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Abstract. For a continuous Nd or Zd action on a compact space, we introduce the notion
of Bohr chaoticity, which is an invariant of topological conjugacy and which is proved
stronger than having positive entropy. We prove that all principal algebraic Z actions of
positive entropy are Bohr chaotic. The same is proved for principal algebraic actions of Zd

with positive entropy under the condition of existence of summable homoclinic points.
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1. Introduction
Bohr chaoticity is a topological invariant introduced in [9] for topological dynamical
systems. For defining this invariant, we recall that a sequence w = (wn)n≥0 ∈ �∞(N, C)
is a non-trivial weight sequence if
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lim sup
N→∞

1
N

N−1∑
n=0

|wn| > 0. (1.1)

A non-trivial weight sequence w is orthogonal to a topological dynamical system (X, T ) if

lim
N→∞

1
N

N−1∑
n=0

wnf (T
nx) = 0 (1.2)

for every continuous function f ∈ C(X) and every x ∈ X.

Definition 1.1. [9] A topological dynamical system (X, T ) is Bohr chaotic if it is
non-orthogonal to every non-trivial weight sequence w ∈ �∞(N, C). In other words,
(X, T ) is Bohr chaotic if we can find, for every non-trivial weight sequence w ∈ �∞(N, C),
a continuous function g ∈ C(X) and a point x ∈ X such that

lim sup
N→∞

1
N

∣∣∣∣N−1∑
n=0

wng(T
nx)

∣∣∣∣ > 0. (1.3)

Bohr chaotic systems must have positive entropy: for example, almost all ( 1
2 , 1

2 )

Bernoulli sequences taking values −1 and 1 are orthogonal to every topological dynamical
system (X, T ) with zero entropy (see [5]). We list some further basic results on Bohr
chaoticity, taken from [9]:
• any extension of a Bohr chaotic topological dynamical system is Bohr chaotic;
• if a topological dynamical system (X, T ) has a non-empty, closed, T-invariant subset

Y ⊂ X such that (Y , T |Y ) is Bohr chaotic, then (X, T ) is Bohr chaotic;
• no uniquely ergodic dynamical system is Bohr chaotic (this is generalized by Tal [31]

to systems having at most countably many ergodic measures);
• all affine toral endomorphisms of positive entropy are Bohr chaotic;
• all systems having an m-order horseshoe, m ≥ 1, are Bohr chaotic. By an m-order

horseshoe K of a system (X, T ), we mean a T m-invariant closed non-empty setK ⊂ X

such that the subsystem (K , T m) is conjugate either to the one-sided shift ({0, 1}N, σ)
or to the two-sided shift ({0, 1}Z, σ);

• all subshifts of finite type with positive entropy are Bohr chaotic;
• all piecewise monotone C1 interval maps of positive entropy are Bohr chaotic. For

example, the β-shifts with β > 1;
• every C1+δ (δ > 0) diffeomorphism of a compact smooth manifold admitting an

ergodic non-atomic Borel probability invariant measure with non-zero Lyapunov
exponents is Bohr chaotic.

The reason for the last two classes is that any such system admits a subsystem which is
conjugate to a subshift of finite type of positive entropy [15, 32].

It is interesting to note that for the examples of Bohr chaotic systems constructed in [9],
the sets of points x ∈ X satisfying equation (1.3) are large in the sense that they are of full
Hausdorff dimension. Actually, weighted ergodic averages on typical dynamical systems
would be multifractal and a study on symbolic spaces is carried out in [7].
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In the present paper, we extend the notion of Bohr chaoticity from Z- to Zd -actions and
prove that a large class of algebraic dynamical systems—the so-called principal algebraic
actions—are Bohr chaotic, provided they have positive entropy.

By analogy with equation (1.1), we say that a complex sequence w = (wn)n∈Nd ∈
�∞(Nd , C) is a non-trivial weight if

lim sup
N→∞

1
Nd

∑
n∈[0,N−1]d

|wn| > 0.

Consider a continuous Nd - or Zd -action α : n �→ αn on some compact space X. As in
equation (1.2), say that a (non-trivial) weight (wn)n∈Nd is orthogonal to the dynamical
system (X, α) if

lim
N→∞

1
Nd

∑
n∈[0,N−1]d

wng(α
nx) = 0 (1.4)

for every continuous function g ∈ C(X) and every point x ∈ X.

Definition 1.2. If α is a continuous Nd - or Zd -action on a compact space X, we call (X, α)
Bohr chaotic if it is not orthogonal to any non-trivial weight, that is to say, if for any
non-trivial weight w = (wn)n∈Nd , there exist g ∈ C(X) and x ∈ X such that

lim sup
N→∞

1
Nd

∣∣∣∣ ∑
n∈[0,N−1]d

wng(α
nx)

∣∣∣∣ > 0. (1.5)

Note that if α is a continuous Nd -action on X and if (X̄, ᾱ) is the natural extension of
(X, α) to a continuous Zd -action ᾱ on a compact space X̄, then (X̄, ᾱ) is Bohr chaotic
if and only if the same is true for (X, α). Conversely, if a continuous Zd -action is Bohr
chaotic, it is obviously also Bohr chaotic as an Nd -action. In view of this last property,
we focus our attention in much of this paper on Bohr chaoticity of Zd -actions, referring to
Nd -actions only where necessary (like in Proposition 3.1 or Example 3.3).

As in the one-dimensional case, one can easily verify the following properties of
continuous Zd -actions (X, α):
(i) if X has a closed, α-invariant subset Y such that (Y , α|Y ) is Bohr chaotic, then (X, α)

is Bohr chaotic;
(ii) if (X, α) has a Bohr chaotic factor (Y , β) (that is, if (Y , β) is a Bohr chaotic

Zd -action and there exists a continuous, surjective, equivariant map φ : X → Y ),
then (X, α) is Bohr chaotic.

In particular, Bohr chaoticity is an invariant of topological conjugacy.
Our main results will be proved by using Riesz product measures borrowed from

harmonic analysis and the main technical tool is the notion of m-goodness.
The paper is organized as follows. In §2, we present algebraic Zd -actions and their

basic properties, state our main results on Bohr chaoticity of principal algebraic Zd -actions
(Theorems 2.1 and 2.3), and prove that Bohr chaotic algebraic Zd -actions have to have
completely positive entropy (Example 3.2). In §3, we show that zero-entropy Zd -actions
are not Bohr chaotic. Our main tool, Riesz products, is presented in §4 where lacunarity
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of polynomials is discussed. In §5, we prove that any principal algebraic Zd -action defined
by a so-called m-good polynomial is Bohr chaotic (Theorem 5.1). Section 6 is devoted
to the proof of m-goodness for all irreducible polynomials f ∈ R1 with positive Mahler
measure, and Theorem 2.1 (for d = 1) is proved there. Theorem 2.3 (for d ≥ 2) is proved
in §7, where we prove a gap theorem (Theorem 7.3) for irreducible polynomials which
admit summable homoclinic points. This gap theorem is of independent interest. In §8, we
speculate briefly on the necessity of our atorality assumptions for our main results and give
some examples of Bohr chaotic principal actions arising from toral polynomials.

2. Algebraic Zd -actions
In this section, we present the principal algebraic Zd -actions which are our main objects
of study and then state our main results (Theorems 2.1 and 2.3).

An algebraic Zd -action is an action of Zd by (continuous) automorphisms of a compact
metrizable abelian group. Algebraic Zd -actions provide a useful source of examples of
continuous Zd -actions with a wide range of properties, both with zero and with positive
entropy, and with or without Bohr chaoticity.

We are interested in a particular family of algebraic Zd -actions, the so-called cyclic
actions. Denote by σ the shift-action of Zd on TZ

d
given by

σm(x)n = xn+m (2.1)

for every x = (xn)n∈Zd ∈ TZ
d
. A cyclic algebraic Zd -action is a pair (X, αX), where

X ⊂ TZ
d

is a closed, shift-invariant subgroup and αX = σ |X is the restriction to X of
the shift-action σ in equation (2.1).

To describe these actions in more detail, we denote by Rd = Z[z±1
1 , . . . , z±1

d ] the
ring of Laurent polynomials in the variables z1, . . . , zd with coefficients in Z. Every
f ∈ Rd will be written as f = ∑

n∈Zd fnzn with fn ∈ Z and zn = z
n1
1 · · · zndd for every

n = (n1, . . . , nd) ∈ Zd . The set supp(f ) = {n ∈ Zd | fn 	= 0} will be called the support
of f, and we set ‖f ‖1 = ∑

n∈Zd |fn| and ‖f ‖∞ = maxn∈Zd |fn|. Following standard
terminology, we call a non-zero element f ∈ Rd primitive if the greatest common divisor
gcd({fn | n ∈ Zd}) of its coefficients is equal to 1, and irreducible if it is not a product of
two non-units in Rd . For example, 2zn is irreducible, but not primitive, while 2(1 + zn) is
neither primitive nor irreducible, for every n ∈ Zd .

