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H.A. Lloyd1, E.S.F. Maguire1, D. Mistry1, G.K. Reynolds2, C.G. Johnson1 and
J.M.N.T. Gray1,†
1Department of Mathematics and Manchester Centre for Nonlinear Dynamics, University of Manchester,
Oxford Road, Manchester M13 9PL, UK
2Oral Product Development, Pharmaceutical Technology and Development, AstraZeneca, Macclesfield
SK10 2NA, UK

(Received 13 August 2024; revised 31 October 2024; accepted 17 November 2024)

A super-stable granular heap is a pile of grains whose free surface is inclined above the
angle of repose, and which forms when particles are poured onto a plane that is confined
laterally by frictional sidewalls that are separated by a narrow gap. During continued mass
supply, the heap free surface gradually steepens until all the inflowing grains can flow out
of the domain. As soon as the supply of grains is stopped, the heap is progressively eroded,
and if the base of the domain is inclined above the angle of repose, then all the grains
eventually flow out. This phenomenology is modelled using a system of two-dimensional
width-averaged mass and momentum balances that incorporate the sidewall friction. The
granular material is assumed to be incompressible and satisfy the partially regularized
μ(I)-rheology. This is implemented in OpenFOAM� and compared against small-scale
experiments that study the formation, steady-state behaviour and drainage of a super-stable
heap. The simulations accurately capture the dense liquid-like flows as well as the evolving
heap shape. The steady uniform flow that develops along the heap surface has non-trivial
inertial number dependence through its depth. Super-stable heaps are therefore a sensitive
rheometer that can be used to determine the dependence of the friction μ on the inertial
number I. However, these flows are challenging to simulate because the free-surface
inertial number is high, and can exceed the threshold for ill-posedness even for the partially
regularized theory.
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1. Introduction

When grains are poured from a point source onto a horizontal plane, they form a conical
pile (or heap) that has a well-defined angle of repose (see figure 1). This is one of the most
fundamental of granular flows, and has been used throughout the ages to store bulk solids
in industrial processes, agriculture and food processing (Bates 1997; Schulze 2008). When
the source is not a point, a wide range of pile shapes can develop, and this has motivated
the development of simple sandpile models, which assume that all the slopes are at, or
close to, the angle of repose (Hadeler & Kuttler 1999; Nuca, Giudicec & Preziosi 2021).

Taberlet et al. (2003) discovered that when material is continually poured from a point
source onto a flat plane (or chute) that is confined laterally by frictional sidewalls, a
heap can form whose faces are inclined significantly above the angle of repose. They
termed such piles super-stable heaps. An example is shown in figure 2. Interestingly,
the super-inclination of the pile’s sides requires the continued flow of grains over their
surfaces to keep them stable. When the inflow is shut off, the pile slowly collapses back to
a conventional heap, or completely flows off the inclined chute, if it is inclined above the
angle of repose.

Taberlet et al. (2003, 2004) observed that at steady state, a super-stable slope was
inclined at a constant angle ζ and had a flow of uniform depth h along its surface (measured
perpendicular to the free surface). They used a simple force balance argument to show that
for a chute of width W, the slope inclination angle satisfies

tan ζ = μi + μw
h
W

, (1.1)

where μi is a constant internal friction angle and μw is the wall friction. Taberlet et al.
(2003) found that for dry polydisperse beach sand (0.1–0.8 mm), the best fit to the
experimental data was obtained with μi = tan 23.3◦ and μw = tan 33.7◦. The experiments
showed that as the mass-inflow rate was increased, the flow layer depth increased, and the
pile inclination steepened in agreement with (1.1). For high mass-inflow rates in narrow
channels, the slopes were in excess of 60◦, which is over 2.5 times the inclination angle in
a wide chute.

Taberlet, Richard & Delannay (2008) used three-dimensional discrete element
method/discrete particle method (DEM/DPM) simulations, with frictional sidewalls, to
model the development of a super-stable heap. This was computationally very expensive,
however, and there was little analysis of the growth of the heap, and no analysis of its decay.
Instead, Taberlet et al. (2004) focussed on DEM/DPM simulations in a short periodic box
that was inclined at a fixed angle ζ to the horizontal, which developed a steady uniform
flow that transported the same mass flux as the full simulation. These periodic simulations
showed that as well as developing a velocity profile that increased strongly towards the
top of the pile, the solids volume fraction decreased continuously towards the free surface,
which itself was poorly defined. The fact that super-stable heaps develop steady uniform
flows along their free surfaces makes them of fundamental rheological interest. This is
because measurements of the velocity profiles and slope inclination angle at different
mass-inflow rates can be used to constrain the granular rheology and determine parameter
values and/or functional fits (GDR MiDi 2004; Jop, Forterre & Pouliquen 2006).

