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Abstract

The word w = [xi1 , xi2 , . . . , xik ] is a simple commutator word if k ≥ 2, i1 , i2 and i j ∈ {1, . . . ,m} for some
m > 1. For a finite group G, we prove that if i1 , i j for every j , 1, then the verbal subgroup corresponding
to w is nilpotent if and only if |ab| = |a||b| for any w-values a, b ∈ G of coprime orders. We also extend the
result to a residually finite group G, provided that the set of all w-values in G is finite.
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1. Introduction

Let F be the free group on free generators x1, . . . , xm for some m > 1. A group word
is any nontrivial element of F, that is, a product of finitely many xi and their inverses.
The elements of the commutator subgroup of F are called commutator words. We say
that the commutator word

[xi1 , xi2 , . . . , xik ] = [. . . [[xi1 , xi2 ], xi3 ], . . . , xik ]

is a simple commutator word if k ≥ 2, i1 , i2 and i j ∈ {1, . . . ,m} for every j ∈ {1, . . . , k}.
Examples of simple commutator words are the lower central words and the n-Engel
word

[x, ny] = [x, y, . . . , y︸  ︷︷  ︸
n

].

Let w = w(x1, . . . , xk) be a group word in the variables x1, . . . , xk. For any group
G and arbitrary g1, . . . , gk ∈ G, the elements of the form w(g1, . . . , gk) are called the
w-values in G. We denote by Gw the set of all w-values in G. The verbal subgroup of G
corresponding to w is the (normal) subgroup w(G) of G generated by Gw. If w(G) = 1,
then w is said to be a law in G.

Recently the following question has been considered in [2] (see also [3]).
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Question 1.1. Let w be a commutator word and let G be a finite group with the property
that |ab| = |a||b| for any a, b ∈ Gw of coprime orders. Is the verbal subgroup w(G)
nilpotent? (Here |x| stands for the order of the element x ∈ G.)

As remarked in [2], by a result of Kassabov and Nikolov [9], this is not true in
general (see Example 4.3). Two easier counterexamples are given in Section 4. On
the other hand, the answer to the above question is positive when w is a lower central
word [1, 2]. Motivated by this, we prove the following nilpotency criterion for w(G),
where w is a simple commutator word without any repetition of the first variable.

Theorem 1.2. Let w = [xi1 , . . . , xik ] be a simple commutator word with i1 , i j for
every j ∈ {2, . . . , k} and let G be a finite group. Then w(G) is nilpotent if and only
if |ab| = |a||b| for any a, b ∈ Gw of coprime orders.

We also extend Theorem 1.2 to a residually finite group G, provided that the set of
all w-values in G is finite.

Corollary 1.3. Let w = [xi1 , . . . , xik ] be a simple commutator word with i1 , i j for
every j ∈ {2, . . . , k} and let G be a residually finite group in which Gw is finite. Then
w(G) is finite and it is nilpotent if and only if |ab| = |a||b| for any a, b ∈ Gw of coprime
orders.

Recall that a group is residually finite if the intersection of its subgroups of finite
index is trivial. Notice also that in Corollary 1.3 the finiteness of Gw depends on the
conciseness of the word w in the class of residually finite groups (see Section 3). This
is related to a question of P. Hall on words assuming only finitely many values in a
group (see [10, Part 1, page 119]).

2. Proof of Theorem 1.2

The aim of this section is to prove the ‘if’ part of Theorem 1.2, since the ‘only if’
part is clear. We split the proof into two cases, depending on whether the finite group
G is soluble or not. In particular, we will show that only the soluble case can occur.

2.1. The soluble case. If G is a finite soluble group, the Fitting height of G
is the least integer h such that Fh(G) = G, where F0(G) = 1 and Fi(G)/Fi−1(G) =

F(G/Fi−1(G)) is the Fitting subgroup of G/Fi−1(G) for every i ≥ 1. A finite soluble
group with Fitting height at most 2 is said to be metanilpotent.

The following lemma is well known (see [1, Lemma 3] for a proof).

Lemma 2.1. Let G be a finite metanilpotent group with Fitting subgroup F(G). For p a
prime, denote by Op′(G) the maximal normal subgroup of G of order coprime to p. If
x ∈ G is a p-element such that [Op′(F(G)), x] = 1, then x ∈ F(G).

A subgroup H of a finite group G is called a tower of height h if H can be written
as a product H = P1 · · · Ph, where:

(1) Pi is a pi-group (pi a prime) for i = 1, . . . , h;
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(2) Pi normalises P j for i < j;
(3) [Pi, Pi−1] = Pi for i = 2, . . . , h.

It follows from (3) that pi , pi+1 for i = 1, . . . , h − 1.
The next lemma is taken from [14, Lemma 1.9].