Every non-zero f = ∑
n∈Zd fnzn ∈ Rd defines a surjective group homomorphism

f (σ) = ∑
m∈Zd fmσ

m : TZ
d → TZ

d
. Consider the closed, shift-invariant subgroup

Xf =
{
x ∈ TZ

d

∣∣∣∣ ∑
m∈Zd

xn+mfm = 0 (mod 1) for all n ∈ Zd
}

= ker(f (σ )) ⊂ TZ
d

,

(2.2)

and denote by

αf = σ |Xf (2.3)

the restriction toXf of the shift-action σ on TZ
d
. The dynamical system (Xf , αf ) is called

the principal algebraic action corresponding to f ∈ Rd .
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Formally we can extend this definition of a principal action (Xf , αf ) to include the
case f = 0, the zero polynomial in Rd . In this case, the definitions in equations (2.2)
and (2.3) reduce to Xf = TZ

d
and αf = σ , that is, (Xf , αf ) is simply the shift action of

Zd on TZ
d
.

For every cyclic algebraic action (X, αX) with X � TZ
d
, the set

IX = {f ∈ Rd | X ⊂ Xf } (2.4)

is an ideal in Rd (which is, of course, finitely generated since the ring Rd is Noetherian)
andX = ⋂

f∈IX Xf . Conversely, if I ⊂ Rd is an ideal, generated by {f (1), . . . , f (r)}, say,
we denote by (XI , αI ) the cyclic Zd -action defined by

XI =
⋂
f∈I

Xf =
r⋂
i=1

Xf (i) ⊂ TZ
d

and αI = σ |XI , (2.5)

and write λI for the normalized Haar measure of XI . If the ideal I ⊂ Rd is principal,
I = (f ), say, we write (Xf , αf ) instead of (X(f ), α(f )) and denote by λf the normalized
Haar measure on Xf .

2.1. Mahler measure. The topological entropy htop(αf ) of a principal algebraic action
(Xf , αf ), f ∈ Rd \ {0}, coincides with its measure-theoretic entropy hλf (αf ) and is given
by the (logarithmic) Mahler measure of its defining polynomial f :

htop(αf ) = m(f ) :=
∫ 1

0
· · ·

∫ 1

0
log |f (e2πit1 , . . . , e2πitd )| dt1 · · · dtd . (2.6)

For polynomials in a single variable (that is, for f ∈ R1), Mahler measure can be
computed using Jensen’s formula: let f (z) = f0 + f1z+ · · · + fkz

k with f0fk 	= 0 and
(complex) roots λ1, . . . , λk . Then

m(f ) = log |fk| +
∑

j : |λj |>1

log |λj | (2.7)

(cf. [21, p. 597], [29, equation (16.2)], or [33]). The Kronecker lemma [17] states that if a
polynomial f ∈ R1 is irreducible, monic, and all its roots have absolute value at most 1,
then f is cyclotomic, that is, for some integer n,

f (z) = 
n(z) :=
∏

1≤�≤n
gcd(�,n)=1

(z− e2πi�/n). (2.8)

Since Mahler measure is additive in the sense that m(f · g) = m(f )+ m(g) for all
f , g ∈ Rd \ {0}, any f ∈ R1 \ {0} with m(f ) = 0 must be a product of cyclotomic
polynomials.

A similar statement is true for multivariate polynomials as well: if f ∈ Rd \ {0}, then
m(f ) = 0 if and only if f is a product of so-called generalized cyclotomic polynomials

f (z) = ±zn0
m1(z
n1) · · · 
mr (znr )

for some integers m1, . . . , mr and n0, n1, . . . , nr ∈ Zd ([2], [29, Theorem 19.5], [30]).
We recall the following properties of cyclic algebraic Zd -action (XI , αI ) (cf. [29,

Ch. 6]).
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• The normalized Haar measure λXI of XI is shift-invariant.
• If I ⊂ Rd is non-zero and principal, I = (f ), say, the topological entropy of (Xf , αf )

is given by the Mahler measure in equation (2.6) of f ; if I ⊂ Rd contains at least two
non-zero elements f , g which are relatively prime to each other (that is, without a
non-trivial common factor), then htop(XI , αI ) = 0.

• If d > 1, every principal Zd -action (Xf , αf ) is ergodic (with respect to λf ); if d = 1,
a principal Z-action (Xf , αf ) is ergodic if and only if f has no cyclotomic divisor.

• For every non-zero and irreducible f ∈ Rd , the following conditions are equivalent:
– λf is mixing under (Xf , αf );
– htop(Xf , αf ) > 0.

2.2. Main results. Our main results are the following theorems which will be proved in
§§6 and 7.

THEOREM 2.1. Suppose f ∈ R1 \ {0} with m(f ) > 0. Then the principal algebraic
Z-action (Xf , αf ) is Bohr chaotic.

For the higher dimensional case, we need an extra condition.

Definition 2.2. [20] A non-zero Laurent polynomial f ∈ Rd is atoral if it is not a unit in
Rd and its unitary variety

U(f ) = {(t1, . . . , td ) ∈ Td | f (e2πit1 , . . . , e2πitd ) = 0}
of f has dimension ≤ d − 2. This includes the possibility that U(f ) = ∅, which is
equivalent to expansivity of the Zd -action αf . If U(f ) has dimension d − 1, f is called
toral.

With this definition, the following is true.

THEOREM 2.3. Suppose that d ≥ 2 and that f ∈ Rd is atoral. Then htop(Xf , αf ) > 0
and (Xf , αf ) is Bohr chaotic.

We illustrate these definitions with a few examples.

Example 2.4. (Toral automorphisms) We start with a special case: let f = f0 + · · · +
fkz

k ∈ R1 with k ≥ 1 and fk = |f0| = 1. Then the principal Z-action (Xf , αf ) is
conjugate to the toral automorphism (Tk , Af ), where

Af =

⎛⎜⎜⎜⎜⎝
0 1 0 ... 0 0 0
0 0 1 ... 0 0 0...

...
...

. . . . . .
...

...
0 0 0 ... 0 1 0
0 0 0 ... 0 0 1

−f0 −f1 −f2 ... −f2 −fk−2 −fk−1

⎞⎟⎟⎟⎟⎠ ∈ GL(k, Z) (2.9)

is the companion matrix of f. The map φ : Xf → Tk , defined by

φ(x) =
( x0...
xk−1

)
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for every x = (xn)n∈Z, implements this conjugacy. We conclude that (Xf , αf ) and thus
(Tk , Af ) is Bohr chaotic if and only if m(f ) > 0 (cf. equation (2.6)).

Consider now an irreducible toral automorphism TA : Tk → Tk defined by a matrix
A ∈ GLk(Z). Then the characteristic polynomial f (z) of A is irreducible, and the principal
algebraic Z-action (Tk , Af ) ∼= (Xf , αf ) in equation (2.9) is a finite-to-one factor of
(Td , TA). Hence, if (Tk , Af ) is Bohr chaotic (which is the case if and only if (m)(f ) > 0),
then (Tk , TA) is also Bohr chaotic (as an extension).

If a toral automorphism TA : Tk → Tk with A ∈ GLk(Z) is reducible (that is, has a
proper invariant subtorus V � Tk), then the characteristic polynomial g of TA|V will be a
proper factor of f. If g′ is one of the irreducible factors of g (and hence of f ), then the system
(Tdeg(g′), TAg′ )will be Bohr chaotic if and only if m(g′) > 0, in which case both (V , TA|V )
and (Td , TA) will be Bohr chaotic. By varying V over the A-invariant irreducible subtori
of Tk , we see that (Tk , TA) is Bohr chaotic if and only if htop(TA) = m(f ) > 0.

Example 2.5. (Constant polynomials) Suppose that f = p ∈ N, p > 1, viewed as a
constant polynomial in Rd . Then the principal algebraic action (Xf , αf ) arising from this
polynomial is the shift-action in equation (2.1) on Xp := {0, . . . , p − 1/p}Zd , which is
certainly Bohr chaotic. If p = 1 (or, more generally, if f is a unit in Rd ), then Xf reduces
to a single point and the Zd -action αf becomes trivial. By default, (Xf , αf ) is not Bohr
chaotic.

Example 2.6. (The zero polynomial) So far, we have always assumed that the polynomial
f ∈ Rd defining a principal algebraic action (Xf , αf ) is non-zero. If we deviate from
this assumption and set f = 0 (the zero polynomial in Rd ), then equation (2.2) reduces
to Xf = TZ

d
, and αf becomes the shift action σ of Zd on TZ

d
. For every integer p > 1,

TZ
d

contains the closed, shift invariant subsetXp := {0, . . . , p − 1/p}Zd in Example 2.5.
Since (Xp, σ) is Bohr periodic, the same is true for (Xf , αf ) = (TZ

d
, σ).

