Bull. Aust. Math. Soc. 100 (2019), 281–289 doi:10.1017/S0004972719000054

A NILPOTENCY CRITERION FOR SOME VERBAL SUBGROUPS

CARMINE [MONETTA](https://orcid.org/0000-0002-5426-1260) \mathbb{Z} and ANTONIO [TORTORA](https://orcid.org/0000-0002-4825-1672)

(Received 5 December 2018; accepted 14 December 2018; first published online 27 February 2019)

Abstract

The word $w = [x_{i_1}, x_{i_2}, \dots, x_{i_k}]$ is a simple commutator word if $k \ge 2$, $i_1 \ne i_2$ and $i_j \in \{1, \dots, m\}$ for some $m > 1$. For a finite group G, we prove that if $i_1 \ne i$, for every $i \ne 1$, then the verbal subgroup corr $m > 1$. For a finite group *G*, we prove that if $i_1 \neq i_j$ for every $j \neq 1$, then the verbal subgroup corresponding to *w* is nilpotent if and only if $|ab| = |a||b|$ for any *w*-values $a, b \in G$ of coprime orders. We also extend the result to a residually finite group *G*, provided that the set of all *w*-values in *G* is finite.

2010 *Mathematics subject classification*: primary 20F18; secondary 20F45. *Keywords and phrases*: nilpotent, Engel word, verbal subgroup.

1. Introduction

Let *F* be the free group on free generators x_1, \ldots, x_m for some $m > 1$. A group word is any nontrivial element of F , that is, a product of finitely many x_i and their inverses. The elements of the commutator subgroup of *F* are called commutator words. We say that the commutator word

$$
[x_{i_1}, x_{i_2}, \ldots, x_{i_k}] = [\ldots [[x_{i_1}, x_{i_2}], x_{i_3}], \ldots, x_{i_k}]
$$

is a *simple commutator word* if $k \geq 2$, $i_1 \neq i_2$ and $i_j \in \{1, \ldots, m\}$ for every $j \in \{1, \ldots, k\}$. Examples of simple commutator words are the lower central words and the *n*-Engel word

$$
[x, y] = [x, \underbrace{y, \dots, y}_{n}].
$$

Let $w = w(x_1, \ldots, x_k)$ be a group word in the variables x_1, \ldots, x_k . For any group *G* and arbitrary $g_1, \ldots, g_k \in G$, the elements of the form $w(g_1, \ldots, g_k)$ are called the *w*-values in *G*. We denote by G_w the set of all *w*-values in *G*. The verbal subgroup of *G* corresponding to *w* is the (normal) subgroup $w(G)$ of *G* generated by G_w . If $w(G) = 1$, then *w* is said to be a law in *G*.

Recently the following question has been considered in [\[2\]](#page-7-0) (see also [\[3\]](#page-7-1)).

The authors are members of National Group for Algebraic and Geometric Structures and their Applications (GNSAGA–INdAM).

c 2019 Australian Mathematical Publishing Association Inc.

Question 1.1. Let *w* be a commutator word and let *G* be a finite group with the property that $|ab| = |a||b|$ for any $a, b \in G_w$ of coprime orders. Is the verbal subgroup $w(G)$ nilpotent? (Here |*x*| stands for the order of the element $x \in G$.)

As remarked in [\[2\]](#page-7-0), by a result of Kassabov and Nikolov [\[9\]](#page-7-2), this is not true in general (see Example [4.3\)](#page-7-3). Two easier counterexamples are given in Section [4.](#page-6-0) On the other hand, the answer to the above question is positive when w is a lower central word $[1, 2]$ $[1, 2]$ $[1, 2]$. Motivated by this, we prove the following nilpotency criterion for $w(G)$, where *w* is a simple commutator word without any repetition of the first variable.

THEOREM 1.2. Let $w = [x_{i_1}, \ldots, x_{i_k}]$ be a simple commutator word with $i_1 \neq i_j$ for every $i \in \{2, \ldots, k\}$ and let G be a finite group. Then $w(G)$ is nilpotent if and only *every* $j \in \{2, \ldots, k\}$ *and let G be a finite group. Then w(G) is nilpotent if and only* $if |ab| = |a||b|$ *for any a*, $b \in G_w$ *of coprime orders.*

We also extend Theorem [1.2](#page-1-0) to a residually finite group *G*, provided that the set of all *w*-values in *G* is finite.