The aim of this paper is to use a continuum theory to model the growth, steady-state
behaviour and drainage of a super-stable heap. This is more challenging than one might
imagine at first, because the flow encompasses simultaneously existing and evolving
solid-like, liquid-like and gaseous granular regions. The focus of the modelling here
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22°

Figure 1. Conical pile formed from the 710–750 µm green glass spheres used in the super-stable heap
experiments. The angle of repose is approximately 22◦.

is on the dense solid and liquid regimes, while the dilute free-falling jet that supplies
the grains from the hopper is parametrized in a simple way. Even with this reduced
focus, the super-stable heap raises fundamental issues about modelling granular flows.
Rate-independent Coulomb models, in which the inter-particle friction μ is constant
(Drucker & Prager 1952), are not appropriate, because they are unable to determine
the steady uniform velocity profile that develops at the surface of the flow. Besides, for
time-dependent problems, Schaeffer (1987) showed that the Drucker–Prager rheology was
mathematically ill-posed, in the sense that linear instabilities grew at an unbounded rate
as the wavenumber of the perturbation tended to infinity (Joseph & Saut 1990).

Over the past fifteen years, there has been significant development in the continuum
modelling of granular materials. Many of the theories are complex; however, the
incompressible μ(I)-rheology (Jop et al. 2006) has garnered considerable attention,
because of its comparative simplicity, and its ability to describe steady-state liquid-like
flows in a variety of configurations (GDR MiDi 2004; Jop, Forterre & Pouliquen 2005;
Jop et al. 2006; Gray & Edwards 2014). It is a rate-dependent theory, in which the friction
μ now becomes a function of the dimensionless inertial number

I = γ̇ d√
p/ρ∗

, (1.2)

where γ̇ is the shear rate, p is the pressure, ρ∗ is the intrinsic density of the grains, and d
is the particle diameter (GDR MiDi 2004). In the original form of the μ(I)-rheology, the
friction

μ = μs + μd − μs

I0/I + 1
(1.3)

starts at a finite value μs > 0, when I = 0, and asymptotes to μd > μs as I → ∞. It is
valid in what is known as the dense inertial regime (I ∈ [10−3, 10−1]), where the flow
is liquid-like. However, most practical problems involve transitions to quasi-static flow
(I < 10−3) and/or collisional behaviour (I > 10−1). This has led to problems when trying
to use the μ(I)-rheology to simulate column collapses and silos (Lagrée, Staron & Popinet
2011; Staron, Lagrée & Popinet 2012; Martin et al. 2017), because the theory is ill-posed
at high and low inertial numbers (Barker et al. 2015).
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Inlet
Front and back 10 mm

perspex sidewalls

Outlet

Adjusts the

inclination

angle of the box

Mass balance

Figure 2. Experimental set-up for the super-stable heap. Two 10 mm thick perspex front and back confining
walls are separated by 3 mm perspex bars across the left and bottom boundaries (as well as a perspex spacer
along part of the top boundary) to form a 600 mm × 300 mm rectangular domain. A silo with a funnel is
attached to the top, with a ‘double gate’ mechanism to control the mass-inflow rate and open and close the
inlet. Material exits the domain through the right-hand side of the rectangular domain and lands on a balance.
This measures the mass accumulation as a function of time. The left-hand stand adjusts the inclination angle
of the system, whilst the right-hand stand has a fixed height, allowing for in-plane rotation.

Ill-posedness of mathematical models is a common, yet insidious, problem. This is
because low-resolution simulations may be regularized by numerical diffusion and appear
plausible. It is only when the numerical grid is refined that it becomes apparent that
the results do not converge towards a well-defined solution, and blow up if the grid is
sufficiently fine (Barker et al. 2015; Barker & Gray 2017; Martin et al. 2017; Schaeffer
et al. 2019). It is possible to formulate well-posed granular rheologies by introducing
compressibility, although the original form of the compressible μ(I)-rheology, with a
rigid one-to-one dependence of the solids volume fraction Φ on I, is always ill-posed
(Barker et al. 2017; Heyman et al. 2017; Goddard & Lee 2018; Schaeffer et al. 2019).
Other approaches to obtain a well-posed μ(I)-based theory are to include either non-local
effects or higher spatial gradients (Bouzid et al. 2013; Henann & Kamrin 2013; Goddard &
Lee 2017). However, all of these theories introduce greater complexity into the modelling
framework, and new numerical methods need to be developed to solve them.