Remark 2.7. To prove our Theorems 2.1 and 2.3, we may assume without loss of generality
that the polynomial f in either of these theorems is primitive and irreducible.

Indeed, if f is not primitive, then f = pg for some primitive polynomial g ∈ Rd , and
(Xf , αf ) has the subsystem (Xp, αp = σ |Xp) appearing in Example 2.5. Since (Xp, αp)
is Bohr chaotic, the same holds for (Xf , αf ).

Similarly, if f ∈ Rd is reducible and m(f ) > 0, then at least one of the irreducible
factors g of f has positive Mahler measure m(g) > 0. If (Xg , αg) is Bohr chaotic, the
Bohr chaoticity of (Xf , αf ) follows immediately from Bohr chaoticity of the subsystem
(Xg , αg). For d ≥ 2 in Theorem 2.3, we also note that atorality of a polynomial f ∈ Rd is
inherited by all its irreducible factors.

3. Zd actions of zero entropy
Before going on to study our Bohr chaotic principal algebraic Zd -actions, we would like
to justify that any continuous Nd - or Zd -action with zero topological entropy is not Bohr
chaotic (Proposition 3.1). This is an immediate consequence of the disjointness completely
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positive entropy systems and zero entropy systems. Also, we would like to point out that
principal Z-actions with zero topological entropy are disjoint from the Möbius function
(Proposition 3.5).

3.1. Zero entropy Zd -actions are not Bohr chaotic. Consider a measure-preserving Nd -
or Zd -action γ on a Lebesgue space (�, μ), where � is a compact space equipped with
its Borel field. We say that the measure-theoretic system (�, μ, γ ) has completely positive
entropy if any non-trivial factor of (�, μ, γ ) has positive entropy. Bernoulli systems have
complete positive entropy. For d = 1, the following result is folklore; for d ≥ 1, we include
a proof for completeness, based on a disjointness theorem due to Glasner, Thouvenot, and
Weiss [12, Theorem 1].

PROPOSITION 3.1. Suppose that (�, μ, γ ) has completely positive entropy, ω ∈ � is
a μ-generic point, and φ ∈ C(�) is a continuous function having zero mean. Then
(φ(γ nω))n∈Nd is orthogonal to every zero entropy Nd - or Zd -action (X, α). That is to
say, for every f ∈ C(X) and every x ∈ X, we have

lim
N→∞

1
Nd

∑
n∈[0,N−1]d

φ(γ nω)f (αnx) = 0. (3.1)

In particular, continuous Nd - or Zd -actions with zero topological entropy are not Bohr
chaotic.

Proof. Suppose that for some f and some x, there exists a sequence (Nj ) tending to infinity
such that

� := lim
j→∞

1
Nd
j

∑
n∈[0,Nj−1]d

φ(γ nω)f (αnx) 	= 0.

We can assume that along this sequence (Nj ), the following weak limits of measures exist:

λ := lim
j→∞

1
Nd
j

∑
n∈[0,Nj−1]d

δγ−nω×δα−nx , ν := lim
j→∞

1
Nd
j

∑
n∈[0,Nj−1]d

δα−nx ,

where δω and δx denote the point masses at the points ω and x, respectively. Clearly,
the measure λ is γ×α-invariant, and the projection of λ on X is equal to ν. Since ω is
μ-generic, the projection of λ onto � is equal to μ. In other words, λ is a joining of μ
and ν, where ν has zero entropy. Since systems of completely positive entropy are disjoint
from systems of zero entropy by [12, Theorem 1], we obtain that λ = μ×ν. Thus, by the
definition of λ and the hypothesis that Eμφ = 0, we get that

� = Eλ(φ ⊗ f ) = Eμφ · Eνf = 0,

which is a contradiction.

COROLLARY 3.2. Let (X, α) be an algebraic Zd -action which does not have completely
positive entropy (with respect to the Haar measure λX). Then (X, α) is not Bohr chaotic.
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Proof. If (X, α) does not have completely positive entropy, then [29, Theorem 20.8]
implies that there exists a non-trivial closed, α-invariant subgroup Y ⊂ X such that the
Zd -action αX/Y induced by α on X/Y has zero entropy. Condition (ii) at the beginning of
§3, combined with Proposition 3.1, shows that (X, α) cannot be Bohr chaotic.

Example 3.3. (Furstenberg’s example) Let d = 2 and let I = (2 − z1, 3 − z2) ⊂ R2. Then
XI = {x ∈ TZ

2 | σ (1,0)x = 2x, σ (0,1)x = 3x}, so that xk,l = 2k3lx(0,0) for every x ∈ XI
and (k, l) ∈ Z2. Since f (2) = 2 − z1 and f (3) = 3 − z2 are irreducible and relatively
prime to each other, I is a prime ideal, and hence htop(XI , αI ) = 0 [29, Proposition 17.5].

If γ is a continuous Z2-action on a compact space �, μ is a probability measure on �
with completely positive entropy under γ , ω ∈ � is a μ-generic point, and φ ∈ C(�) has
mean zero, Proposition 3.1 shows that

lim
N→∞

1
N2

∑
(m,n)∈[0,N−1]2

φ(γ (m,n)ω)h(2m3nt) = 0

for every h ∈ C(T) and t ∈ T.
In [11], Furstenberg’s example was defined as the N2-action α on X = T given by

α(m,n)t = 2m3nt (mod 1)

for every (m, n) ∈ N2 and t ∈ T.
We set � = TN

d
, write the coordinates of every ω = (ωn)n∈Nd ∈ � in the form

ωn = (ω
(1)
n , . . . , ω(d)n ), and denote by γ the one-sided shift-action of Nd on �

(cf. equation (2.1)). According to Franklin [10], for Lebesgue-almost everywhere
(a.e.) (β1, . . . , βd) with β1 > 1, . . . , βd > 1, the point β = (βn)n∈Nd ∈ � with
βn = (β

n1
1 (mod 1), . . . , βndd (mod 1)) for every n ∈ Nd is Lebesgue-generic for γ on

�. If φ : � → C is the map defined by

φ(ω) = e2πi(ω(1)0 +···+ω(d)0 ),

then

φ(γ nβ) = e2πi(β
n1
1 +···+βndd )

for every n = (n1, . . . , nd) ∈ Nd . By Proposition 3.1, the sequence (φ(γ nβ))n∈Nd is
almost surely orthogonal to all systems of zero entropy. Since Furstenberg’s example (T, α)
described in the preceding paragraph has zero entropy, we obtain the following corollary
of Proposition 3.1.

COROLLARY 3.4. For almost all (β1, β2) with β1 > 1 and β2 > 1,

lim
N→∞

1
N2

∑
0≤m,n<N

e2πi(βm1 +βn2 )f (2m3nt) = 0

for every continuous function f ∈ C(T) and every t ∈ T.
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3.2. Möbius disjointness and principal actions. We have just shown that zero entropy
Zd -actions are not Bohr chaotic. In fact, for principal actions, the result can be strength-
ened. We recall that a topological dynamical system (X, T ) is Möbius disjoint if

lim
n→∞

1
n

n∑
k=1

μ(k)f (T kx) = 0 for every f ∈ C(X) and every x ∈ X. (3.2)

PROPOSITION 3.5. A zero entropy principal Z-algebraic action (Xf , αf ), f ∈ R1, is
Möbius disjoint.

Proof. Since (Xf , αf ) has zero entropy, that is, m(f ) = 0, the Kronecker lemma implies
that f has the form

f (z) = ±zm0
n1(z
m1) · · · 
nk (zmk ), (3.3)

where m0 ∈ Z, nj , mj ∈ N, j = 1, . . . , k, and 
n is the nth cyclotomic polynomial
defined in equation (2.8). One immediately concludes from equation (3.3) that

f (z) = a0 + a1z+ · · · + aNz
N with |a0| = |aN | = 1,

and hence (Xf , αf ) is topologically conjugate to the toral automorphism (TN , TA), where
TA : TN → TN is a linear automorphism with the matrixA = Af—the companion matrix
of f, see Example 2.4. However, toral automorphisms with zero entropy are known to
be Möbius disjoint [23, Theorem 1.1]. In fact, toral automorphisms, and more generally
affine maps of compact abelian groups, are the primary examples motivating Sarnak’s
(still unproven) conjecture that all topological dynamical systems with zero entropy are
Möbius disjoint [28].

4. Riesz product measures on Xf
In this section, we start on the proofs of Theorems 2.1 and 2.3. As explained in Remark 2.7,
we assume from now on—and without loss in generality—that the polynomial f ∈ Rd
defining our principal action (Xf , αf ) is primitive, irreducible, and has positive Mahler
measure.

For the proofs of these theorems, we shall use a class of measures called Riesz products.
First, we will recall the general construction of Riesz product measures on arbitrary
compact abelian groups. Second, we will construct Riesz products on Xf based on
lacunary polynomials in the dual group X̂f ⊂ Rd .