COROLLARY 1.3. Let $w = [x_{i_1}, \ldots, x_{i_k}]$ be a simple commutator word with $i_1 \neq i_j$ for every $i \in \{2, \ldots, k\}$ and let G be a residually finite group in which G is finite. Then *every* $j \in \{2, \ldots, k\}$ *and let G be a residually finite group in which* G_w *is finite. Then w*(*G*) *is finite and it is nilpotent if and only if* $|ab| = |a||b|$ *<i>for any a, b* $\in G_w$ *of coprime orders.*

Recall that a group is residually finite if the intersection of its subgroups of finite index is trivial. Notice also that in Corollary [1.3](#page-1-1) the finiteness of G_w depends on the conciseness of the word *w* in the class of residually finite groups (see Section [3\)](#page-5-0). This is related to a question of P. Hall on words assuming only finitely many values in a group (see $[10, Part 1, page 119]$ $[10, Part 1, page 119]$).

2. Proof of Theorem [1.2](#page-1-0)

The aim of this section is to prove the 'if' part of Theorem [1.2,](#page-1-0) since the 'only if' part is clear. We split the proof into two cases, depending on whether the finite group *G* is soluble or not. In particular, we will show that only the soluble case can occur.

2.1. The soluble case. If *G* is a finite soluble group, the Fitting height of *G* is the least integer *h* such that $F_h(G) = G$, where $F_0(G) = 1$ and $F_i(G)/F_{i-1}(G) =$ *F*(*G*/*F*_{*i*−1}(*G*)) is the Fitting subgroup of *G*/*F*_{*i*−1}(*G*) for every *i* ≥ 1. A finite soluble group with Fitting height at most 2 is said to be metanilpotent.

The following lemma is well known (see [\[1,](#page-7-4) Lemma 3] for a proof).

Lemma 2.1. *Let G be a finite metanilpotent group with Fitting subgroup F*(*G*)*. For p a prime, denote by* $O_{p'}(G)$ *the maximal normal subgroup of* G *of order coprime to p. If* $x \in G$ *is a p-element such that* $[O_{p'}(F(G)), x] = 1$ *, then* $x \in F(G)$ *.*

A subgroup *H* of a finite group *G* is called a tower of height *h* if *H* can be written as a product $H = P_1 \cdots P_h$, where:

(1) P_i is a p_i -group (p_i a prime) for $i = 1, ..., h$;

(2) P_i normalises P_j for $i < j$;

(3) $[P_i, P_{i-1}] = P_i$ for $i = 2, ..., h$.

It follows from (3) that $p_i \neq p_{i+1}$ for $i = 1, \ldots, h-1$.

The next lemma is taken from [\[14,](#page-7-6) Lemma 1.9].

Lemma 2.2. *A finite soluble group G has Fitting height at least h if and only if G has a tower of height h.*

Given two nonempty subsets *X* and *Y* of a group *G*, let

$$
[X, {}_{n}Y] = [[X, {}_{n-1}Y], Y],
$$

where $n \ge 2$ and $[X, Y]$ is the commutator subgroup of *X* and *Y*. We write $[X, nY]$ when $Y = \{y\}$. Then, assuming that *X* is normalised by *y*, it is easy to see that

$$
[X, \, _n y] = [X, \, _n \langle y \rangle]
$$

for every $n \geq 1$.

The next lemma is a straightforward corollary of [\[6,](#page-7-7) Theorem 5.3.6].

Lemma 2.3. *For p a prime, let P be a p-subgroup of a finite group G. Suppose that P is normalised by an element* $x \in G$ *of p'*-*order. Then*

$$
[P, x] = [P, x, x].
$$

LEMMA 2.4. *Let* $w = [x_{i_1}, \ldots, x_{i_k}]$ *be a simple commutator word with* $i_1 \neq i_j$ *for every* $i \in \{2, \ldots, k\}$ and let G be a finite group in which $|ab| = |a||b|$ for any w-values $a, b \in G$ *j* ∈ {2, . . . , *k*} *and let G be a finite group in which* $|ab| = |a||b|$ *for any w-values a, b* ∈ *G of coprime orders. For p a prime, let P be a p-subgroup of G normalised by a w-value* $x \in G$ *of p'*-*order. Then* [*P*, *x*] = 1*.*

PROOF. By Lemma [2.3,](#page-2-0)

$$
[P, x^{-1}] = [P, k_{-1}x^{-1}];
$$

thus, the result will follow once it is shown that $N = [P, k-1x^{-1}] = 1$.

