in the direction of q1 is in class A. Note that

the geodesic segments p̃p̃1 and q̃q̃1 are of length at most
εξ

e
sin θ0. Since ξ ≤ 1 and sin θ0 ≤ 1,

εξ

e
sin θ0 <

ε

2
. Thus, any geodesic containing p1q1 in its ε-neighborhood contains c in its

(ε
2

+ ε
)
-neighborhood.

Hence in this case, we will replace c by p1q1.
Recall that we extended p1q1 by rε in both directions to obtain the geodesic arc p′

1q
′
1. In order to get

good intersections in both directions, we continue to extend p′
1q′

1 by at most

2mA + εξ

e
sin θ0 + 2�(γ0).

Hence, an upper bound on the length of p1q1 after being extended is

�(c) + 2rε + 2mA + εξ

e
sin θ0 + 2�(γ0)

which is less than or equal to

�(c) + 10 log
1

ε
+ 8 log

1

ξ
+ 4D + 4dγ0 + 4 + 10 log

(
2e

sin θ0

)
+ sin θ0

e
+ 2�(γ0). (3.4)

Subcase BB: The extensions in the directions of q1 and q2 are both in class B.
Since η, η1, and η2 asymptotic in the direction of q, q1, and q2, length of the geodesic arc orthogonal to

η and connecting q′
1 and q′

2 is very small, roughly less than
εξ

2e
sin θ0. Thus, we can suppose that q′

1 and q′
2

lie in the same once-punctured polygon, denoted by P′. Let h′ be the closed horocycle of length
εξ

2e
sin θ0

in P′. From there we construct a lift of h′, denoted by h̃′. We keep all the notations A1, A2, B1, B2, C1, C2,
and u as introduced in Lemma 3 (see Figure 9).

Now we would like to apply Lemma 3 to the two horocycles h̃ and h̃′ with the angle ψ . Recall that
u = �(A1A2) is the distance from h̃ to h̃′. One can estimate a lower bound and an upper bound on u as
follows:

2 log
4e

εξsin θ0

≤ u ≤ �(c) + 2rε + εξ

e
sin θ0 + 2�(γ0) + 2

(
dγ0 + log

2e

εξsin θ0

)
.

This implies that:

0< u ≤ �(c) + 4 log
1

ε
+ 2 log

1

ξ
+ kX

in which kX := 2dγ0 + 4 log
2e

sin θ0

+ sin θ0

e
+ 2�(γ0).

Recall that � := �(B1C1)

2
. Then by Lemma 3, we have

�=
√

tan2 ψ + e−u + 1 − tanψ = e−u + 1√
tan2 ψ + e−u + 1 + tanψ

<
2√

tan2 ψ + 1 + tanψ
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Figure 9. Lifting to H in sub-case BB.

Thus, since ψ = arccos

⎛
⎜⎜⎝

εξ

e
sin θ0

1 + ε2ξ 2

4e2
sin2(θ0)

⎞
⎟⎟⎠, 0< ε≤ 1, 0< ξ ≤ 1 and

2e

sin θ0

> 2e we have

� <
2√

tan2 ψ + 1 + tanψ
= 2εξ

2e

sin θ0

< 2e−1,

hence

�(B1B2) = �(C1C2) ≤ 2�+ u< 4e−1 + �(c) + 4 log
1

ε
+ 2 log

1

ξ
+ kX .

Now we draw a geodesic going through p̃, resp. q̃, orthogonal to A1A2, meeting B1B2 at a point, denoted
by p̃0, resp. q̃0 (see the Figure 9). We also denote by ζ̃ the geodesic segment p̃0q̃0. By projecting the
geodesic segment ζ̃ to X, we get a geodesic arc on X, denoted by ζ . Note that the geodesic segments p̃p̃0

and q̃q̃0 are of length at most 2� <
4εξ sin θ0

2e
< ε. Thus, any geodesic containing ζ in its ε-neighborhood

contains c in its 2ε-neighborhood. In this case, we will replace c by ζ .
Since B1B2 contains ζ̃ , we will extend B1B2 instead of ζ̃ . By Lemma 2, in order to get good

intersections in both directions, we need to extend B1B2 in each direction by a distance v, where v
satisfies:

log

(
2e

εξ sin θ0

)
+ log

1 + sinψ

1 − sinψ
≤ v ≤ 1

2
arccosh

(
2e2d

cos2 ψ
− 1

)
+ 1

2
log

1 + sinψ

1 − sinψ
,

where d := dγ0 + log

(
2e

εξ sin θ0

)
. Similarly to (3.1) and (3.2), one can show that:

log
1

ε
+ log

(
2e

ξ sin θ0

)
+ log

1 + sinψ

1 − sinψ
≤ v< dγ0 + 1 + 3 log

1

ξ
+ 3 log

1

ε
+ 3 log

(
2e

sin θ0

)
.
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Since the lower bound of v is greater than rε, we do not need to extend the segment B1B2 in two steps as
in the previous cases.