4.1. Riesz product measures. Let X be a compact abelian group with dual group X̂.

Definition 4.1. [13] An infinite sequence of distinct characters � = (γn)n∈N = {γ0,
γ1, . . . } ⊂ X̂ is said to be dissociate if for every k ≥ 1 and every k-tuple (n1, n2, . . . ,
nk) ∈ Nk of distinct non-negative integers, the equality

γ ε1
n1
γ ε2
n2

· · · γ εknk = 1

with εj ∈ {−2, −1, 0, 1, 2} for every j = 1, . . . , k, implies that

γ ε1
n1

= γ ε2
n2

= · · · = γ εknk = 1.
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Equivalently, � is dissociate if any character in X̂ can be represented in at most one
way as a finite product γ ε1

n1 γ
ε2
n2 · · · γ εknk of elements of �, where all nj are distinct and

εj ∈ {−1, 0, 1}.
Using dissociate sequences of characters, Hewitt and Zuckermann [13] proposed a con-

struction of interesting probability measures—the so-called Riesz products, generalizing
Riesz products on T constructed by Riesz [27] in 1918. More precisely, denote by λX the
Haar measure on X. Suppose that:
(i) � = (γn)n≥0 is a dissociate sequence of characters in X̂;

(ii) a = (an)n≥0 is a sequence of complex numbers such that |an| ≤ 1 for all n.
For any N ≥ 0, denote by μ(N)a the measure on X which is absolutely continuous with
respect to λX with density

dμ
(N)
a

dλX
(x) =

N∏
n=0

(1 + Re anγn(x)).

It is not very difficult to show that the sequence of measures (μ(N)a )N≥0 converges weakly;
the limiting measure μa = limN μ

(N)
a is called the Riesz product, and we denote it as

μa =
∞∏
n=0

(1 + Re anγn(x)). (4.1)

The Riesz product μa is absolutely continuous with respect to the Haar measure λX if
and only if

∑
n |an|2 < ∞, and it is singular to the Haar measure λX if and only if∑

n |an|2 = ∞ (see [25, 34]). We will omit dependence of μa on the sequence�, since�
will usually be fixed.

Since

1 + Re anγn(x) = 1 + an

2
γn(x)+ an

2
γ−1
n (x),

the Riesz product μa , associated to the sequences � and a, can be characterized by the
Fourier coefficients μ̂a(γ ) = ∫

γ (x) dμa(x), γ ∈ X̂, as follows.
(a) For any finite set of distinct characters {γn1 , γn2 , . . . , γnk } ⊂ � and any (ε1, ε2, . . . ,

εk) ∈ {−1, 0, 1}k ,
μ̂a(γ

ε1
n1
γ ε2
n2

· · · γ εknk ) = a(ε1)
n1
a(ε2)
n2

· · · a(εk)nk
, (4.2)

where a(ε)n = (an/2), 0, or an/2, depending on whether ε = 1, 0, or −1.
(b) For any character γ ∈ X̂ not of the form γ

ε1
n1 γ

ε2
n2 · · · γ εknk with ε1, ε2, . . . , εk ∈

{−1, 0, 1} as in case (a) above, one has

μ̂a(γ ) = 0. (4.3)

For any two Riesz products μa and μb, it is proved in [25] that μa and μb are
mutually singular if

∑ |an − bn|2 = ∞, and mutually equivalent if
∑ |an − bn|2 < ∞

and supn |an| < 1. For any Riesz product μa , it is proved in [6] that the orthogonal series∑
cn(γn(x)− an/2) (with cn ∈ C) converges μa-a.e. if and only if

∑ |cn|2 < ∞. Such

https://doi.org/10.1017/etds.2024.13 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.13


2944 A. H. Fan et al

convergence results will be useful to us in the proofs of Theorems 2.1 and 2.3. Riesz
products on T and some generalized Riesz products appear as spectral measures of some
dynamical systems (see [1, 18, 26]). Riesz products are tools in harmonic analysis (see [14,
16, 34]).

4.2. The dual group X̂f . Before constructing Riesz products on Xf , let us describe the
dual group of Xf (cf. [19, 29]). Every Laurent polynomial with integer coefficients

h(z) =
∑

m∈Zd
hmzm ∈ Rd

defines a character γ (h) ∈ T̂Zd , given by

γ (h)(x) := e2πi〈h,x〉,

where

〈h, x〉 =
∑
m∈Z

hmxm

for every x ∈ TZ
d
. Conversely, every character of TZ

d
is of the form γ = γ (h) for some

h ∈ Rd , so that we may identify T̂Zd with Rd . Note, however, that the group operation in
Rd is addition, whereas in T̂Zd , it is multiplication:

γ (h+h′) = γ (h)γ (h
′)

for all h, h′ ∈ Rd .
Since Xf is a subgroup of TZ

d
, every character γ (h) ∈ T̂Zd , h ∈ Rd , restricts to a

character γ̃ (h) ∈ X̂f . From the definition of Xf in equation (2.2), it is clear that, for any
two polynomials h, h′ ∈ Rd , γ̃ (h) = γ̃ (h

′) if and only if h− h′ is a multiple of f. This
allows us to identify the dual group X̂f with Rd/(f ), where (f ) = Rd · f is the principal
ideal in Rd generated by f :

X̂f = Rd/(f ).

More generally, if I ⊂ Rd is an ideal and XI is given by equation (2.5), then

X̂I = Rd/I .

4.3. Lacunary polynomials. For the construction of Riesz product measures on Xf , we
have to take a closer look at dissociate families � ⊂ X̂f in the sense of Definition 4.1.

Definition 4.2. Given an integer m ∈ N, we say that a primitive irreducible polynomial
f ∈ Rd is m-good if the following conditions hold.
(C1) The collection of characters

{γ̃ (zmn) | n ∈ Nd} ⊂ X̂f
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is dissociate. Explicitly, this means that any non-zero polynomial of the form g(zm)

where

g(z) =
∑
n∈Zd

εnzn

with εn ∈ {−2, −1, 0, 1, 2} is not divisible by f.
(C2) For any k ∈ Nd/mNd , any two points n 	= n′ in Zd , and any non-zero polynomial

of the form g(z) := ∑
n∈Zd εnzn with εn ∈ {−1, 0, 1}, the polynomial

zmn+k − zmn′+k + g(zm)

is not divisible by f.

For a given principal algebraic action (Xf , αf ), where f is m-good, Riesz product
measures μa can be constructed using the countable dissociate collection of characters
� = {γ̃ (zmn) | n ∈ Nd} (cf. condition (C1)). Condition (C2) ensures that any shifted
family of characters �k = {γ̃ (zmn+k) | n ∈ Nd} (with k ∈ [0, m− 1]d \ {0} being fixed) is
a μa-orthogonal system, as a direct consequence of equation (4.2) applied with k = 2—a
useful property which will help us control the behavior of weighted ergodic averages. As
we will see, the coefficient sequence a will be chosen depending on the non-trivial weight
sequence w.

5. (Xf , αf ) is Bohr chaotic when f is m-good
The following theorem will allow us to reduce the proof of Bohr chaoticity of (Xf , αf ) to
checking the m-goodness of the polynomial f.

THEOREM 5.1. If a primitive irreducible polynomial f ∈ Rd with positive Mahler mea-
sure is m-good, that is, if the conditions (C1) and (C2) hold for some positive integer m,
then (Xf , αf ) is Bohr chaotic.

We begin with a simple auxiliary lemma.

LEMMA 5.2. Let α be a continuous Zd -action on a compact metrizable space X, and
let w = (wn)n∈Nd be a non-trivial weight. Then (X, α) is not disjoint from w = (wn) if
and only if for any k ∈ Nd , (X, α) is not disjoint from the weight w̃ = (w̃n) defined by
w̃n = wn+k for all n ∈ Nd .

Proof. Introduce the following notation: for a continuous function φ on X, let

Sw
Nφ(x) =

∑
n∈[0,N−1]d

wnφ(α
nx).

For any k ∈ Nd and for any x ∈ X, one has

|Sw
N+‖k‖∞φ(x)− Sw̃

Nφ(α
kx)| =

∣∣∣∣ ∑
n∈[0,N+‖k‖∞−1]d

wnφ(α
nx)−

∑
n∈[0,N−1]d

wn+kφ(α
n+kx)

∣∣∣∣
≤ ‖φ‖∞ · |[0, N + ‖k‖∞ − 1]d�(k + [0, N − 1]d)|.
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To finish the proof, it suffices to notice that the cardinality of the symmetric difference is
of order O(Nd−1).