This paper stays within the general framework of the μ(I)-rheology, but uses a modified
μ(I) relation, developed by Barker & Gray (2017). This completely regularizes the theory
at low inertial numbers, and significantly extends the range of well-posedness at high
inertial numbers. It is known as the partially regularized μ(I)-rheology. The major
advantage of this is that it allows practical granular flow problems to be solved using
numerical solvers that have been developed for fluid flows (Lagrée et al. 2011; Staron et al.
2012; Barker & Gray 2017; Martin et al. 2017; Barker et al. 2021; Maguire et al. 2024).
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This paper begins in § 2 by performing a series of experiments to quantify the
growth, steady-state behaviour and decay of a super-stable granular heap. In § 3, the
partially regularized μ(I)-rheology is introduced, and the mass and momentum equations
are averaged across the width of the cell, reducing a three-dimensional problem to a
two-dimensional one in which the sidewall friction appears as a momentum source. In § 4,
these equations are used to solve for the steady-state velocity profiles that develop through
the depth of the uniform flow along the super-inclined free surface. It is shown that it is
not always possible to construct solutions using the classical μ(I) law (1.3), whereas the
partially regularized μ(I) function always has solutions, and can capture the experimental
behaviour at different mass fluxes using a single set of parameters. The numerical method
to solve the equations is described in § 5, and this is then used in § 6 to quantitatively
simulate the experimental growth and decay of a super-stable heap. The main results are
summarized in § 7 along with limitations of the model and potential future avenues of
research.

2. Super-stable heap experiments

The experimental set-up consists of two 600 × 300 × 10 mm perspex sheets, which form
a box that is separated by a 3 mm gap, as shown in figure 2. The gap width is slightly
narrower than the smallest width selected by Taberlet et al. (2003), which makes the wall
friction effects slightly stronger, and ensures that there is a blunt velocity profile across
the width of the cell (Jop et al. 2005). Observations made at the sidewall are therefore
representative of the flow across the cell width. A perspex bar parallel to the base provides
a boundary for the grains to flow and accumulate on. Additional perspex spacers along the
left and top boundaries are used to set the gap width. The experimental domain rests on
two ‘legs’. The right leg remains fixed, and the experimental domain is able to pivot about
this point. The left leg is adjustable and can raise/lower the left-hand side of the domain
to allow for the inclination angle of the system to be adjusted. A small silo is attached to
the top of the domain to supply the grains. The inlet is controlled by two gates. One gate is
fixed in position to control the mass-inflow rate, while the other gate opens and closes the
inlet. Material exits the domain through the right-hand boundary, and lands on a balance
that records the weight as a function of time.

All experimental results in this paper are obtained using 710–750 µm spherical
sodalime-glass deco beads manufactured by Sigmund Lindner GmbH, which are large
enough that the humidity does not effect their flow properties. The beads have a 2 µm
base coating of silver, and a 1–3 µm coloured coating formed by a Sol-Gel process, which
is very stable to wear and stable over time. The results also assume that the rectangular
domain is inclined at a fixed angle θ = 29.2◦ to the horizontal, which is above the repose
angle of the grains of approximately 22◦ (figure 1). In the absence of sidewall friction, the
grains falling from the hopper would impact the base, flow down the slope, and exit the
domain. Here, however, the sidewall friction provides additional resistance, which reduces
the flow rate down the incline and allows a super-stable heap to develop (figure 2).

Figure 3 shows the complete time-dependent development towards a steady super-stable
heap for inflow rate 0.0046 kg s−1, as well as the subsequent drainage once the inflow is
cut off. The inflowing grains fall from the hopper, hit the bed, and flow down the incline
and out of the domain. However, the sidewall friction retards the flow sufficiently that
the outflow rate is less than the inflow rate. As a result, a pile of static grains begins to
form, with its apex directly underneath the free-falling jet and its right-hand toe located at
the outlet. Grains that fall onto the top of the pile mainly avalanche down the right-hand
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(a) (b)
(i)

(i)(ii)

(ii)
(iii)

(iii)(iv)

(iv)(v)

(v)

(vi)

(vi)

Figure 3. Photographs of the (a) experimental formation and (b) draining of the super-stable heap, for slope
angle θ = 29.2◦ and mass-inflow rate Q = 0.0046 kg s−1. The inlet is opened at texp = 0, and the photos of
the filling are taken at texp = 6, 12, 20, 43, 83 and 321 s. Photo (a vi) shows the steady state, with the earlier
free-surface profiles superimposed for comparison. The inlet is cut off at texp = 340.5 s. The draining images
are at times texp = 341, 344, 346, 370, 398 and 424 s. For comparison, the free-surface shapes during the
draining phase are superimposed on the first of these images. All of the material leaves the domain at texp =
429.5 s. Movie 1 of the supplementary material shows the growth and decay of a closely similar super-stable
heap for a mass-inflow rate Q = 0.0060 kg s−1.

