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CORRIGENDUM

FAMILIES OF D-MINIMAL MODELS AND APPLICATIONS TO
3-FOLD DIVISORIAL CONTRACTIONS

(Proc. London Math. Soc. (3) 90 (2005) 345–370)

NIKOLAOS TZIOLAS

A gap in the proofs of Lemma 2.3 and Theorem 2.4 in [3] is corrected. Lemma 2.3
is easy to fix but since it is part of a much stronger result proved by Kawamata [1],
we refer to this statement instead. I also want to mention that Theorem 2.4 is
independent of the rest of the material discussed in [3].

Theorem 2.3 [1]. Let f : X −→ T be a flat morphism from a germ of an
algebraic variety to a germ of a smooth curve. Assume that the central fiber
X0 = f−1(P ) has only canonical singularities. Then so has the total space X
as well as any fiber Xt of f . Moreover, the pair (X,X0) is canonical.

It is also known [2] that if X0 is terminal, then so are X and Xt . An immediate
consequence of the above theorem is that if g : W −→X is a resolution of X,
then there is no g-exceptional crepant divisor with center in X0. Hence all crepant
exceptional divisors of X dominate T .

Theorem 2.4. Let X
σ−→ T be a proper family of canonical 3-folds over a

smooth curve T . Let D in X be a family of divisors in X over T and let 0 ∈ T be
a closed point. Then

e(X0) � e(Xt)

for t in a small neighborhood of 0 ∈ T . Moreover:
(i) if e(X0) = e(Xt) for all t, then, after a finite base change, there is a

morphism Y
g−→ X, with Y Q-factorial and terminal, such that Yt

gt−→ Xt

is a terminalization of Xt , for all t ∈ T ;
(ii) if e(X0;D0) = e(Xt ;Dt) for all t, then there is a morphism Y

g−→ X such

that Yt
gt−→ Xt is the Dt -minimal model of Xt .

Proof. The claimed inequality between the number of crepant divisors of the
central and general fibers is independent of base change and so we will perform one
when necessary. First I claim that up to a finite base change we can assume that
e(Xt) = e(X), for general t ∈ T . Indeed, let g : W −→X be a log resolution of X
such that all the g-crepant divisors are smooth. Let E be a g-crepant divisor. From
the previous theorem, it follows that the center of E is not contained in X0 and,
since there are finitely many crepant divisors, after removing finitely many points
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from T we can assume that all the g-crepant divisors dominate T . By generic
smoothness, Et and Wt are smooth, for general t, and hence gt : Wt −→Xt is a
resolution of Xt . Then by adjunction it follows that Et is gt-crepant. The problem
here is that Et may have more than one connected component and so in general
we only get the fact that e(Xt) � e(X). However, I claim that after a finite base
change, Et is irreducible and smooth, for all irreducible crepant exceptional divisors
E of X, and therefore e(Xt) = e(X). So, let E be an irreducible g-crepant divisor
of X and let E

h−→ D
τ−→ T be the Stein factorization of f = τ ◦g : E −→T , where

D = Spec(f∗OE ). Then h has connected fibers and τ is finite. We now make a base
change with D−→T . So, let XD = X ×T D, WD = W ×T D and ED = E ×T D.
Note that by the previous theorem, XD is also canonical since all the fibers XD,d

are canonical. Also WD,d is smooth for general d ∈ D. Moreover, by the universal
property of fiber products, we see that there is an embedding E ⊂ Ed , and by
construction, E −→D has connected fibers. Hence Ed is irreducible, smooth and
crepant for XD,d = Xt , for general t = τ(d). Since D may not be normal, make
another base change with its normalization D. Repeat this process for any crepant
divisor F of WD such that Fd is not irreducible. Since the crepant divisors are at
most e(Xt), this process ends with a family X ′ −→T ′, with T ′ smooth, such that
there is a log resolution f ′ : W ′ −→X ′ such that if E is any f ′-exceptional crepant
divisor, then Et is smooth and irreducible and hence e(X ′