Proof of Theorem 5.1. Fix m ∈ N such that conditions (C1) and (C2) hold. Assume that
w is a non-trivial weight (cf. equation (1.5)). Then for some k ∈ [0, . . . , m− 1]d , one has

lim sup
N→∞

1
Nd

∑
n|mn+k∈[0,N−1]d

|wmn+k| > 0. (5.1)

Without loss of generality, we can assume k = 0. Otherwise, consider the shifted weight
w̃ = (w̃n) with w̃n = wn+k . By Lemma 5.2, (Xf , αf ) is not disjoint from w if and only if
(Xf , αf ) is not disjoint from w̃. Thus, it is sufficient to consider the weight w̃ for which we
can assume that equation (5.1) holds with k = 0. In the following, we consider an arbitrary
such weight.

Step 1. Choice of the function φ and the point x. We are going to show that equation
(1.5) holds for φ(x) := e2πix0 = e2πi〈1,x〉 and for almost all x ∈ Xf with respect to an
appropriately chosen Riesz product measure. Note that for all n ∈ Nd ,

φ(αn
f x) = e2πixn = e2πi〈zn,x〉 = γ (z

n)(x).

Step 2. Choice of the measure. By condition (C1), the collection of characters

� := {γn = γ (z
mn) | n ∈ Nd}

is dissociate. Consider now the following collection of coefficients:

a := {an = e−i arg wmn | n ∈ Nd}.
Since |an| = 1 for all n, the Riesz product μa in equation (4.1) is well defined.

Step 3. Orthonormality. For each k ∈ [0, m− 1]d \ {0}, consider the following collec-
tion of functions:

Fk := {γ (zmn+k)(x) = φ ◦ αmn+k
f (x) | n ∈ Nd}.

We claim that for each k ∈ [0, m− 1]d \ {0}, Fk is orthonormal in L2(Xf , μa). Indeed,
for each n 	= n′, condition (C2) means that the character corresponding to the polynomial
zmn+k − zmn′+k:

γ (z
mn+k−zmn′+k)(x) = γ (z

mn+k)(x)γ (z
mn′+k)(x),

cannot be expressed as a product of characters in�, and hence using equation (4.3) for the
Fourier coefficients of Riesz products, one gets that∫

Xf

γ (z
mn+k)(x)γ (z

mn′+k)(x) dμa(x) = μ̂a(γ (z
mn+k−zmn′+k)) = 0.

Since |γ (zmn+k)(x)|2 = 1 for all x, the orthonormality of Fk is thus proved.
For k = 0, we set

F0 :=
{
γ (z

mn)(x)− an

2
| n ∈ Nd

}
.
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Direct application of equations (4.2) and (4.3) immediately gives that the collection of
functions F0 is orthogonal in L2(Xf , μa), and that∫

Xf

|γ (zmn)(x)|2 dμa(x) = 1 − |an|2
4

= 3
4

for all n ∈ Nd .

Step 4. Almost everywhere convergence. Write

Sw
Nφ(x) =

∑
n∈[0,N−1]d

wnφ(α
n
f x) =

∑
k∈[0,m−1]d

Sw
N ,kφ(x),

where

Sw
N ,kφ(x) :=

∑
{n|mn+k∈[0,N−1]d }

wmn+kφ(α
mn+k
f x).

We claim that for any k ∈ [0, m− 1]d \ {0}, one has

1
Nd

Sw
N ,kφ(x) → 0 μa−a.e., (5.2)

and for k = 0, one has

1
Nd

(
Sw
N ,0φ(x)− 1

2

∑
{n|mn∈[0,N−1]d }

|wn|
)

→ 0 μa−a.e. (5.3)

Now we write

1
Nd

Sw
Nφ(x) = 1

Nd

(
Sw
Nφ(x)− 1

2

∑
{n|mn∈[0,N−1]d }

|wn|
)

+ 1
2Nd

∑
{n|mn∈[0,N−1]d }

|wn|.

If equations (5.2) and (5.3) are indeed true, the first term in the brackets on the right-hand
side converges to 0 for μa-almost all x ∈ Xf , and the second term does not converge to 0
by equation (5.1). Hence, we will be able to conclude that

lim sup
N→∞

1
Nd

|Sw
Nφ(x)| > 0, μa-a.e.,

and thus, that (Xf , αf ) is Bohr chaotic.
Finally, to establish equations (5.2) and (5.3), we will use the following multivariate

generalization of the result of Davenport, Erdös, and LeVeque [3] due to Fan, Fan, and Qiu
[8, Theorem 6.1]: suppose that {ξ� | � ∈ Nd} is a collection of measurable complex valued
uniformly bounded functions on a probability space (�, P) such that

∞∑
N=1

1
N

∫
�

|ZN |2 dP < ∞, (5.4)

where

ZN = 1
Nd

∑
�∈[0,N−1]d

ξ� (N ≥ 1).

Then ZN → 0 as N → ∞ P-a.e. on �.
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In particular, if {ξ� | � ∈ Nd} are uniformly bounded and orthogonal in L2(�, P), then

1
N

∫
�

|ZN |2 dP = 1
N2d+1

∑
�∈[0,N−1]d

∫
X

|ξ�|2 dP ≤ C

Nd+1 ,

and hence equation (5.4) holds for any d ≥ 1.
If we now apply this result to the orthogonal families of bounded functions

Fw
k = {wmn+kψ ◦ αmn+k(x) | n ∈ Zd+}, k ∈ [0, m− 1]d \ {0},

and

Fw
0 =

{
wmn

(
ψ ◦ αmn(x)− an

2

)
| n ∈ Nd

}
,

we obtain equations (5.2) and (5.3), and hence, we complete the proof.

6. Bohr chaoticity of (Xf , αf ): the case of d = 1
In this section, we complete the proof of Theorem 2.1 in the case where d = 1: every
principal algebraic Z-action (Xf , αf ) with positive entropy is Bohr chaotic. Theorem 2.1
will follow from Remark 2.7, Theorem 5.1, and the following result.

THEOREM 6.1. Every primitive irreducible polynomial f ∈ R1 with m(f ) > 0 is m-good
for some positive integer m.

The proof of Theorem 6.1 consists of the following three lemmas.

LEMMA 6.2. (Preliminary lemma) Let f (z) = f0 + f1z+ · · · + frz
r ∈ Z[z] be an irre-

ducible polynomial with r ≥ 1 and f0fr 	= 0. If m(f ) > 0, then at least one of the
following statements is true:
(1) there exists a root of f in C which is not on the unit circle;
(2) there exists a prime p ≥ 2 such that f admits a root λ in the algebraic closure Qp of

the field of p-adic numbers Qp such that |λ|p > 1.

Proof. Suppose r = 1, that is, f (z) = f0 + f1z. If the only root of f lies on the unit
circle, then necessarily |f0| = |f1|. The irreducibility of f implies that |f0| = |f1| = 1,
and thus m(f ) = 0 by equation (2.7). Therefore, assuming m(f ) > 0 for irreducible f
with deg(f ) = 1, we conclude that |f0| 	= |f1|, and hence condition (1) must hold.

Suppose r ≥ 2 and the roots of f are all on the unit circle, that is, suppose that condition
(1) does not hold. If |fr | = 1, then Kronecker’s theorem [17] implies that all roots of f are
roots of unity, and equation (2.7) shows that m(f ) = 0, in contradiction to our hypothesis.
However, if |fr | > 1, then

f (z) = fr

(
zr + fr−1

fr
zr−1 + · · · + f0

fr

)
,

and Vieta’s formula implies that |f0/fr | = | ∏
ζ∈C:f (ζ )=0 ζ | = 1, that is, that |f0| = |fr |.

Since f is irreducible, fj/fr is not integer for some 1 ≤ j ≤ r − 1. Then there exists a
rational prime p such that |fj/fr |p > 1. Let λi , 1 ≤ i ≤ r , be the roots of f in the algebraic
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closure Qp of Qp, the p-adic rationals. By considering the jth elementary symmetric
polynomials of the roots and once again applying Vieta’s formulas, we get that

1 <
∣∣∣∣fjfr

∣∣∣∣
p

=
∣∣∣∣ ∑
1≤i1<i2<···<ij≤r

λi1 · · · λij
∣∣∣∣
p

≤ (max
1≤i≤r

|λi |p)j .

Thus one has |λi |p > 1 for some i ∈ {1, . . . , r}.
The following key lemma will be used to show that for sufficiently large m, the sequence

of polynomials {znm}n≥0 gives a dissociate sequence of characters of Xf .

LEMMA 6.3. (Condition (C1)) Suppose that f = f0 + f1z+ · · · + frz
r ∈ Z[z] has a

root in C or in Qp (for some p) of absolute value larger than 1. Then for any sufficiently
large m and any D ≥ 0, the polynomials

P(z) =
D∑
j=0

εj z
mj with ε0, ε1, . . . , εD ∈ {−2, −1, 0, 1, 2}, (6.1)

are not divisible by f unless ε0 = ε1 = · · · = εD = 0.