In this way, we obtain an upper bound on the length of B1B2 after the extension:

4e−1 + �(c) + 4 log
1

ε
+ 2 log

1

ξ
+ kX + 2dγ0 + 2 + 6 log

1

ξ
+ 6 log

1

ε
+ 6 log

(
2e

sin θ0

)

or

�(c) + 10 log
1

ε
+ 8 log

1

ξ
+ 4dγ0 + 10 log

(
2e

sin θ0

)
+ sin θ0

e
+ 2�(γ0) + 4e−1 + 2. (3.5)

Finally, after comparing upper bounds (3.3), (3.4) and (3.5) in cases A, BA, and BB, respectively, we
set

M(c, ε, ξ , X) := �(c) + 10 log
1

ε
+ 8 log

1

ξ
+ k′

X

the upper bound of all cases, in which k′
X := 4D + 4dγ0 + 4 + 10 log

(
2e

sin θ0

)
+ sin θ0

e
+ 2�(γ0) is a

quantity that depends only on X.

Part 3: Construction of the geodesic γ .

Since X is orientable, γ0 has two opposite sides denoted by γ +
0 and γ −

0 . Let μ± be an oriented geodesic
arc from γ0 to itself, orthogonal γ0 in both end points, and which leaves and returns to γ ±

0 . Note that
these two geodesic arcs μ+ and μ− are constructed using a finite cover of X which lifts γ0 to a simple
closed geodesic. The lengths of these two arcs are constants depending on X.

In the previous parts, we replaced the collection {ci}N
i=1 by a new collection, denoted by {ζi}N

i=1. We
also defined a collection of the extended geodesic arcs of {ζi}N

i=1, denoted by {ζ ′
i }N

i=1. In this collection,
each element ζ ′

i , is of length at most M(c, ε, ξ , X), has endpoints lying on γ0 and forms good angles
(≥ θ0) with γ0, and is an extension of ζi by at least rε in each direction. In short, each ζi is an example
of the geodesic segment c in Lemma 5. Furthermore, we showed that any geodesic containing ζi in its
ε-neighborhood contains ci in its 2ε-neighborhood.

With the new collection {ζi}N
i=1 and its extension {ζ ′

i }N
i=1 in hand, following exactly the same algorithm

in the proof of [3, Theorem 2.4], one can construct a closed piecewise geodesic forming from these arcs
with suitable choices of subsegments of the filling closed geodesic γ0 and μ± as following steps.

• Cyclically ordering and orienting each ζ ′
i arbitrarily.

• If ζ ′
i+1 starts on the opposite side of γ0 that ζ ′

i ends on, we join the endpoint of ζ ′
i to the starting

point of ζ ′
i+1 by the shortest subarc of γ0 which does this.

• If ζ ′
i+1 starts and ζ ′

i ends on the same side, say γ +
0 , of γ0, we join the endpoint of ζ ′

i to the starting
point of μ− by the shortest subarc of γ0 which does this. Then we join the endpoint of μ− to
the starting point of ζ ′

i+1 by the shortest subarc of γ0 which does this.

Note that each connecting shortest subarc introduced in each step is of length at most
γ0

2
.The resulting

closed piecewise geodesic, denoted by γ ′, is contained in the ε-neighborhood of γ , where γ is the unique
closed geodesic in the free homotopy class of γ ′. Due to the above construction, γ is a nontrivial loop.
Denote c̄ the average length of the collection {ci}N

i=1, the length of γ is bounded above by

N

(
KX + c̄ + 10 log

1

ε
+ 8 log

1

ξ

)
,

where KX is a constant depending on X.
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Figure 10. Lifting to H.

A geodesic arc on X is called a doubly truncated orthogeodesic on Xξ if it is perpendicular to the
horocyclic boundary of Xξ at its endpoints. As a consequence of Theorem 1, we can also construct a
doubly truncated orthogeodesic O with the same properties:

Theorem 2. For any X ∈Mg,n, there exists a constant KX such that the following holds. For all 0< ξ ≤
1, 0< ε≤ min

{
log

1

ξ
, 1

}
, and any finite collection {ci}N

i=1 of geodesic arcs of average length c̄ in Xξ ,

there exist a doubly truncated orthogedesic O of length at most

(N + 1)

(
KX + c̄ + 10 log

1

ε
+ 8 log

1

ξ

)

containing {ci}N
i=1 in its 2ε-neighborhood.