Let $[a_{k-1}, x^{-1}] \in N$ for some $a \in P$. Of course, the orders of the

Let $[g, k-1x^{-1}] \in N$ for some $g \in P$. Of course, the orders of the *w*-values *x* and $f(x) = x^{-1}$ are contined then by hypothesis [$g, k_{-1}x^{-1}$] are coprime. Then, by hypothesis,

$$
|[g, k_{-1}x^{-1}]x| = |[g, k_{-1}x^{-1}]||x|.
$$

However,

$$
[g, k_{-1}x^{-1}]x = [g, k_{-2}x^{-1}]^{-1}x[g, k_{-2}x^{-1}]
$$

is a conjugate of *x*. So, $|[g, k-1]x^{-1}]x| = |x|$ and consequently $[g, k-1]x^{-1}] = 1$. □

LEMMA 2.5. *Let* $w = [x_{i_1}, \ldots, x_{i_k}]$ *be a simple commutator word and let* $G = A \times B$ *be* an arbitrary group. Then $w(G) = w(A) \times w(B)$ *an arbitrary group. Then* $w(G) = w(A) \times w(B)$.

PROOF. By induction on *n*,

$$
[a_{i_1}b_{i_1},\ldots,a_{i_k}b_{i_k}] = [a_{i_1},\ldots,a_{i_k}][b_{i_1},\ldots,b_{i_k}]
$$

for every $a_{i_1}, \ldots, a_{i_k} \in A$ and every $b_{i_1}, \ldots, b_{i_k} \in B$.

We are now able to prove the announced result for soluble groups.

PROPOSITION 2.6. Let $w = [x_{i_1}, \ldots, x_{i_k}]$ be a simple commutator word with $i_1 \neq i_j$ for a simple commutator word with $i_1 \neq i_j$ for a simple soluble group in which $|ab| = |a||b|$ for any *every* $j \in \{2, \ldots, k\}$ *and let G be a finite soluble group in which* $|ab| = |a||b|$ *for any* $a, b \in G_w$ *of coprime orders. Then* $w(G)$ *is nilpotent.*

Proof. Let *h* be the Fitting height of *G*. Firstly, we show that $h \leq 2$. Suppose by way of contradiction that $h \geq 3$. Then, by Lemma [2.2,](#page-2-1) there exists a tower

$$
P_1P_2P_3\cdots P_h
$$

of height *h* in *G*. Since $P_2 = [P_2, P_1]$ and $P_3 = [P_3, P_2]$,

$$
P_3 = [P_3, [P_2, P_1]].
$$

Furthermore, by Lemma [2.3,](#page-2-0)

$$
[P_2, x] = [P_2, k_{-1}x]
$$

for every $x \in P_1$. Hence, $[P_2, x]$ is generated by *w*-values of p_2 -orders. Applying Lemma [2.4,](#page-2-2) we deduce that P_3 commutes with $[P_2, x]$. Thus,

$$
[P_3,[P_2,P_1]] = 1,
$$

which is impossible.

Now let $h = 2$, the case $h = 1$ being obvious. Denote by F the Fitting subgroup of *G*. If $w(G) \leq F$, we are done. Suppose that $w(G)$ is not contained in *F*. Since G/F is nilpotent, by Lemma [2.5,](#page-2-3) there exists a Sylow *p*-subgroup *P* of *G* such that $w(P/F) =$ $w(P)F/F$ is nontrivial. Let $x \in w(P)$ be a *w*-value which does not belong to *F*. Then $[O_{p'}(F), x] = 1$, by Lemma [2.4,](#page-2-2) from which it follows that $x \in F$, by Lemma [2.1,](#page-1-2) which is a contradiction is a contradiction.

2.2. The general case. The following lemma is a well-known consequence of the Baer–Suzuki theorem (see, for instance, [\[8,](#page-7-8) Theorem 2.13]).

Lemma 2.7. *Let G be a finite nonabelian simple group. If x is an element of G of order* 2, then there exists $g \in G$ such that $[x, g]$ has odd prime order.