Proof. First we consider the case that f has a root in C of modulus larger than 1. For any
polynomial g, we introduce the notation

ρg = max{|z| | g(z) = 0}.
Without loss of generality, we may assume that εD 	= 0 and consider the reduced
polynomial

P̃ (z) =
D∑
j=0

εj z
j ,

such that P(z) = P̃ (zm). Clearly, ρP̃ = ρmP .
However, using the Cauchy bound on the roots of polynomials, one gets that

ρP̃ ≤ 1 + max
j=0,...,D−1

∣∣∣∣ εjεD
∣∣∣∣ ≤ 3,

and hence ρP ≤ 31/m. Choose an integer M ≥ 1 large enough such that 31/M < ρf (this
is possible because ρf > 1). Thus for allm ≥ M , we have ρP < ρf . However, if P(z)was
divisible by f, we would have ρf ≤ ρP , thus arriving to a contradiction.

If f has a root in Qp (for some prime p) of absolute value larger than 1, the same
argument works with | · | replaced by | · |p. Indeed, suppose ζ is a root of f with |ζ |p > 1.
If f |P , then ζ is also a root of P, so one has

|ζ |mDp =|ζmD|p=
∣∣∣∣D−1∑
j=0

εj

εD
ζmj

∣∣∣∣
p

≤ max
j=0,...,D−1

∣∣∣∣ εjεD ζmj
∣∣∣∣
p

≤
(

max
j=0,...,D−1

∣∣∣∣ εjεD
∣∣∣∣
p

)
|ζ |m(D−1)

p .

Thus arriving at a contradiction.
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LEMMA 6.4. (Condition (C2)) Suppose that f (z) = frz
r + · · · + f1z+ f0 ∈ Z[z] has

a root in C or in Qp (for some prime p) of absolute value larger than 1. Then for all
sufficiently large integers m, any integer k with 1 ≤ k < m, everyD ≥ 0, and all arbitrary
(D + 1)-tuples ε = (ε0, . . . , εD) and δ = (δ0, . . . , δD) in {−1, 0, 1}D+1, the polynomial

Q(z) =
D∑
j=0

εj z
mj −

D∑
j=0

δj z
mj+k (6.2)

is not divisible by f unless Q(z) ≡ 0, that is, unless all εj and δj are equal to zero.

Proof. Assume Q is divisible by f. We treat the complex case first. Namely, assume ζ ∈ C

is such that f (ζ ) = 0 and R := |ζ | > 1. Without loss of generality, we may assume that
|εD| + |δD| > 0. We distinguish two cases.

Case I. δD 	= 0. If the polynomialQ(z), defined by equation (6.2), is divisible by f, then
Q(ζ) = 0, in other words,

δDζ
mD+k =

D∑
j=0

εj ζ
mj −

D−1∑
j=0

δj ζ
mj+k . (6.3)

It follows that

RmD+k ≤
D∑
j=0

Rmj +
D−1∑
j=0

Rmj+k = R(D+1)m − 1
Rm − 1

+ RDm − 1
Rm − 1

· Rk ,
and hence

Rk <
Rm

Rm − 1
+ Rk

Rm − 1
.

As m → ∞, the right-hand side of this inequality converges to 1, but the left-hand side
remains equal to Rk > 1. If m is large enough, our assumption that Q is divisible by f leads
to a contradiction.

Case II. δD = 0 but εD 	= 0. In this case, we have

εDζ
mD = −

D−1∑
j=0

εj ζ
jm +

D−1∑
j=0

δj ζ
jm+k . (6.4)

It follows that

1 <
1

Rm − 1
+ Rk

Rm − 1
= Rk + 1
Rm − 1

≤ Rm−1 + 1
Rm − 1

.

Since R > 1, the last inequality is violated for all sufficiently large m, and we again
arrive at a contradiction with our assumption that Q is divisible by f.

In the p-adic case, the argument is simpler because of the non-archimedean triangle
inequality |ζ + ξ |p ≤ max(|ζ |p, |ξ |p). Indeed, from equation (6.3), we get that |ζ |mD+k

p ≤
|ζ |mDp (impossible), and from equation (6.4), we get that |ζ |mDp ≤ |ζ |m(D−1)+k

p (equally
impossible).

Proof of Theorem 2.1. By Remark 2.7, we may assume that the polynomial f (z) = f0 +
· · · + frz

r ∈ Z[z] is primitive, irreducible, and has positive Mahler measure (cf. equation
(2.7)). If f has a root in C of absolute value larger than 1, Lemmas 6.3 and 6.4 show
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that f is m-good for some m ∈ N (in fact, for all sufficiently large m). An application of
Theorem 5.1 completes the proof of Theorem 2.1 in this case.

If all complex roots of f have absolute value ≤ 1, and if ζ is a root of f, we denote by
k = Q(ζ ) the algebraic number field generated by ζ and write Pk for the set of places
(or valuations) of k. If |ζ |v is the absolute value of ζ at a place v ∈ Pk, then our last
assumption implies that |ζ |v ≤ 1 for every infinite place v ∈ Pk. Since the product formula
for algebraic number fields shows that

∏
v∈Pk

|ζ |v = 1, we either have that |ζ |v = 1 for
every v ∈ Pk, or that there exists a finite place v ∈ Pk with |ζ |v > 1. In the first case, ζ
is a root of unity, which makes f cyclotomic and m(f ) = 0, contrary to our hypothesis.
In the second case, we can once again use the Lemmas 6.3 and 6.4 to show that f is
m-good for all sufficiently large m, and Theorem 5.1 completes the proof of Theorem 2.1 as
above.

7. Bohr chaoticity of (Xf , αf ): the case of d ≥ 2
This section is devoted to the proof of Theorem 2.3 for d ≥ 2, which will again be based
on Theorem 5.1. As before, we assume that the polynomial f ∈ Rd is primitive and
irreducible.

7.1. Homoclinic points of atoral polynomials in Rd and the gap theorem. For every
t ∈ T, we set

‖t‖ = min
q∈Z |t − q|.

Definition 7.1. A point x ∈ Xf is homoclinic (or, more precisely, homoclinic to 0) if
limn→∞‖xn‖ = 0. A homoclinic point x ∈ Xf is summable if

∑
n∈Zd‖xn‖ < ∞.

The existence of non-zero summable homoclinic points of (Xf , αf ) is equivalent to
atorality of the polynomial f.

THEOREM 7.2. [20] If 0 	= f ∈ Rd , the following conditions are equivalent:
(1) the principal algebraic action (Xf , αf ) has a non-zero summable homoclinic point;
(2) the Laurent polynomial f is atoral in the sense of Definition 2.2.

For a principal algebraic Zd -action (Xf , αf ), the existence of summable homoclinic
points has a number of important consequences (cf. [19]): it implies positivity of entropy
and very strong specification properties of the action, and it guarantees the coincidence of
entropy with the logarithmic growth rate of the number of periodic points of αf (that is,
of points in Xf with finite orbits under αf—cf. [19, 20]). Somewhat surprisingly, it also
plays a role in the gap theorem stated below, which will imply conditions (C1) and (C2) in
Definition 4.2.

We remark in passing that some of these consequences of atorality also hold for toral
polynomials, but with considerably harder proofs and/or weaker conclusions—cf. e.g., [4]
or [20]). However, it is not known if specification or gap properties hold in the toral case.

To state the gap theorem referred to above, we consider, for any non-empty subset
S ⊂ Zd and any integer H ≥ 1, the set P(S, H) ⊂ Rd of all Laurent polynomials with
support in S and coefficients bounded in absolute value by H:
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P(S, H) = {v ∈ Rd | supp(v) ⊆ S and ‖v‖∞ ≤ H }.
For every n = (n1, . . . , nd) ∈ Zd , we set ‖n‖ = max{|n1|, . . . , |nd |}. Then the following
is true.

THEOREM 7.3. (Gap theorem) Suppose that g ∈ Rd is primitive, irreducible, and atoral.
For every H ≥ 1, there exists an integer m ≥ 1 with the following property: for every pair
of sets S, S ′ ⊂ Zd with distance

d(S, S ′) := min
n∈S,n′∈S′ ‖n − n′‖ ≥ m,

and for every v = ∑
n∈S∪S ′ vnzn ∈ P(S ∪ S ′, H) which is divisible by g, the restriction

of v to S,

vS =
∑
n∈S

vnzn, (7.1)

is also divisible by g.