face in a thin layer towards the outflow. In order to account for the mismatch in inflow
and outflow rates, some of the inflowing particles are deposited along the free surface of
the pile, with more being deposited near its apex than near the outlet. The net effect of
this is that the free surface remains approximately linear in shape, but steepens over time
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(Taberlet et al. 2003). This progressive steepening allows the grains to avalanche down the
slope faster, and ultimately the mass-inflow and mass-outflow rates are able to balance.
A steady state is then reached in which there is no deposition. To balance the growth of
the right-hand pile face, there has to be a corresponding growth in the left-hand face to
keep the pile stable. Some grains therefore also avalanche down the left-hand side to build
the pile up. Once the pile of grains has reached steady state, the flow of grains down the
left-hand face stops, as shown in movie 1 of the supplementary material (available at
https://doi.org/10.1017/jfm.2024.1106), and all the inflowing grains avalanche down
the right-hand face. Figure 3(a vi) shows the steady-state super-stable heap. All the
free-surface profiles during its growth are superimposed on this image for comparison.
From this, it is easy to see the gradual steepening of the pile (on both the left- and
right-hand faces), as well as the rising of the apex with time. Note that the right-hand
face is significantly steeper than the left-hand face, and the growth of the pile slows down
as the steady state is approached.

At steady state, the super-stable heap is stabilized by the material that flows across its
surface. As soon as the inflow is cut off, this delicate balance is destroyed, the pile is
gradually eroded, and the particles flow out of the domain along the free surface as shown
in figure 3(b). The first photo shows the heap almost immediately after the inflow is shut
off, when the pile is still close to steady state. The later photos show the evolution of
the heap as it drains. All the free-surface profiles are superimposed on the first image to
contrast it against the growth phase of the pile. Rather than keeping a linear profile, as in
the case of growth, the top of the pile initially erodes faster than the material near the outlet,
which is still stabilized by the grains flowing over it. The upper part of the right-hand face
therefore has a lower inclination than material further down the pile, where the steady-state
inclination is maintained for a short period. Since the flow rate decreases progressively,
the region close to the steady-state inclination is eventually propagated out of the system,
and erosion occurs all the way along the right-hand side of the free surface. The left-hand
free surface remains stationary and unaffected by the outflow, until the surface avalanche
erodes downwards and mobilizes it. Since the angle of repose of the granular material
is less than θ = 29.2◦, the heap is able to drain entirely. Movie 1 of the supplementary
material shows the full time-dependent growth and collapse of a closely similar pile that
forms at mass-inflow rate Q = 0.0060 kg s−1.

Higher mass-inflow rates spontaneously develop steeper slopes in order to transport
the inflowing material out of the domain, and hence produce a larger steady-state heap.
This is shown in figure 4 for mass-inflow rates Q = 0.0020, 0.0046 and 0.0060 kg s−1.
The balance beneath the outlet records the total mass that has flowed out of the system
as a function of time, from which the mass-outflow rate can be calculated by taking
the time derivative of the data. Figure 5 shows both the total accumulated mass and the
mass-outflow rate as functions of time for each of the mass-inflow rates in figure 4. All
of the curves have a similar form. At time texp = 0 s, the inlet is opened. Initially, there
is no mass, and there is a short delay, from the start of the inflow to the time at which
material first arrives at the balance. Since some mass is deposited between the hopper
and the balance (in order to build the pile) the initial mass-outflow rate is not equal to the
mass-inflow rate. As the pile gets steeper, however, the mass-outflow rate steadily rises over
time until the mass-inflow and mass-outflow rates balance. This corresponds to the linearly
increasing section of the curves in figure 5(a) and the horizontal plateau in figure 5(b).
Larger mass-inflow rates necessarily produce higher gradient mass accumulation curves.
This is similar to what Taberlet et al. (2004, 2008) found in their DEM/DPM simulations.
The length of the steady-state sections is dependent on how long the inflow is sustained.
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X ζ θ

x

z

z̃

x̃

Z

Figure 4. Steady-state super-stable heaps for mass-inflow rates Q = 0.0020, 0.0046 and 0.0060 kg s−1, and
box inclination angle θ = 29.2◦. The pile size increases with increasing mass-inflow rate. It is useful to define
three coordinate systems. The (X, Z) coordinate system is used to represent the horizontal and gravity-aligned
vertical, the (x̃, z̃) system is aligned with the rectangular domain at angle θ to the horizontal, and the (x, z)
system is aligned with the steady uniform flowing layer at angle ζ to the horizontal. For the flow rates given,
the heap inclination angles are ζ = 41.63◦, 49.35◦ and 49.8◦, respectively.