We will require a property of finite simple groups whose proper subgroups are soluble. These groups have been classified by Thompson in [\[13\]](#page-7-9) and they are known as finite minimal simple groups.

Proposition 2.8. *Let G be a finite minimal simple group. Then G contains a subgroup* $H = A \times T$, where A is an elementary abelian 2-group and T is a subgroup of odd *order such that* $C_A(T) = 1$ *. Further,* $A = [A, T]$ *.*

Proof. According to Thompson's classification [\[13,](#page-7-9) Corollary 1], the group *G* is isomorphic to one of the following groups:

- (1) PSL(2, 2^p), where *p* is any prime;
(2) PSL(2, 2^p), where *p* is any odd pr
- (2) PSL(2, 3^p), where *p* is any odd prime;

(3) PSL(2, *p*), where $p > 3$ is any prime such that $p^2 + 1 \equiv 0 \pmod{5}$;
(4) PSI (3, 3).

- (4) PSL(3, 3);
(5) Sz(2^{*p*}), wh
- (5) Sz (2^p) , where *p* is any odd prime.

Since the groups in (2), (3) and (4) have a subgroup isomorphic to the alternating group of degree 4 (see, for instance, $[12,$ Theorem 6.26] and $[4,$ Theorem 7.1(2)]), we may consider the other two cases.

If *G* is isomorphic to PSL(2, 2^{*p*}), then [\[12,](#page-7-10) Theorem 6.25] shows that *G* contains a
phenius group $H = A \rtimes T$ where *A* is an elementary abelian 2-group of order *a* and Frobenius group $H = A \times T$, where *A* is an elementary abelian 2-group of order *q* and *T* is a cyclic group of order *q* − 1.

If G is isomorphic to the Suzuki group $Sz(2^p)$, then G contains a Frobenius group $F = Q \rtimes T$, where Q is a Sylow 2-subgroup of G of order 2^{2p} and T is a cyclic subgroup of order 2*^p* − 1 (see [\[11,](#page-7-12) Theorem 9]). Thus, taking *A* to be a minimal normal subgroup of *F* contained in *Q*, the subgroup $H = A \times T$ is as required.

Finally, notice that in both cases we have $A = [A, T]$ by [\[6,](#page-7-7) Theorem 5.2.3].

LEMMA 2.9. *Let* $w = [x_{i_1}, \ldots, x_{i_k}]$ *be a simple commutator word with* $i_1 \neq i_j$ *for every* $i \in \{2, \ldots, k\}$ and let G be a finite group such that $G = G'$. If $a \in \pi(G)$ then G is $j \in \{2, \ldots, k\}$ and let *G* be a finite group such that $G = G'$. If $q \in \pi(G)$, then *G* is
generated by w-values of n-nower order for primes $p \neq q$ *generated by w-values of p-power order for primes* $p \neq q$ *.*

Proof. For each prime $p \in \pi(G) \setminus \{q\}$, denote by N_p the subgroup of *G* generated by all *w*-values of *p*-power order. Let us show that each Sylow *p*-subgroup of *G* is contained in *Np*. Suppose that this is false and choose *p* such that a Sylow *p*-subgroup of *G* is not contained in N_p . Of course, N_p is a normal subgroup of *G*. We may pass to the quotient G/N_p and assume that $N_p = 1$. Since $G = G'$, it is clear that *G* does not possess a normal *n*-complement. Thus the Frobenius theorem (see [6] Theorem 7.4.51) implies normal *p*-complement. Thus, the Frobenius theorem (see [\[6,](#page-7-7) Theorem 7.4.5]) implies that *G* has a *p*-subgroup *H* and a *p*'-element $a \in N_G(H)$ such that $[H, a] \neq 1$. By Lemma [2.3,](#page-2-0)

$$
1 \neq [H, a] = [H, {}_{k-1}a] \leq N_p,
$$

which is a contradiction. Hence, N_p contains the Sylow p -subgroups of G . Let T be the product of all subgroups N_p , with $p \neq q$. Then G/T is a q-group and, since $G = G'$, we conclude that $G = T$. It follows that G can be generated by w-values of *n*-nower we conclude that $G = T$. It follows that *G* can be generated by *w*-values of *p*-power order for $p \neq q$.

In order to complete the proof of Theorem [1.2,](#page-1-0) we recall that if a simple commutator word is a law in a finite group *G*, then *G* is nilpotent [\[7\]](#page-7-13).