For the proof of Theorem 7.3, we consider the algebra �1(Zd , R) of all functions
v : n �→ vn from Zd to R with ‖v‖1 = ∑

n∈Zd |vn| < ∞, furnished with its usual
multiplication (or convolution) (v, w) �→ v · w and involution w �→ w∗, given by

(v · w)n =
∑

m∈Zd
vmwn−m =

∑
m∈Zd

vn−mwm, (7.2)

and

w∗
m = w−m (7.3)

for every v, w ∈ �1(Zd , R) and m, n ∈ Zd . If we denote by �1(Zd , Z) ⊂ �1(Zd , R) the
set of all integer-valued elements of �1(Zd , R) and identify every h = ∑

n∈Zd hnzn ∈ Rd
with the element (hn)n∈Zd ∈ �1(Zd , Z), we obtain an embedding

Rd = �1(Zd , Z) ⊂ �1(Zd , R)

in which the multiplication (h, h′) �→ h · h′ of Laurent polynomials extends to the
composition in equation (7.2) in �1(Zd , R). In fact, the multiplication (v, w) �→ v · w in
equation (7.2) is also well defined for w ∈ �1(Zd , R) and v ∈ �∞(Zd , R), the space of all
bounded sequences (vn)n∈Zd in the supremum norm ‖v‖∞ = supn∈Zd |vn|, and

‖v · w‖∞ ≤ ‖v‖∞‖w‖1

for all w ∈ �1(Zd , R) and v ∈ �∞(Zd , R).
The shift action σ̄ of Zd on �∞(Zd , R), defined exactly as in equation (2.1) by

(σ̄mv)n = vm+n (7.4)

for every m ∈ Zd and v ∈ �∞(Zd , R), extends to an action w �→ w(σ̄ ) of �1(Zd , R) on
�∞(Zd , R) by bounded linear operators with

w(σ̄ ) =
∑

m∈Zd
wmσ̄

m : �∞(Zd , R) → �∞(Zd , R)
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for every w ∈ �1(Zd , R). Equation (7.4) implies that

(w(σ̄ )v)n =
∑

m∈Zd
wm(σ̄

mv)n =
∑

m∈Zd
wmvm+n = (w∗ · v)n,

so that

w(σ̄ )v = w∗ · v (7.5)

for every w ∈ �1(Zd , R) and v ∈ �∞(Zd , R) (cf. equation (7.3)).
We define a surjective group homomorphism η : �∞(Zd , R) → TZ

d
by setting

η(v)n = vn (mod 1) (7.6)

for every v = (vn)n∈Zd and n ∈ Zd . Note that η is shift-equivariant in the sense that

η ◦ σ̄n = σn ◦ η
for every n ∈ Zd ; more generally, if w ∈ Rd = �1(Zd , Z), then

η ◦ w(σ̄ ) = w(σ)η. (7.7)

For every x ∈ TZ
d
, there exists a unique point x# ∈ (− 1

2 , 1
2 ]Z

d ⊂ �∞(Zd , R), called the
lift of x, such that

η(x#) = x. (7.8)

Let g = ∑
n∈Zd gnzn ∈ Rd be the Laurent polynomial appearing in the statement of

Theorem 7.3 and set

f = g∗ =
∑
n∈Zd

gnz−n.

Since U(f ) = U(g), f is again atoral and has non-trivial summable homoclinic points by
Theorem 7.2.

LEMMA 7.4. For every x ∈ TZ
d
, the following is true:

(1) x ∈ Xf if and only if f (σ̄ )x# ∈ �∞(Zd , Z), that is, x# · f ∗ ∈ �∞(Zd , Z) (cf.
equation (7.5));

(2) x is a non-trivial summable homoclinic point of αf if and only if x# ∈ �1(Zd , R),
h := x# · f ∗ ∈ �1(Zd , Z) = Rd , and h is not divisible by f ∗ in Rd .

Proof. (1) Suppose that x ∈ TZ
d
. By equation (7.7), we have

η(f (σ̄ )x#) = f (σ)η(x#) = f (σ)x.

So, x ∈ Xf , that is, f (σ)x = 0 if and only if f (σ̄ )x# ∈ �∞(Zd , Z).
(2) If x is a non-trivial summable homoclinic point of αf , then x# ∈ �1(Zd , R), and part

(1) of this proof implies that h = x# · f ∗ ∈ �1(Zd , Z) = Rd . If h were divisible by f ∗,
that is, if x# · f ∗ = h · f ∗ for some h ∈ Rd , then (x# − h) · f ∗ = 0 and [22, Theorem 2.1]
would imply that x# = h and x = η(x#) = η(h) = 0. This violates our conditions on x.
The converse is obvious.
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Proof of Theorem 7.3. Since f = g∗ is atoral, there exists a non-trivial summable
homoclinic point x ∈ Xf . Let x# ∈ �1(Zd , R) be the lift of x (cf. equation (7.8)), and
let h = f (σ̄ )x# = x# · f ∗ ∈ Rd (cf. Lemma 7.4). Since x# ∈ �1(Zd , R), there exists an
integer R = R(x, f , H) such that∑

‖n‖≥R
|x#

n| < 1
2H‖f ‖1

.

For every non-empty subset S ⊂ Zd , we set

BR(S) = {n ∈ Zd | d(n, S) = min
n′∈S

‖n − n′‖ ≤ R}.

Let S, S ′ ⊂ Zd be two subsets of Zd with distance d(S, S ′) ≥ 3R. Suppose that a
Laurent polynomial v ∈ P(S ∪ S ′, H) is divisible by f ∗, that is, that v = φ · f ∗ for some
φ ∈ Rd . Then:
(i) v · x# ∈ Rd ;

(ii) supp(v · x#) ⊂ BR(S) ∪ BR(S ′).
Indeed, item (i) follows from Lemma 7.4(2):

v · x# = (φ · f ∗) · x# = φ · (f ∗ · x#) = φ · h ∈ Rd ,

because both φ and h belong to Rd . For item (ii), we note that every n /∈ BR(S) ∪ BR(S ′)
satisfies that d(n, S ∪ S ′) > R. Then vn−m = 0 for all m with ‖m‖ ≤ R, and hence

|(v · x#)n| =
∣∣∣∣ ∑
m∈Zd

x#
mvn−m

∣∣∣∣ ≤ ‖v‖∞
∑

‖m‖>R
|x#

m| < H · 1
2H‖f ‖1

≤ 1
2

.

Since (v · x#)n ∈ Z by item (i), it follows that (v · x#)n = 0.
Let ψ be the restriction of v · x# to BR(S), and let vS and vS ′ be the restrictions of v to

S and S ′, respectively. Then ψ ∈ Rd by item (i), and we claim that

‖ψ − vS · x#‖∞ <
1

2‖f ‖1
, (7.9)

that is, that

|ψn − (vS · x#)n| < 1
2‖f ‖1

for every n ∈ Zd . (7.10)

Indeed, if n ∈ BR(S), then d(n, BR(S ′)) ≥ R, and hence

|(vS ′ · x#)n| =
∣∣∣∣ ∑
m∈S ′

vmx
#
n−m

∣∣∣∣ ≤ ‖v‖∞
∑

‖�‖≥R
|x#

� | ≤ H · 1
2H‖f ‖1

= 1
2‖f ‖1

. (7.11)

Since ψn = (vS · x#)n + (vS ′ · x#)n, it follows that

|ψn − (vS · x#)n| = |(vS ′ · x#)n| < 1
2‖f ‖1
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by equation (7.11). However, if n /∈ BR(S), then

|ψn − (vS · x#)n| = |(vS · x#)n| =
∣∣∣∣∑
m∈S

(vmx
#
n−m)

∣∣∣∣ ≤ H · 1
2H‖f ‖1

= 1
2‖f ‖1

.

This proves equation (7.10) for every n ∈ Zd .
Since both vS · x# · f ∗ = vS · h and ψ lie in Rd , we have that (ψ − vS · x#) ·

f ∗ ∈ Rd , but the smallness of the coordinates of ψ − vS · x# in equation (7.10) implies
that (ψ − vS · x#) · f ∗ = 0. Thus, we have proved that ψ · f ∗ = vS · x# · f ∗ = vS · h,
where h is not divisible by f ∗ (cf. Lemma 7.4(2)). As g = f ∗ is irreducible, we have
proved that vS is divisible by g, as claimed in the statement of this theorem.

This completes the proof of Theorem 7.3 with m ≥ 3R.

7.2. The conditions (C1) and (C2): divisibility by f of lacunary polynomials. According
to Theorem 5.1, to prove Theorem 2.3, it suffices to prove that any irreducible and atoral
polynomial f ∈ Rd is m-good for a sufficiently large m ∈ N. Now we are going to prove
this and finish the proof of Theorem 2.3.

Theorem 7.3 has an immediate corollary which implies that any atoral polynomial is
m-good for sufficiently large m.

COROLLARY 7.5. Suppose that f ∈ Rd is irreducible and atoral, and that |supp(f )| > 1.
Then there exists, for every H ≥ 1, an integer m ≥ 1 with the following property: for any
set S ∈ Zd which is m-separated in the sense that

‖k − n‖ ≥ m for any pair k, n ∈ S, k 	= n,

no non-zero polynomial g ∈ P(S, H) is divisible by f.

Proof. For H ≥ 1 and f fixed, choose m as in the statement of Theorem 7.3 (that is,
m ≥ 3R in the proof of that theorem). Consider an arbitrary m-separated set S and any
non-trivial polynomial v = ∑

n∈S vnzn ∈ P(S, H).
If |supp(v)| = 1, then v cannot be divisible by f, since |supp(f )| > 1 by assumption.