Proof . Let P0 and P1 be two arbitrary once-punctured polygons of the partition by γ0 on X. First,
we will construct a doubly truncated orthogeodesic O1 with endpoints on the horocycles of length 1
associated to the two polygons so that O1 contains {ζi}N

i=1 in its ε-neighborhood. We take a shortest one-
sided orthogeodesic arc, denoted by ζ ′

0, oriented with the starting point on the horocycle of length 1
of P0 and the endpoint on γ0. We take another shortest one-sided orthogeodesic arc, denoted by ζ ′

N+1,
oriented with the starting point on γ0 and the endpoint on the horocycle of length 1 of P1. For each
i ∈ {1, 2, ..., N}, we orient ζ ′

i arbitrarily. The new sequence {ζ ′
i }N+1

i=0 is ordered linearly by its index. We
apply the connecting algorithm to this new sequence. Noting that ζ ′

0 is in the first step and ζ ′
N+1 is in the

last step of the algorithm, one will obtain a doubly truncated orthogeodesicO1 as desired (see Figure 10).
Since O1 is an arc, it may not contain totally either c1 or cN in its 2ε-neighborhood. In this case, by

applying Lemma 5 (P2), we only need to extend O1 by a small extra segment of length at most ε in both

directions. Note that, ε≤ log
1

ξ
, and the distance between the horocycle of length 1 and the horocyle of

length ξ is log
1

ξ
, by extending O1 in both directions until it hits the boundary of Xξ , we obtain O as

desired.

4. Quantitative density on surface

We now apply Theorem 1 to prove results about quasi-dense geodesics.
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Figure 11. An example when g = 1, n = 1.

Figure 12. An example when g = 2, n = 2. Note that CH(F2) is the polygon with red edges.

Theorem 3. For all X ∈Mg,n there exists a constant CX > 0 such that for all 0< ξ ≤ 1 and all 0< ε≤ 2
there exists a closed geodesic γε that is ε-dense on Xξ and such that

�(γε) ≤ CX

1

ε

(
log

1

ε
+ log

1

ξ

)
.

Proof . On H, there is a fundamental polygon F whose boundary consists 4g + 2n paired geodesic
segments (or rays) which, when glued in pairs, turn the polygon into X. This polygon has n ideal vertices
and 4g + n ordinary vertices. See Figure 11 for an example.

Since X2 ⊂ Xξ ⊂ X, there is a fundamental polygon of Xξ in F, say Fξ , and a fundamental polygon
of X2 in Fξ , say F2. We note that the boundary of F2 consists of n horocyclic segments of length 2
and 4g + 2n geodesic segments. By replacing each horocyclic segment by a geodesic segment of length
2arcsinh1 with the same endpoints, we obtain the convex hull of F2, denoted by CH(F2). We denote
by PX the perimeter of CH(F2) and note that this value depends only on X. On an edge of CH(F2), we
choose the first point at a vertex, then choose the next points such that the segment on the boundary
connecting two consecutive points is of length ε. If the length of the segment connecting the last point
and the remaining vertex of the same edge is less than ε, that vertex will be chosen as the first point of
the next edge, we then continue the choosing process. Eventually, we have chosen at most

PX

ε
+ 4g + 2n

points on the boundary of CH(F2). See Figure 12.
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Now we connect each ideal vertex to the points on the boundary of CH(F2). Since CH(F2) is convex,
the parts of those geodesic rays in Fξ are exactly one-sided orthogeodesic segments. By gluing back
paired geodesic segments of F in pairs, these segments become one-sided orthogeodesic arcs on X and
we have at most

n

(
PX

ε
+ 4g + 2n

)

one-sided orthogeodesic arcs on X. By construction, each segment is of length at most
PX

2
+ log

(
2

ξ

)
.

Moreover, the collection of the one-sided orthogeodesic arcs is
ε

2
-dense on Xξ . Thus by applying

Theorem 1 to this collection, we obtain the closed geodesic γε containing every arcs in its ε

2
neighborhood

where length satisfies

�(γε) ≤ n

(
PX

ε
+ 4g + 2n

)(
KX + PX

2
+ log

2

ξ
+ 10 log

2

ε
+ 8 log

1

ξ

)
. (4.1)

Then by manipulating the right hand of inequality (4.1), we obtain a constant CX depending only on X
so that:

�(γε) ≤ CX

1

ε

(
log

1

ε
+ log

1

ξ

)
.

By using the same collection of geodesic segments as in Theorem 3, and by the connecting algorithm
in the proof of Theorem 2, we also obtain the following result:

Theorem 4. Let X ∈Mg,n, there exists a constant DX > 0 such that for all 0< ξ ≤ 1 and all 0< ε≤
min

{
2 log

1

ξ
, 2

}
there exists a doubly truncated orthogeodesic Oε that is ε-dense on Xξ and such that

�(Oε) ≤ DX

1

ε

(
log

1

ε
+ log

1

ξ

)
.

We end this section with a corollary of Theorem 3 where we apply Theorem 1.2 [2] to obtain an
upper bound on the number of self-intersections of the quasi ε-dense closed geodesic.

Corollary 1. Let X ∈Mg,n, there exists a constant CX > 0 such that for all 0< ξ ≤ 1 and all 0< ε≤ 2
there exists a closed geodesic γε that is ε-dense on Xξ and such that

2i(γε, γε) ≤ C

1

ε

⎛
⎜⎝log

1

ε
+ log

1

ξ

⎞
⎟⎠

X .
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