PROPOSITION 2.10. Let $w = [x_{i_1}, \ldots, x_{i_k}]$ be a simple commutator word with $i_1 \neq i_j$ for every $i \in \{2, \ldots, k\}$ and let G be a finite aroun in which $|ab| = |a||b|$ for any $a, b \in G$ *every* $j \in \{2, \ldots, k\}$ *and let G be a finite group in which* $|ab| = |a||b|$ *for any a, b* $\in G_w$ *of coprime orders. Then G is soluble and w*(*G*) *is nilpotent.*

Proof. By Proposition [2.6,](#page-3-0) it is enough to show that *G* is soluble. Suppose that *G* is not soluble. Of course, we may assume that G is a counterexample of minimal order. Then every proper subgroup *K* of *G* is soluble: indeed, $K/w(K)$ is nilpotent [\[7,](#page-7-13) Satz 6.1] and so is $w(K)$ by Proposition [2.6.](#page-3-0) It follows that $G = G'$.

286 C. Monetta and A. Tortora **C.** Monetta and A. Tortora

Let *R* be the soluble radical of *G*, that is, the subgroup of *G* generated by all normal soluble subgroups of *G*. Then *G*/*R* is a nonabelian simple group and, by
Proposition 2.6 $w(R)$ is nilpotent. We claim that $R = Z(G)$. Choose $q \in \pi(F(G))$ Proposition [2.6,](#page-3-0) $w(R)$ is nilpotent. We claim that $R = Z(G)$. Choose $q \in \pi(F(G))$
and let *O* be the Sylow *a*-subgroup of $F(G)$. According to Lemma 2.9, the group *G* and let *Q* be the Sylow *q*-subgroup of *F*(*G*). According to Lemma [2.9,](#page-4-0) the group *G* is generated by *w*-values of *p*-power order for primes $p \neq q$. Also, by Lemma [2.4,](#page-2-2) $[Q, x] = 1$ for every *w*-value *x* of *q*'-order. Thus, $Q \leq Z(G)$. This happens for each choice of $a \in \pi(F(G))$ so that $F(G) = Z(G)$. Since $w(R) \leq F(G)$ we have each choice of $q \in \pi(F(G))$, so that $F(G) = Z(G)$. Since $w(R) \leq F(G)$, we have $[x_{i_1},...,x_{i_k}, y] = 1$ for every $x_{i_1},...,x_{i_k}, y \in R$. Hence, *R* is nilpotent [\[7,](#page-7-13) Satz 6.1] and therefore *R* < *F*(*G*) In particular *R* = *7*(*G*) therefore $R \leq F(G)$. In particular, $R = Z(G)$.

Next, we prove that *G* contains a *w*-value *x* such that *x* is a 2-element of order 2 modulo $Z(G)$. First, notice that $G/Z(G)$ is a finite minimal simple group. Then, by Proposition [2.8,](#page-3-1) *^G*/*Z*(*G*) has a subgroup

$$
H/Z(G) = A/Z(G) \rtimes T/Z(G),
$$

where $A/Z(G)$ is an elementary abelian 2-group and $T/Z(G)$ is a group of odd order such that

$$
A/Z(G) = [A/Z(G), k_{-1}T/Z(G)].
$$

Let *P* be the Sylow 2-subgroup of *A*. Thus, $x = [a, k-1]$, for some $a \in P$ and $t \in T$, is a *w*-value, as desired.

Now take $x \in G_w$ with the above properties. By Lemma [2.7,](#page-3-2) there exists an element $g \in G$ such that the order of $[x, g]$ is an odd prime. Since

$$
1 = [x^2, g] = [x, g]^x [x, g],
$$

x inverts [*x*, *g*] and so, by Lemma [2.4,](#page-2-2) [$\langle [x, g] \rangle$, *x*] = 1. This gives [*x*, *g*] = 1, which is a contradiction. a contradiction.

3. Proof of Corollary [1.3](#page-1-1)

Following [\[5\]](#page-7-14), we say that a word *w* implies virtual nilpotency if every finitely generated metabelian group, where *w* is a law, has a nilpotent subgroup of finite index. Since finitely generated *n*-Engel groups are nilpotent (see [\[10,](#page-7-5) Part 2, Theorem 7.3.5]), the Engel words imply virtual nilpotency. More generally, this is true for simple commutator words.