Assume therefore that |supp(v)| ≥ 2, and that v is divisible by f. Since for any n ∈ supp(v),
the sets

T = {n}, T ′ = supp(v) \ {n}
have distance at least m and hence, by Theorem 7.3, the restriction of v to T , that is,
vT = vnzn must be divisible by f, which is impossible, v is not divisible by f.

The condition that |supp(f )| > 1 in Corollary 7.5 is obviously necessary: the poly-
nomial f = 2 is obviously irreducible and atoral, and divides 2g for every g ∈ Rd
(irrespective of whether g is m-separated or not).

COROLLARY 7.6. Suppose that f ∈ Rd is irreducible and atoral, and that |supp(f )| > 1.
For all sufficiently largem ≥ 1 and every k ∈ [0, m− 1]d \ {0}, no v ∈ P(mZd ∪ (mZd +
k), 1) with v 	= 0 is divisible by f.
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Proof. Put H = 1 and let m ≥ 6R, where R is the number appearing in the proof of
Theorem 7.3. Suppose v ∈ P(mZd ∪ (mZd + k), 1) is a non-trivial polynomial divisible
by f. Consider the decomposition supp(v) = S0 � S1 where

S0 = supp(v) ∩mZd , S1 = supp(v) ∩ (mZd + k).

Both sets S0, S1 are m-separated, as subsets of mZd and mZd + k, respectively.
We claim that for any n ∈ S0, there exists n′ = n′(n) ∈ S1 such that d(n, n′) < 3R.

Otherwise, there exists n ∈ S0 such that d(n, S1) ≥ 3R so that d(n, supp(v) \ {n}) ≥ 3R.
Then, by Theorem 7.3, the restriction of v to {n}, that is, ±zn, is divisible by f, which is
impossible. Similarly, for any n′ ∈ S1, there exists n ∈ S0 such that d(n, n′) < 3R. Thus,
the support of v is a union of distinct pairs:

supp(v) =
⋃

n∈S0

{n, n′},

where the distance within each pair is at most 3R.
Given a pair {n, n′}, consider the decomposition of supp(v):

S = {n, n′}, S ′ = supp(v) \ S.

The fact that m ≥ 6R implies d(S, S ′) ≥ 3R. Indeed, d(n, S ′) = d(n, n∗) for some
n∗ ∈ S ′ and {

d(n, n∗) ≥ m if n∗ ∈ S0;

d(n, n∗) ≥ d(n′, n∗)− d(n′, n) ≥ m− 3R if n∗ ∈ S1.

It follows that d(n, S ′) > 3R. Similarly, d(n′, S ′) > 3R.
Applying Theorem 7.3 to S and S ′, we conclude that the restriction of v to S = {n, n′},

that is,

vS = vnzn + vn′zn′
, vn, vn′ ∈ {−1, 1},

must be divisible by f, which is impossible, since vS is of the form

±zm(1 ± z�), m ∈ Zd , � ∈ Nd ,

and hence is a product of a unit (±zm) and a generalized cyclotomic polynomial (1 ± z�),
and thus must have zero Mahler measure m(vS) = 0. This implies that m(f ) = 0, in
violation of Theorem 7.2.

Proof of Theorem 2.3. Since Remark 2.7 allows us to assume without loss in generality
that the polynomial f ∈ Rd is primitive and irreducible, the proof of Bohr chaoticity under
the additional assumption of atorality of f is now complete.

Indeed, if |supp(f )| = 1, atorality implies that we are in the situation of Example
2.5 with p > 1, so that (Xf , αf ) is Bohr chaotic. If |supp(f )| ≥ 2, Corollary 7.5 for
H = 2 and Corollary 7.6 show that conditions (C1) and (C2) are satisfied. Therefore,
Bohr chaoticity of (Xf , αf ) for irreducible atoral polynomials f ∈ Rd follows from
Theorem 5.1.
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8. Concluding remarks: toral polynomials
We have shown that a principal Z-action is Bohr chaotic if and only if it has positive
entropy. A principal Zd -action, d > 1, is shown to be Bohr chaotic if it has positive
entropy and is atoral. We believe that the atorality assumption (equivalently, existence of a
non-trivial summable homoclinic point) can be removed.

Irreducible toral polynomials come in two flavors: those for whichXf has no non-trivial
homoclinic points (cf. e.g., [19, Example 7.1]), and those for which Xf has no summable
homoclinic points, but uncountably many non-zero homoclinic points v ∈ Xf with the
property that v# · f ∗ ∈ f ∗Rd (cf. e.g., [19, Example 7.3]; for notation, we refer to equation
(7.8)). Unfortunately, none of these latter homoclinic points can be used in our proof of the
gap theorem (Theorem 7.3), since the key Lemma 7.4 is not valid in this case.

Remarkably, for toral examples of the kind illustrated in [19, Example 7.1], we can still
prove Bohr chaoticity by using Theorems 5.1 and 6.1.

THEOREM 8.1. Let g ∈ R1 be an irreducible polynomial with positive Mahler measure
and with all roots of absolute value 1, and define f ∈ Rd by f (z1, . . . , zd) = g(z1). Then
(Xf , αf ) is Bohr chaotic.

Remark 8.2. There exist infinitely many distinct irreducible polynomials g ∈ R1 with
the properties required in Theorem 8.1. To see this, we follow a short note from
math.stackexchange.com [24].

Let ϑ be a totally real algebraic number all of whose conjugates ϑ1 = ϑ , ϑ2, . . . , ϑr
have absolute values strictly less than 2 (to find such a ϑ , take any totally real algebraic
number and divide by a big integer). Assume also that ϑ is not itself an algebraic integer.
Let β be a solution to the equation

β + 1/β = ϑ .

All the conjugates of ϑ are, by assumption, real numbers in the interval (−2, 2). This forces
all the conjugates of β to be complex numbers of absolute value one—which is what we
want. Moreover, β will not be a root of unity, since otherwise, ϑ would be an algebraic
integer. Then β is a root of the polynomial

h(x) =
r∏
i=1

(x2 − ϑix + 1).

Clearing denominators in h, one gets the desired polynomial g. It will be irreducible,
because, by looking at infinite places, [Q(β) : Q(ϑ)] = 2.

For example, ϑ = 1/2 yields g = 2z2 − 1 + 2, ϑ = −6/5 yields g = 5z2 − 6z+ 5,
ϑ = 1/

√
2 yields g = 2z4 + 3z2 + 2, etc.

Proof of Theorem 8.1. Since g with m(g) > 0 is m-good for some sufficiently large m by
Theorem 6.1, f (z1, . . . , zd) = g(z1) is also m-good, but now viewed as a polynomial in
d-variables. Indeed, if f (z) = g(z1) divides a non-trivial polynomial h of the form

h(z) =
∑
n∈Zd

εnzmn
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with εn = ε(n1,n2,...,nd) ∈ {−2, −1, 0, 1, 2}, then by rewriting h as

h(z) =
∑

(n2,...,nd)∈Zd−1

( ∑
n1∈Z

ε(n1,n2,...,nd)z
mn1
1

)
z
mn2
2 · · · zmndd

=:
∑

(n2,...,nd)∈Zd−1

hn2,...,nd (z
m
1 )z

mn2
2 · · · zmndd ,

we conclude that g(z1) must divide all polynomials hn2,...,nd (z
m
1 ), some of which are

non-zero. Since g(z1) is m-good, the resulting contradiction proves that condition (C1)
is valid for f. For the proof of condition (C2), we can proceed similarly.

Theorem 8.1 now follows from Theorem 5.1.

Theorem 8.1 obviously applies only to an extremely restricted class of toral polynomials.
A more interesting example of an irreducible toral polynomial with positive entropy in [19,
Example 7.3] is given by the polynomial

f (z1, z2) = 3 − z1 − 1
z1

− z2 − 1
z2

.

The unitary variety of f is a smooth real-analytic curve

U(f ) =
{
(e2πis , e2πit ) : t = ± 1

2π
cos−1

(
3
2

− cos 2πs
)

, −1
6

≤ s ≤ 1
6

}
.

Moreover, U(f ) is connected and has curvature bounded away from zero. As explained
in [19, Example 7.3], one can use this fact to prove the existence of probability measures
supported on U(f ) whose Fourier transforms (as functions on Ŝd = Zd ) vanish at infinity.
By translating this information back to the system (Xf , αf ), one obtains uncountably
many homoclinic points x ∈ Xf satisfying

|xn| ≤ C

1 + ‖n‖ 1
2

for all n ∈ Z2.

Unfortunately, none of these homoclinic points can be used in our proof of the gap theorem
(Theorem 7.3), since they are not summable.

It would be interesting to see whether one can prove the gap theorem for f = 3 −
z1 − (1/z1)− z2 − (1/z2) directly, using some elementary methods, or establish Bohr
chaoticity of Xf by some other means.
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