Once the inflow is shut off, there is a gradual decrease in the mass-outflow rate towards
zero, and the total mass on the balance asymptotes to a constant value. In the experiments,
the total mass that accumulates on the scales is different for each of the three cases.
However, unsurprisingly, if one wanted to accumulate the same total mass, then the low
mass-inflow rate case would have to be run for far longer than the largest inflow rate case.

A JAI GO 5000C high-speed camera is oriented approximately parallel to the free
surface of the super-stable heap, and used to collect 1000 images at 664 fps of the
steady-state flowing layer. Figure 6(a) shows an example 1000 × 120 pixel image for
a mass-inflow rate Q = 0.0046 kg s−1, with the camera inclined at 48.9◦ ± 0.1◦ to the
horizontal. The PIVlab package (Thielicke & Stamhuis 2014) is used to generate velocity
vectors (figure 6b), and the data are rotated by an additional 0.44◦ to ensure that the
down-slope direction is oriented along the x axis. The slope-aligned (x, z) coordinates
are therefore inclined at ζ = 49.34◦ to the horizontal. Figure 6(c) shows the velocity
magnitude |u| in the slope-aligned coordinates (x, z). It is approximately spatially uniform
in the down-slope direction, which motivates averaging the time-averaged data along the
x direction to determine the velocity profile through the flow depth z.

From the high-speed photographs (e.g. figure 6a) it is difficult to define the exact
position of the free surface. Indeed, the Taberlet et al. (2008) steady uniform DEM/DPM
solutions show that the solids volume fraction decreases continuously through the flowing
layer, and that there is a sparse region above it where the particles undergo ballistic motion.
In order to compare the experimental velocity data with the incompressible theory (used in
this paper), the free surface (z = 0) is defined by assuming a constant density throughout
the material, and matching the mass-inflow rate implied by the measured velocity profiles
with the rate measured by the balance. Figure 7 shows the resultant velocity profiles for
the three mass-inflow rates Q = 0.0020, 0.0046 and 0.0060 kg s−1. Higher rates lead to
higher velocities and deeper flows, but these also occur on steeper slopes. Note that the
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Figure 5. (a) Accumulated mass and (b) the mass-outflow rate as functions of time for mass-inflow rates
Q = 0.0020, 0.0046 and 0.0060 kg s−1, and the box inclination angle θ = 29.2◦. The mass-outflow rate is
calculated by taking the time derivative of the accumulated mass data. The inlet is opened at t = 0 s, and the
plateaus in total accumulated mass in (a) show where all of the material has drained from the system. The
linear dot-dashed lines in (a) and the horizontal dot-dashed lines in (b) indicate the steady-state super-stable
heap regime, when the mass-inflow rate equals the mass-outflow rate.

sections of the velocity data that are neglected correspond to regions where the solids
volume fraction is low, so the error associated with the procedure to define the free surface
is not that large.

3. Governing equations

The aim of this paper is to use the incompressible partially regularized μ(I)-rheology
of Barker & Gray (2017) to model the formation, steady-state behaviour and drainage of a
super-stable heap. The granular material is therefore assumed to have constant density ρ =
Φρ∗, where Φ is the solids volume fraction, and ρ∗ is the intrinsic density of the material
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Figure 6. Panel (a) and movie 2 of the supplementary material show a 1000 × 120 pixel high-speed
photo/image sequence of the grains flowing down the inclined free surface at mass-inflow rate Q =
0.0046 kg s−1. The camera is inclined at 48.9◦ ± 0.1◦ to the horizontal. One thousand of these images are
used to construct the velocity field (b) using the PIVlab package (Thielicke & Stamhuis 2014). Green velocity
vectors are obtained from particle image velocimetry (PIV) analysis, and the red ones are interpolated from
the surrounding field. (c) The time-averaged velocity magnitude in (x, z) coordinates, which lie at an angle
ζ = 49.34◦ to the horizontal. The white line is the horizontally averaged velocity magnitude |u| through the
flow depth. Note that the velocity scale is aligned with the colour bar for the contour map.

that the grains are made of. This is a good leading-order approximation throughout most
of the body, although this assumption fails close to the free surface of the avalanching
layer, where the solids volume fraction reduces significantly (Taberlet et al. 2008).