Lemma 2.2. A finite soluble group G has Fitting height at least h if and only if G has a
tower of height h.

Given two nonempty subsets X and Y of a group G, let

[X, nY] = [[X, n−1Y],Y],

where n ≥ 2 and [X,Y] is the commutator subgroup of X and Y . We write [X, ny] when
Y = {y}. Then, assuming that X is normalised by y, it is easy to see that

[X, ny] = [X, n〈y〉]

for every n ≥ 1.
The next lemma is a straightforward corollary of [6, Theorem 5.3.6].

Lemma 2.3. For p a prime, let P be a p-subgroup of a finite group G. Suppose that P
is normalised by an element x ∈ G of p′-order. Then

[P, x] = [P, x, x].

Lemma 2.4. Let w = [xi1 , . . . , xik ] be a simple commutator word with i1 , i j for every
j ∈ {2, . . . , k} and let G be a finite group in which |ab| = |a||b| for any w-values a, b ∈ G
of coprime orders. For p a prime, let P be a p-subgroup of G normalised by a w-value
x ∈ G of p′-order. Then [P, x] = 1.

Proof. By Lemma 2.3,
[P, x−1] = [P, k−1x−1];

thus, the result will follow once it is shown that N = [P, k−1x−1] = 1.
Let [g, k−1x−1] ∈ N for some g ∈ P. Of course, the orders of the w-values x and

[g, k−1x−1] are coprime. Then, by hypothesis,

|[g, k−1x−1]x| = |[g, k−1x−1]| |x|.

However,
[g, k−1x−1]x = [g, k−2x−1]−1x[g, k−2x−1]

is a conjugate of x. So, |[g, k−1x−1]x| = |x| and consequently [g, k−1x−1] = 1. �

Lemma 2.5. Let w = [xi1 , . . . , xik ] be a simple commutator word and let G = A × B be
an arbitrary group. Then w(G) = w(A) × w(B).

Proof. By induction on n,

[ai1 bi1 , . . . , aik bik ] = [ai1 , . . . , aik ][bi1 , . . . , bik ]

for every ai1 , . . . , aik ∈ A and every bi1 , . . . , bik ∈ B. �
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We are now able to prove the announced result for soluble groups.

Proposition 2.6. Let w = [xi1 , . . . , xik ] be a simple commutator word with i1 , i j for
every j ∈ {2, . . . , k} and let G be a finite soluble group in which |ab| = |a||b| for any
a, b ∈ Gw of coprime orders. Then w(G) is nilpotent.

Proof. Let h be the Fitting height of G. Firstly, we show that h ≤ 2. Suppose by way
of contradiction that h ≥ 3. Then, by Lemma 2.2, there exists a tower

P1P2P3 · · · Ph

of height h in G. Since P2 = [P2, P1] and P3 = [P3, P2],

P3 = [P3, [P2, P1]].

Furthermore, by Lemma 2.3,

[P2, x] = [P2, k−1x]

for every x ∈ P1. Hence, [P2, x] is generated by w-values of p2-orders. Applying
Lemma 2.4, we deduce that P3 commutes with [P2, x]. Thus,

[P3, [P2, P1]] = 1,

which is impossible.
Now let h = 2, the case h = 1 being obvious. Denote by F the Fitting subgroup of

G. If w(G) ≤ F, we are done. Suppose that w(G) is not contained in F. Since G/F is
nilpotent, by Lemma 2.5, there exists a Sylow p-subgroup P of G such that w(P/F) =

w(P)F/F is nontrivial. Let x ∈ w(P) be a w-value which does not belong to F. Then
[Op′(F), x] = 1, by Lemma 2.4, from which it follows that x ∈ F, by Lemma 2.1, which
is a contradiction. �

2.2. The general case. The following lemma is a well-known consequence of the
Baer–Suzuki theorem (see, for instance, [8, Theorem 2.13]).

Lemma 2.7. Let G be a finite nonabelian simple group. If x is an element of G of order
2, then there exists g ∈ G such that [x, g] has odd prime order.

We will require a property of finite simple groups whose proper subgroups are
soluble. These groups have been classified by Thompson in [13] and they are known
as finite minimal simple groups.

Proposition 2.8. Let G be a finite minimal simple group. Then G contains a subgroup
H = A o T, where A is an elementary abelian 2-group and T is a subgroup of odd
order such that CA(T ) = 1. Further, A = [A,T ].

Proof. According to Thompson’s classification [13, Corollary 1], the group G is
isomorphic to one of the following groups:

(1) PSL(2, 2p), where p is any prime;
(2) PSL(2, 3p), where p is any odd prime;
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(3) PSL(2, p), where p > 3 is any prime such that p2 + 1 ≡ 0 (mod 5);
(4) PSL(3, 3);
(5) Sz(2p), where p is any odd prime.

