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Abstract

Suppose that f (x) = xn + A(Bx + C)m ∈ Z[x], with n ≥ 3 and 1 ≤ m < n, is irreducible overQ. By explicitly
calculating the discriminant of f (x), we prove that, when gcd(n,mB) = C = 1, there exist infinitely many
values of A such that the set {1, θ, θ2, . . . , θn−1} is an integral basis for the ring of integers of Q(θ), where
f (θ) = 0.
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1. Introduction
Throughout this note, when we say a polynomial f (x) ∈ Z[x] is ‘irreducible’, we
mean irreducible over Q. We let ∆( f ) and ∆(K) denote the discriminants over Q,
respectively, of the polynomial f (x) and the number field K. If f (x) is irreducible,
with f (θ) = 0 and K = Q(θ), then we have the well-known equation

∆( f ) = [ZK : Z[θ]]2∆(K), (1.1)

where ZK is the ring of integers of K (see [3]). We say that f (x) is monogenic if
ZK = Z[θ], or equivalently from (1.1), if ∆( f ) = ∆(K). The property that f (x) is
monogenic facilitates computations in ZK as in, for example, the cyclotomic fields
(see [12]). Because ∆( f ) is expressed in terms of the coefficients and exponents of
f (x), we see by (1.1) that one possible approach to proving that a generic polynomial
f (x) of arbitrary degree is monogenic is to determine conditions on the coefficients
and exponents of f (x) for which ∆( f ) is squarefree (that is, not divisible by the square
of any integer greater than 1). This approach was used in [1, 8]. But ∆( f ) being
squarefree is not necessary for f (x) to be monogenic, and so, in the most general
setting, any square factors of ∆( f ) must be shown to be factors of ∆(K). The first
step in this procedure is to derive a workable formula for ∆( f ), which is not always
tractable. One notable exception is the family of trinomials f (x) = xn + axm + b ∈ Z[x]
with 0 < m < n. In this case, the formula

∆( f ) = (−1)n(n−1)/2bm−1(nn/db(n−m)/d − (−1)n/d(n − m)(n−m)/dmm/dan/d)d,
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where d = gcd(n,m), is due to Swan [11]. For the special trinomial f (x) = xn − x − 1,
the authors of the fascinating paper [1] use a generalisation of Wieferich primes to give
a detailed analysis of the possible primes p such that

∆( f ) = nn + (−1)n(n − 1)n−1 ≡ 0 (mod p2). (1.2)

If we let δ denote the density of positive integers n such that ∆( f ) in (1.2) is squarefree,
it is still unresolved as to whether δ > 0. Nevertheless, the authors of [1] provide
plausible evidence to support their conjecture that δ ≥ 0.9934466.

In [8], a more algebraic number-theoretic approach was used to show that, for each
n ≥ 2, there exists an irreducible polynomial f (x) with deg( f ) = n such that ∆( f ) is
squarefree and the Galois group of f (x) over Q is the symmetric group on n letters.
This result also provides an affirmative answer to a question of Lagarias [9].

Beyond these cases, there are isolated situations where knowledge of the nature of
the zeros of f (x) is useful in calculating ∆( f ) (see, for example, [2, 5, 6]). Even when
a reasonably ‘nice’ formula is known for ∆( f ), a second obstacle arises in determining
when ∆( f ) is squarefree or managing the factors of ∆( f ) that are not squarefree.

In this note, we derive a formula for the discriminant of irreducible polynomials of
the form f (x) = xn + A(Bx + C)m ∈ Z[x] and we use it to prove the following theorem.

Theorem 1.1. Let n, m and B be positive integers with n ≥ 3, 1 ≤ m ≤ n − 1 and
gcd(n,mB) = 1. Then there exist infinitely many positive integers A such that the
polynomial f (x) = xn + A(Bx + 1)m is irreducible and monogenic.

All computer computations were done using either MAGMA, Maple or Sage.

2. Preliminaries

Definition 2.1. Let p be a prime and suppose

f (x) = anxn + an−1xn−1 + · · · + a1x + a0 ∈ Z[x].

We say f (x) is p-Eisenstein if

an . 0 (mod p), ai ≡ 0 (mod p) for 0 ≤ i ≤ n − 1 and a0 . 0 (mod p2).

We present some known facts that are used to establish Theorem 1.1.

Theorem 2.2 (See [7], Eisenstein’s criterion). Let p be a prime and let f (x) ∈ Z[x] be
p-Eisenstein. Then f (x) is irreducible.

Theorem 2.3 (See [7]). Let f (x) ∈ Z[x] be monic and irreducible with deg( f ) = n. Let
f (θ) = 0 and K = Q(θ). Then

∆( f ) = (−1)n(n−1)/2NK/Q( f ′(θ)).

Theorem 2.4 (See [4]). Let p be a prime and let f (x) ∈ Z[x] be a monic p-Eisenstein
polynomial with deg( f ) = n. Let K = Q(θ), where f (θ) = 0. Then pn−1 || ∆(K) if n . 0
(mod p).
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Lemma 2.5. Suppose that F(x) = ax + b, where a and b are positive integers with
gcd(a, b) = 1. Then there exist infinitely many primes p such that F(p) is squarefree.