3.1. Integration across the experiment width
For the experiments in § 2, the frictional sidewalls are sufficiently close together that
the velocity profile across the cell width is plug-like (Taberlet et al. 2003; Jop et al.
2005). This motivates integration across the narrow gap to remove one spatial dimension
from the problem. Assuming Cartesian coordinates Oxi, i = 1, 2, 3, with the x1 and x3
coordinates in the plane of the experiment, and the x2 coordinate lying across the width
W, the incompressibility condition is

∂u1

∂x1
+ ∂u2

∂x2
+ ∂u3

∂x3
= 0, (3.1)

where ui, i = 1, 2, 3, are the velocity components in the directions xi, respectively.
Equation (3.1) can be integrated across the width of the cell by exchanging the order of
integration with respect to x2 and differentiation with respect to x1 and x3, and assuming
that u2 = 0 at x2 = 0, W. Dividing the resulting equation by the constant cell width W
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|u| (m s–1)

(×10–3)

0

z (
m

)
–5

–10

–15

–20

0

0.1 0.2 0.3 0.4 0.5 0.6

Q = 0.0060 kg s–1

Q = 0.0046 kg s–1

Q = 0.0020 kg s–1

Figure 7. Steady uniform velocity profiles measured using PIV for mass-inflow rates Q = 0.0020, 0.0046
and 0.0060 kg s−1, which generate slopes at ζ = 41.63◦, 49.35◦ and 49.8◦ to the horizontal, respectively. The
z coordinate lies perpendicular to the inclined free surface, which is defined at z = 0. The dot-dashed lines
represent velocity data that have been removed to ensure that the mass-inflow rates agree with that measured
at the outlet. Since the solids volume fraction is very small in this region, this is not a large discrepancy.

yields a two-dimensional width-averaged incompressibility condition

∂ ū1

∂x1
+ ∂ ū3

∂x3
= 0, (3.2)

where the width-averaged velocities in the plane of the cell are defined as

ūi = 1
W

∫ W

0
ui dx2, i = 1, 3. (3.3)

The in-plane momentum balances (for i = 1, 3) are

ρ

(
∂ui

∂t
+ ∂

∂x1
(uiu1) + ∂

∂x2
(uiu2) + ∂

∂x3
(uiu3)

)
= ρgi + ∂σi1

∂x1
+ ∂σi2

∂x2
+ ∂σi3

∂x3
, (3.4)

where gi is the ith component of the gravity acceleration vector g, and σij is the i, j
component of the Cauchy stress tensor σ . The momentum balances (3.4) can also be
averaged across the cell by exchanging the order of integration and differentiation.
Moreover, the plug-like velocity profiles across the cell imply that the integrals of the
momentum transport terms can be simplified, to give

ρ

(
∂ ūi

∂t
+ ∂

∂x1
(ūiū1) + ∂

∂x3
(ūiū3)

)
= ρgi + ∂σ̄i1

∂x1
+ ∂σ̄i3

∂x3
+ 1

W
[σi2]W

0 , (3.5)

where the width-averaged stresses are

σ̄ij = 1
W

∫ W

0
σij dx2, i = 1, 3. (3.6)
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The shear stresses on the sidewalls are assumed to be given by a Coulomb law of the form

ti = σijnj = −μw p
ūi

|ū| at x2 = 0, W, for i = 1, 3, (3.7)

where μw is a constant friction coefficient, p is the pressure acting on the wall, and the
factor −ūi/|ū| ensures that the friction opposes the motion. This is consistent with the
equations used by Taberlet et al. (2003, 2004, 2008) and Jop et al. (2005), although more
complex friction laws that relate the slip velocity to the granular temperature are possible
(Artoni & Richard 2015). Near the free surface of the heap, the velocity is predominantly
down-slope, so the direction of the friction is well defined. Deeper down within the flow,
ū can be zero. For sufficiently small creep, a tanh profile regularization is therefore used
to allow the friction to smoothly transition through ū = 0.

The outward-pointing normal at x2 = 0 is n(0) = (0, −1, 0), while at x2 = W, we have
n(W) = (0, 1, 0). These definitions allow (3.7) to be used to solve for σi2 at x2 = 0, W.
Substituting these values into (3.5) implies that the width-averaged momentum balances
in the plane of the cell are

ρ

(
∂ ūi

∂t
+ ū1

∂ ūi

∂x1
+ ū2

∂ ūi

∂x3

)
= ρgi + ∂σ̄i1

∂x1
+ ∂σ̄i3

∂x3
− μw

2p
W

ūi

|ū| , (3.8)

where the momentum transport terms have been simplified using the width-averaged
incompressibility relation (3.2). Equation (3.8) looks similar to the original momentum
balance (3.4), but it is now defined in just two dimensions, with the lateral wall friction
entering as a local source term. The width-averaged mass and momentum balances (3.2)
and (3.8) can be written in vector notation as

∇ · u = 0, (3.9)

ρ

(
∂u
∂t

+ u · ∇u
)

= ∇ · σ + ρg − μw
2p
W

u
|u| , (3.10)

where the averaging bars have now been dropped for notational simplicity (here and
throughout the rest of the paper), and the gradient and dot product operators ∇ and ·
are understood to act in two dimensions. The conservation equations (3.9)–(3.10) hold in
any of the coordinate systems (X, Z), (x, z) and (x̃, z̃) defined in figure 4.