Since the groups in (2), (3) and (4) have a subgroup isomorphic to the alternating group
of degree 4 (see, for instance, [12, Theorem 6.26] and [4, Theorem 7.1(2)]), we may
consider the other two cases.

If G is isomorphic to PSL(2, 2p), then [12, Theorem 6.25] shows that G contains a
Frobenius group H = A o T , where A is an elementary abelian 2-group of order q and
T is a cyclic group of order q − 1.

If G is isomorphic to the Suzuki group Sz(2p), then G contains a Frobenius group
F = Q o T , where Q is a Sylow 2-subgroup of G of order 22p and T is a cyclic subgroup
of order 2p − 1 (see [11, Theorem 9]). Thus, taking A to be a minimal normal subgroup
of F contained in Q, the subgroup H = A o T is as required.

Finally, notice that in both cases we have A = [A,T ] by [6, Theorem 5.2.3]. �

Lemma 2.9. Let w = [xi1 , . . . , xik ] be a simple commutator word with i1 , i j for every
j ∈ {2, . . . , k} and let G be a finite group such that G = G′. If q ∈ π(G), then G is
generated by w-values of p-power order for primes p , q.

Proof. For each prime p ∈ π(G) \ {q}, denote by Np the subgroup of G generated by all
w-values of p-power order. Let us show that each Sylow p-subgroup of G is contained
in Np. Suppose that this is false and choose p such that a Sylow p-subgroup of G is not
contained in Np. Of course, Np is a normal subgroup of G. We may pass to the quotient
G/Np and assume that Np = 1. Since G = G′, it is clear that G does not possess a
normal p-complement. Thus, the Frobenius theorem (see [6, Theorem 7.4.5]) implies
that G has a p-subgroup H and a p′-element a ∈ NG(H) such that [H, a] , 1. By
Lemma 2.3,

1 , [H, a] = [H, k−1a] ≤ Np,

which is a contradiction. Hence, Np contains the Sylow p-subgroups of G. Let T be
the product of all subgroups Np, with p , q. Then G/T is a q-group and, since G = G′,
we conclude that G = T . It follows that G can be generated by w-values of p-power
order for p , q. �

In order to complete the proof of Theorem 1.2, we recall that if a simple commutator
word is a law in a finite group G, then G is nilpotent [7].

Proposition 2.10. Let w = [xi1 , . . . , xik ] be a simple commutator word with i1 , i j for
every j ∈ {2, . . . , k} and let G be a finite group in which |ab| = |a||b| for any a, b ∈ Gw

of coprime orders. Then G is soluble and w(G) is nilpotent.

Proof. By Proposition 2.6, it is enough to show that G is soluble. Suppose that G
is not soluble. Of course, we may assume that G is a counterexample of minimal
order. Then every proper subgroup K of G is soluble: indeed, K/w(K) is nilpotent
[7, Satz 6.1] and so is w(K) by Proposition 2.6. It follows that G = G′.
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Let R be the soluble radical of G, that is, the subgroup of G generated by all
normal soluble subgroups of G. Then G/R is a nonabelian simple group and, by
Proposition 2.6, w(R) is nilpotent. We claim that R = Z(G). Choose q ∈ π(F(G))
and let Q be the Sylow q-subgroup of F(G). According to Lemma 2.9, the group G
is generated by w-values of p-power order for primes p , q. Also, by Lemma 2.4,
[Q, x] = 1 for every w-value x of q′-order. Thus, Q ≤ Z(G). This happens for
each choice of q ∈ π(F(G)), so that F(G) = Z(G). Since w(R) ≤ F(G), we have
[xi1 , . . . , xik , y] = 1 for every xi1 , . . . , xik , y ∈ R. Hence, R is nilpotent [7, Satz 6.1] and
therefore R ≤ F(G). In particular, R = Z(G).

Next, we prove that G contains a w-value x such that x is a 2-element of order 2
modulo Z(G). First, notice that G/Z(G) is a finite minimal simple group. Then, by
Proposition 2.8, G/Z(G) has a subgroup

H/Z(G) = A/Z(G) o T/Z(G),

where A/Z(G) is an elementary abelian 2-group and T/Z(G) is a group of odd order
such that

A/Z(G) = [A/Z(G), k−1T/Z(G)].

Let P be the Sylow 2-subgroup of A. Thus, x = [a, k−1t], for some a ∈ P and t ∈ T , is
a w-value, as desired.