Although Lemma 2.5 is well-known among analytic number theorists, there seems
to be no reference in the literature for a proof of this specific fact. Lemma 2.5 follows
from the asymptotic formula

|{p ≤ N : p prime and F(p) is squarefree}| ∼
(C1

C2

) N
log(N)

, (2.1)

where
C1 =

∏
p prime

(
1 −

1
p(p − 1)

)
≈ 0.374

is Artin’s constant and

C2 =
∏

p prime, p|ab

(
1 −

1
p(p − 1)

)
.

Hector Pasten has pointed out to us in a private communication that Lemma 2.5 can
be deduced from a generalisation of (2.1) that appears in [10]. In that generalisation,
C1/C2 is replaced by ∏

p prime

(
1 −

ρF(p2)
p(p − 1)

)
,

where ρF(p2) is the number of integers a, with 1 ≤ a ≤ p2 and gcd(a, p2) = 1, such that
F(a) ≡ 0 (mod p2). Pasten’s result applies unconditionally (without the assumption
of the abc conjecture) to any F(x) that factors into irreducibles of degree d ≤ 3 with
no repeated factor.

3. The proof of Theorem 1.1

The following discriminant formula, which is needed for the proof of Theorem 1.1,
is of some interest in its own right.

Theorem 3.1. Let f (x) = xn + A(Bx + C)m ∈ Z[x], where n ≥ 3 and 1 ≤ m < n. If f (x)
is irreducible, then

∆( f ) = (−1)n(n−1)/2Cn(m−1)An−1(nnCn−m + (−1)n+mBn(n − m)n−mmmA).

Proof. Suppose that f (x) is irreducible and that f (θ) = 0. Then, a straightforward
manipulation yields

nθn−1 =
−nA(Bθ + C)m

θ
.

Since f ′(x) = nxn−1 + AmB(Bx + C)m−1, it follows that

θ f ′(θ) = −A(Bθ + C)m−1((n − m)Bθ + nC). (3.1)
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We write simply N for the norm NK/Q, where K = Q(θ). Since N(θ) = (−1)nACm,
taking the norm of both sides of (3.1) yields

(−1)nACmN( f ′(θ)) = (−1)nAnN(Bθ + C)m−1N((n − m)Bθ + nC). (3.2)

To calculate N(Bθ + C), let z = Bθ + C so that θ = (z −C)/B. Then

0 =

(z −C
B

)n
+ A

(
B
(z −C

B

)
+ C

)m
=

(z −C)n + ABnzm

Bn ,

from which we deduce that the minimal polynomial of z is g(x) = (x − C)n + ABnxm.
Thus,

N(Bθ + C) = (−1)ng(0) = Cn. (3.3)

Similarly, if we let z = (n − m)Bθ + nC, then

0 =

( z − nC
(n − m)B

)n
+ A

(
B
( z − nC
(n − m)B

)
+ C

)m

=
(z − nC)n + ABn(n − m)n−m(z − mC)m

(n − m)nBn .

Hence, the minimal polynomial for z in this case is

g(x) = (x − nC)n + ABn(n − m)n−m(x − mC)m.

Thus,

N((n − m)Bθ + nC) = (−1)ng(0)
= nnCn + ABn(n − m)n−m(−1)n+mmmCm. (3.4)

Therefore, the theorem follows from Theorem 2.3, (3.2), (3.3) and (3.4). �

Proof of Theorem 1.1. Since gcd(n,mB) = 1, it follows that

gcd(nn, (−1)n+mBn(n − m)n−mmm) = 1.

Thus, by Lemma 2.5, there exist infinitely many primes p such that

nn + (−1)n+mBn(n − m)n−mmm p is squarefree. (3.5)

For any such prime p with p > n, let A = p. Then f (x) is irreducible since f (x) is
p-Eisenstein, and hence

∆( f ) = (−1)n(n−1)/2 pn−1(nn + (−1)n+mBn(n − m)n−mmm p), (3.6)

by Theorem 3.1. Also, since p > n, we have n . 0 (mod p) and we conclude from
Theorem 2.4 that pn−1 || ∆(K). Therefore, from (1.1), (3.5) and (3.6), it follows that
f (x) is monogenic. �

https://doi.org/10.1017/S0004972719000182 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972719000182


[5] Infinite families of monogenic polynomials 243

Table 1. Number of degree-11 monogenics and nonmonogenics.

A # of monogenics # of nonmonogenics
2 88 12
3 96 4
5 92 8
7 92 8

13 84 16
17 91 9
19 92 8
23 86 14
29 93 7

4. Final remarks

Under the restrictions that A is prime and gcd(A, n) = gcd(n,mB) = 1, computer
evidence suggests that most polynomials f (x) = xn + A(Bx + 1)m ∈ Z[x], with n ≥ 3
and 1 ≤ m ≤ n − 1, are monogenic. The data are given in Table 1 for n = 11,
1 ≤ m ≤ 10, 1 ≤ B ≤ 10 and A prime with 2 ≤ A ≤ 29, A , 11. In this situation, for
each value of A there is a total of 100 polynomials to consider.

A further analysis of the numerical data suggests the following conjecture.

Conjecture 4.1. Let A be prime, and n, m and B be positive integers with n ≥ 3,
1 ≤ m ≤ n − 1 and gcd(n,mB) = 1. Then f (x) = xn + A(Bx + 1)m is monogenic if and
only if nn + (−1)n+mBn(n − m)n−mmmA is squarefree.

Remark 4.2. The data in Table 1 and the evidence supporting Conjecture 4.1 were
generated by Maple programs. The source code for these programs will be provided
upon an email request to the author.
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