3.2. The μ(I)-rheology for granular flows
The Cauchy stress is decomposed into an isotropic pressure p and a deviatoric stress τ ,

σ = −p1 + τ , (3.11)

where 1 is the unit tensor (in two dimensions). The μ(I)-rheology for granular flows (GDR
MiDi 2004; Jop et al. 2006) is a nonlinear viscous law that relates the deviatoric stress τ to
the strain-rate tensor D = (∇u + (∇u)T)/2 (where T indicates transpose). The deviatoric
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stress and the strain rate are assumed to be aligned with one another:

τ

‖τ‖ = D
‖D‖ , (3.12)

where

‖ · ‖ =
√

1
2 tr(·2) (3.13)

is the second invariant of the enclosed tensor. In addition, there is a yield condition of the
form

‖τ‖ = μ(I) p, (3.14)

where the internal friction μ is a function of the non-dimensional inertial number (1.2),
which in tensorial notation becomes

I = 2 ‖D‖ d√
p/ρ∗

. (3.15)

Substituting for the Cauchy stress (3.11) and the alignment and yield conditions (3.12) and
(3.14), it follows that the width-averaged momentum balance (3.10) can also be written in
the form

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + ∇ · (2ηD) + ρg − μw
2p
W

u
|u| , (3.16)

where the granular viscosity

η = μ(I) p
2 ‖D‖ (3.17)

is pressure and strain-rate invariant dependent. The governing equations (3.9) and (3.16)
are therefore of the form of the incompressible Navier–Stokes equations, making it
appropriate to use computational fluid dynamics tools to solve the system numerically.

3.3. Drucker–Prager plasticity and mathematical ill-posedness
If the friction μ is constant, then the system reduces to the rate-independent
Drucker–Prager model for plasticity (Drucker & Prager 1952). Schaeffer (1987) showed
that in this case, the equations are mathematically ill-posed over the complete range
of parameter space. In this context, ill-posedness means that small perturbations to
the system grow unboundedly in the high-wavenumber limit (Joseph & Saut 1990).
This is catastrophic for numerical implementations, even though they may apparently
yield plausible results at sufficiently low grid resolution. This is because numerical
methods (i) are solved on grids with finite resolution, which truncates the instability,
and (ii) introduce grid-dependent numerical diffusion. As a numerical grid is refined,
the numerical diffusion diminishes, and progressively more unstable modes are resolved,
so eventually these instabilities dominate the solution. The numerical solutions therefore
become progressively more unstable on grid refinement, and do not converge towards a
unique solution.
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μ∞ = 0.05 μs = 0.342 μd = 0.557 I0 = 0.069 IN = 0.004 α = 1.9
Φ = 0.6 ρ∗ = 2500 kg m−3 W = 0.01 m μw = 0.27 d = 1.43 × 10−4 m

Table 1. Material parameters taken from Barker et al. (2021).

3.4. The classical μ(I) curve and well-posedness
The incompressible μ(I)-rheology (GDR MiDi 2004; Jop et al. 2006) shares much of
the same mathematical structure as the Drucker–Prager model, except that the friction μ

is dependent on the non-dimensional inertial number I. In the original formulation, the
μ(I) function is given by (1.3), and starts at a value μs when I = 0, and asymptotes
to μd > μs as I → ∞ (GDR MiDi 2004; Jop et al. 2006). A graph of the function
is shown in figures 8(a,b). This inertial number dependence makes the theory rate and
pressure dependent, whereas the Drucker–Prager model is rate independent. As a result,
the incompressible μ(I)-rheology can have significantly better mathematical properties.
This has allowed it to be used to calculate granular chute flows, column collapses and silo
discharge (Jop et al. 2006; Lagrée et al. 2011; Martin et al. 2017; Staron, Lagrée & Popinet
2014). However, Barker et al. (2015) showed that the μ(I)-rheology was mathematically
well-posed provided that the condition

C = 4
(

Iμ′

μ

)2

− 4
(

Iμ′

μ

)
+ μ2

(
1 − Iμ′

2μ

)2

≤ 0 (3.18)

was satisfied, where μ′ = dμ/dI. For the classical μ(I) function (1.3), Barker et al. (2015)
showed that provided that μd − μs was large enough, there was a region of well-posedness
for inertial numbers in the range I ∈ [IN

1 , IN
2 ]. Figure 8(c) shows the condition (3.18)

for the Jop et al. (2006) curve (1.3). For the parameters given in table 1, the theory
is well-posed for I ∈ [0.004, 0.3], but it is ill-posed when the inertial number is either
too low (0 < I < 0.004) or too high (I > 0.3). Barker et al. (2015) performed numerical
simulations of Bagnold flow on a 32◦ incline (when the theory is ill-posed) to explicitly
show the rapid growth of grid-scale-dependent oblique waves, which ultimately caused
the scheme to crash. Similar grid-dependent results have also been seen in the column
collapse simulations of Martin et al. (2017), and in decelerating chute flows by Barker
& Gray (2017). The classical μ(I) curve (1.3) inherits its reciprocal dependence from
measurements of hstop as a function of inclination angle, as shown in Appendix A. It
is therefore questionable whether the friction really asymptotes to μd at high inertial
numbers, and μd is certainly poorly constrained by the chute flow experiments.