LEMMA 3.1. Let $w = [x_{i_1}, \ldots, x_{i_n}]$ be a simple commutator word and let G be a
metabelian group such that $w(G) = 1$. Then G is n-Engel *metabelian group such that* $w(G) = 1$ *. Then G is n-Engel.*

Proof. Since *G* is metabelian, we have $[c, x_{i_j}, x_{i_k}] = [c, x_{i_k}, x_{i_j}]$ for every $c \in G'$. Then, without loss of generality we may assume that without loss of generality, we may assume that

$$
w = [x_{i_1}, \ldots, x_{i_m}, \, \ldots, x_{i_1}],
$$

where $1 < m < n$ and $i_1 \neq i_j$ for every $j \in \{2, ..., m\}$. Thus, for any $x, y \in G$, taking $x_{i_1} = y[x, y]$ and $x_{i_2} = \cdots = x_{i_m} = y$, we have [x, *ny*] = 1 and therefore *G* is *n*-Engel. \Box

[7] A nilpotency criterion for some verbal subgroups 287

Corollary 3.2. *Every simple commutator word implies virtual nilpotency.*

A word *w* is said to be boundedly concise in a class of groups C if for every integer *m* there exists a number $v = v(C, w, m)$ such that whenever $|G_w| \le m$ for a group $G \in C$ it always follows that $|w(G)| \leq v$. According to [\[5,](#page-7-14) Theorem 1.2], words implying virtual nilpotency are boundedly concise in residually finite groups. This, together with Corollary [3.2,](#page-5-1) yields the following corollary.

Corollary 3.3. *Every simple commutator word is boundedly concise in the class of residually finite groups.*

Proof of Corollary [1.3.](#page-1-1) Of course, $w(G)$ is finite, by Corollary [3.2.](#page-5-1) Let us show that $w(G)$ is nilpotent whenever $|ab| = |a||b|$ for any $a, b \in G_w$ of coprime orders. The converse is clear.

Since *G* is residually finite, there exists a normal subgroup *N* of *G* such that $N \cap w(G) = 1$ and G/N is finite. Notice that for any *w*-value $xN \in G/N$, we have $x \in G_w$ and $|xN| = |x|$. It follows that *G*/*N* satisfies the hypotheses of Theorem [1.2](#page-1-0) and therefore $w(G/N) \simeq w(G)$ is nilpotent. therefore $w(G/N) \simeq w(G)$ is nilpotent.

4. Examples

In this section we collect some examples showing that Theorem [1.2](#page-1-0) does not hold for an arbitrary commutator word.

EXAMPLE 4.1. Let $w = [x, y]^3$ and let $G = (S \times S) \rtimes C$, where *S* is the symmetric group of degree 3 $C = \langle \circ \rangle$ is the cyclic group of order 2 and the action is given by group of degree 3, $C = \langle g \rangle$ is the cyclic group of order 2 and the action is given by $(a, b)^g = (b, a)$ for every $(a, b) \in S \times S$. Then every nontrivial *w*-value has order 2 and $w(G) = S \times S$ $w(G) = S \times S$.

EXAMPLE 4.2. Let $w = [x, y^{10}, y^{10}, y^{10}]$ and let *G* be the alternating group of degree 5.
Then *G* consists of the identity and all products of two transpositions. In particular Then G_w consists of the identity and all products of two transpositions. In particular, $w(G) = G$.

Proof. Of course, G_w is the set of all commutators $[g, h, h, h]$, where $g, h \in G$ and h is a 3-cycle. Since $[g, h, h] = (h^{-1})^{[g, h]}h$,

$$
[g, h, h, h] = [(h^{-1})^{[g, h]}, h]^h = [(h^{-1})^{(h^{-1})^{g}h}, h]^h = [(h^{-1})^k, h]^{h^{-1}},
$$

where $k = (h^{-1})^g$ is a 3-cycle. For any 3-cycles $h, k \in G$, we claim that $[(h^{-1})^k, h]$
is either trivial or a product of two transpositions, from which it follows that so is is either trivial or a product of two transpositions, from which it follows that so is $[(h^{-1})^k, h]^{h^{-1}}.$
Let $h = (a$

Let $h = (a \, b \, c)$ and $k = (d \, e \, f)$. Clearly, we may assume that $a = d$. Furthermore, it is enough to consider the cases:

- (1) $b = e$ and $c \neq f$;
- (2) *e*, $f \notin \{b, c\}.$

The other (nontrivial) cases can be deduced by applying the identities

$$
[(h^{-1})^k, h]^{-(h^{-1})^k h^{-1} k^{-1}} = [((h^{-1})^k)^{-1}, h^{-1}]^{-k^{-1}} = [(h^{-1})^{k^{-1}}, h],
$$

$$
[(h^{-1})^k, h]^{h^k k^{-1}} = [(h^k)^{-1}, h]^{h^k k^{-1}} = [h^k, h]^{-k^{-1}} = [h^{k^{-1}}, h].
$$

Now, in the first case, *h* and *k* belong to the alternating group of degree 4 and therefore $[(h^{-1})^k, h]$ is the product of two transpositions. In the second case,

$$
[(h^{-1})^k, h] = [(a \ c \ b)^{(a \ e \ f)}, (a \ b \ c)] = [(b \ e \ c), (a \ b \ c)] = (a \ c)(b \ e).
$$

This proves our claim. Also, it implies that G_w contains all products of two transpositions.

EXAMPLE 4.3 (see [\[9,](#page-7-2) Theorem 1.2]). For every $n \ge 7$, there exists a commutator word *v* such that, for $w = v^{10}$, the set of *w*-values of the alternating group of degree *n* consists of the identity and all 3-cycles.

References

- [1] R. Bastos, C. Monetta and P. Shumyatsky, 'A criterion for metanilpotency of a finite group', *J. Group Theory* 21(4) (2018), 713–718.
- [2] R. Bastos and P. Shumyatsky, 'A sufficient condition for nilpotency of the commutator subgroup', *Sib. Math. J.* 57(5) (2016), 762–763.
- [3] B. Baumslag and J. Wiegold, 'A sufficient condition for nilpotency in a finite group', Preprint, 2014, [arXiv:1411.2877](http://www.arxiv.org/abs/1411.2877) [math.GR].
- [4] D. M. Bloom, 'The subgroups of PSL(3, *^q*) for odd *^q*', *Trans. Amer. Math. Soc.* ¹²⁷ (1967), 150–178.
- [5] E. Detomi, M. Morigi and P. Shumyatsky, 'Words of Engel type are concise in residually finite groups', *Bull. Math. Sci.* (2018), to appear.
- [6] D. Gorenstein, *Finite Groups*, 2nd edn (Chelsea, New York, 1980).
- [7] B. Huppert, *Endliche Gruppen I* (Springer, Berlin–New York, 1967).
- [8] I. M. Isaacs, *Finite Group Theory*, Graduate Studies in Mathematics, 92 (American Mathematical Society, Providence, RI, 2008).
- [9] M. Kassabov and N. Nikolov, 'Words with few values in finite simple groups', *Q. J. Math.* 64(4) (2013), 1161–1166.
- [10] D. J. S. Robinson, *Finiteness Conditions and Generalized Soluble Groups, Parts 1 and 2* (Springer, Berlin, 1972).
- [11] M. Suzuki, 'On a class of doubly transitive groups', *Ann. of Math. (2)* 75 (1962), 105–145.
- [12] M. Suzuki, *Group Theory I* (Springer, Berlin–New York, 1982).
- [13] J. G. Thompson, 'Nonsolvable finite groups all of whose local subgroups are solvable', *Bull. Amer. Math. Soc.* 74 (1968), 383–437.
- [14] A. Turull, 'Fitting height of groups and of fixed points', *J. Algebra* 86(2) (1984), 555–566.

CARMINE [MONETTA,](https://orcid.org/0000-0002-5426-1260) Dipartimento di Matematica,

Universita di Salerno, Via Giovanni Paolo II, 132, ` 84084 Fisciano (SA), Italy e-mail: cmonetta@unisa.it

ANTONIO [TORTORA,](https://orcid.org/0000-0002-4825-1672) Dipartimento di Matematica, Universita di Salerno, Via Giovanni Paolo II, 132, ` 84084 Fisciano (SA), Italy and Dipartimento di Matematica e Fisica, Universita della Campania 'Luigi Vanvitelli' Viale Lincoln, 5, ` 81100 Caserta (CE), Italy e-mail: [antortora@unisa.it,](mailto:antortora@unisa.it) antonio.tortora@unicampania.it