t) = e(X ′), for general t.
We may also assume that X is Q-factorial. If this is not the case, then let

f : Y −→X be a Q-factorialization, which exists by the Minimal Model Program
(MMP) in dimension 4. Then e(X) = e(Y ). Moreover, Yt −→Xt is an isomorphism
in codimension 1 for general t and hence e(Yt) = e(Xt) = e(X) = e(Y ). The central
fiber contraction Y0 −→X0 may be divisorial, but in any case it is crepant and
hence Y0 is normal and canonical and e(Y0) � e(X0). Hence, in addition to our
hypothesis, we may also assume that X is Q-factorial and e(Xt) = e(X).

Let n = e(X) and let E1, . . . , En be the crepant exceptional divisors of X. Then
by standard MMP arguments, we may extract them from X with a series of crepant
morphisms

Y = Xn
fn−−−→ Xn−1

fn −1−−−→ Xn−2 −−−→ · · · −−−→ X1
f1−→ X (2.1)

where fi : Xi −→Xi−1 is crepant and its exceptional set is Ei . Then by Theorem 2.3,
the centers of these divisors are not contained in X0. Hence Xi,0 is irreducible and
Ei ∩Xi,0 is a divisor. Moreover, I claim that Xi,0 is normal and canonical. Indeed,
inductively it easily follows that KXi

+ Xi,0 = f∗
i (KXi−1 + Xi−1,0) and hence

since (X,X0) is canonical, (Xi,Xi,0) is canonical as well, and therefore Xi,0 is
normal. Moreover, by adjunction it follows that KXi ,0 = f∗

i KXi−1,0 and hence Xi,0

is canonical and Ei · Xi,0 is a crepant divisor for Xi−1,0 (which may be reducible).
Therefore e(X0) � n = e(Xt).

Suppose now that e(X0) = e(Xt). Let f : Y −→X be the composition of the
maps fi in (2.1) above. Then by its construction, Y is a Q-factorial terminal 4-fold
and since e(Yt) = 0 for general t, Yt is terminal as well for general t. Moreover, by
the above discussion, it follows that Y0 is irreducible and e(Y0) = 0, and hence Y0

is terminal too. Now Y −→X satisfies all the conditions of Theorem 2.4(i).
Now suppose that D ⊂ X is a family of divisors such that e(X0;D0) = e(Xt ;Dt),

for all t. Let Z
g−→ X be the D-minimal model of X, which exists by the MMP

in dimension 4. Then Zt −→Xt is an isomorphism in codimension 1 for general t
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and therefore e(Zt) = e(Xt). I now claim that Z0 −→X0 is also an isomorphism in
codimension 1 and hence it is also the D0-minimal model of X0. Suppose that this is
not so. Let D′ = f−1

∗ D. Then by the definition of D-minimal models, −D′ is g-ample
and hence if Z0 −→X0 is divisorial, then the center of any g0-exceptional divisor is
contained in D0. Therefore, e(D′

0;Z0) < e(D0;X0) = e(Dt ;Xt) = e(D′
t ;Zt), which

is impossible from the first part of the proof.

Remark. The condition e(X0) = e(Xt) is not sufficient for the existence of a
morphism g : Z −→X such that gt : Zt −→Xt is a Q-factorialization of Xt , for all
t, as was mistakenly claimed in [3]. The reason is that there may be divisors in
X0 that do not deform with X0, that is, they do not extend to a divisor in X. For
example, let X = (xy−zu+ t = 0) ⊂ C4. Then X0 = (t = 0) is the ordinary double
point xy − zu = 0, and Xt for t �= 0 is smooth. Thus X0 is not Q-factorial and
there is no morphism g : Y −→X such that g0 : Y0 −→X0 is a Q-factorialization of
X0 because if there was such a morphism g, then g would be an isomorphism in
codimension 1 which is impossible since X itself is smooth.
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