Now take x ∈ Gw with the above properties. By Lemma 2.7, there exists an element
g ∈ G such that the order of [x, g] is an odd prime. Since

1 = [x2, g] = [x, g]x[x, g],

x inverts [x, g] and so, by Lemma 2.4, [〈[x, g]〉, x] = 1. This gives [x, g] = 1, which is
a contradiction. �

3. Proof of Corollary 1.3

Following [5], we say that a word w implies virtual nilpotency if every finitely
generated metabelian group, where w is a law, has a nilpotent subgroup of finite index.
Since finitely generated n-Engel groups are nilpotent (see [10, Part 2, Theorem 7.3.5]),
the Engel words imply virtual nilpotency. More generally, this is true for simple
commutator words.

Lemma 3.1. Let w = [xi1 , . . . , xin ] be a simple commutator word and let G be a
metabelian group such that w(G) = 1. Then G is n-Engel.

Proof. Since G is metabelian, we have [c, xi j , xik ] = [c, xik , xi j ] for every c ∈ G′. Then,
without loss of generality, we may assume that

w = [xi1 , . . . , xim , n−mxi1 ],

where 1 < m < n and i1 , i j for every j ∈ {2, . . . ,m}. Thus, for any x, y ∈ G, taking
xi1 = y[x, y] and xi2 = · · · = xim = y, we have [x, ny] = 1 and therefore G is n-Engel. �
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Corollary 3.2. Every simple commutator word implies virtual nilpotency.

A word w is said to be boundedly concise in a class of groups C if for every integer
m there exists a number ν = ν(C,w,m) such that whenever |Gw| ≤ m for a group G ∈ C
it always follows that |w(G)| ≤ ν. According to [5, Theorem 1.2], words implying
virtual nilpotency are boundedly concise in residually finite groups. This, together
with Corollary 3.2, yields the following corollary.

Corollary 3.3. Every simple commutator word is boundedly concise in the class of
residually finite groups.

Proof of Corollary 1.3. Of course, w(G) is finite, by Corollary 3.2. Let us show
that w(G) is nilpotent whenever |ab| = |a||b| for any a, b ∈ Gw of coprime orders. The
converse is clear.

Since G is residually finite, there exists a normal subgroup N of G such that
N ∩ w(G) = 1 and G/N is finite. Notice that for any w-value xN ∈ G/N, we have
x ∈ Gw and |xN | = |x|. It follows that G/N satisfies the hypotheses of Theorem 1.2 and
therefore w(G/N) ' w(G) is nilpotent. �

4. Examples

In this section we collect some examples showing that Theorem 1.2 does not hold
for an arbitrary commutator word.

Example 4.1. Let w = [x, y]3 and let G = (S × S ) o C, where S is the symmetric
group of degree 3, C = 〈g〉 is the cyclic group of order 2 and the action is given by
(a, b)g = (b, a) for every (a, b) ∈ S × S . Then every nontrivial w-value has order 2 and
w(G) = S × S .

Example 4.2. Let w = [x, y10, y10, y10] and let G be the alternating group of degree 5.
Then Gw consists of the identity and all products of two transpositions. In particular,
w(G) = G.

Proof. Of course, Gw is the set of all commutators [g, h, h, h], where g, h ∈ G and h is
a 3-cycle. Since [g, h, h] = (h−1)[g,h]h,

[g, h, h, h] = [(h−1)[g,h], h]h = [(h−1)(h−1)gh, h]h = [(h−1)k, h]h−1
,

where k = (h−1)g is a 3-cycle. For any 3-cycles h, k ∈ G, we claim that [(h−1)k, h]
is either trivial or a product of two transpositions, from which it follows that so is
[(h−1)k, h]h−1

.
Let h = (a b c) and k = (d e f ). Clearly, we may assume that a = d. Furthermore, it

is enough to consider the cases:

(1) b = e and c , f ;
(2) e, f < {b, c}.
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The other (nontrivial) cases can be deduced by applying the identities

[(h−1)k, h]−(h−1)kh−1k−1
= [((h−1)k)−1, h−1]−k−1

= [(h−1)k−1
, h],

[(h−1)k, h]hkk−1
= [(hk)−1, h]hkk−1

= [hk, h]−k−1
= [hk−1

, h].

Now, in the first case, h and k belong to the alternating group of degree 4 and
therefore [(h−1)k, h] is the product of two transpositions. In the second case,

[(h−1)k, h] = [(a c b)(a e f ), (a b c)] = [(b e c), (a b c)] = (a c)(b e).

This proves our claim. Also, it implies that Gw contains all products of two
transpositions. �

Example 4.3 (see [9, Theorem 1.2]). For every n ≥ 7, there exists a commutator word v
such that, for w = v10, the set of w-values of the alternating group of degree n consists
of the identity and all 3-cycles.
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