3.5. The Barker & Gray (2017) partially regularized μ(I)-rheology
Barker & Gray (2017) treated the neutral stability condition for (3.18) as an ordinary
differential equation (ODE) for μ as a function of I. From this, they were able to maximize
the range of well-posedness of the incompressible μ(I)-rheology. Figures 8(a,b) show the
resulting function, which is given by

μ(I) =

⎧⎪⎪⎨
⎪⎪⎩

√
α

ln(A/I)
, I ≤ IN

1 ,

μsI0 + μdI + μ∞I2

I0 + I
, I > IN

1 ,

(3.19)
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Figure 8. The friction μ as a function of I is shown in (a,b) for the original function (1.3) of Jop et al.
(2006) (red curve) and the partially regularized function (3.19) of Barker & Gray (2017) (blue curve) using
the parameter values in table 1. The red and blue dots highlight the values of μ when I = 0 in the two models.
Different horizontal scales are needed to show the extent of the well-posed regions for (a) the original (light
red shading) and (b) the partially regularized theories (light blue shading). The well posedness condition C of
I, defined in (3.18), is shown for (c) the original and (d) the partially regularized theory. The black dots indicate
the points where C = 0. It is these points that set the boundaries of the well-posed regions in (a,b).

where α and μ∞ are material constants, and

A = IN
1 exp

[
α(I0 + IN

1 )2

(μsI0 + μdIN
1 + μ∞(IN

1 )2)2

]
(3.20)

ensures a continuous transition between the two branches. Also, IN
1 = 0.004 is the lower

neutral stability point of the Jop et al. (2006) curve (1.3). Figure 8(a) shows that this
function is very close to the original Jop et al. (2006) curve, in the range where it is
well-posed, i.e. for I ∈ [0.004, 0.3]. Barker & Gray (2017) showed that it was possible
to eliminate the region of the ill-posedness at low inertial numbers by introducing a
creep state, in which μ(0) = 0 and there is a logarithmic dependence in (3.19) at low
inertial numbers. For large inertial numbers, the function (3.19) asymptotes to a linear
dependence on I, as shown in figure 8(b). This significantly extends the range of inertial
numbers for which the rheology is well posed to [0, 16.99], but for large enough inertial
numbers, it can still be ill-posed. For this reason, the theory is termed the partially
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regularized μ(I)-rheology. It has the advantage that it is reasonably simple and can be
solved within the framework of existing computational fluid dynamics codes (Barker &
Gray 2017). In particular, Barker et al. (2021) and Maguire et al. (2024) have coupled the
theory with particle-size segregation models (Gray 2018) to solve complex segregating
flow problems in chutes and rotating drums. There are, however, new theories that always
remain well-posed, but they add considerable complexity to the system (Barker et al. 2017;
Goddard & Lee 2017; Kamrin 2019; Heyman et al. 2017; Schaeffer et al. 2019).

The linear dependence of the friction μ on I at high inertial numbers, which is assumed
in the Barker & Gray (2017) model, is supported by the high-speed flow experiments
of Holyoake & McElwaine (2012). However, DEM/DPM simulations of dumbbells and
discs suggest that a maximum friction occurs at a finite inertial number in the range
0.6–0.8, and then decreases monotonically with inertial number thereafter (Mandal &
Khakhara 2016; Patro et al. 2021). A classical incompressible μ(I) law of this form
would be mathematically ill-posed in the monotonically decreasing region, since μ′ < 0,
hence the well-posedness condition (3.18) implies that C is strictly positive, which violates
the inequality. It is, however, possible to formulate well-posed compressible I-dependent
rheology models that could have non-monotonic dependence on the inertial number
(Schaeffer et al. 2019).

4. Steady uniform flow on the pile

The experiments in § 2 show that a steady uniform-thickness flow develops on the
right-hand face of the super-stable heap. Jop et al. (2005) constructed a one-dimensional
steady-state solution for the flowing layer, with the original form (1.3) of the
μ(I)-rheology. Attempts to simulate this in two-dimensional time-dependent numerical
simulations with the tensorial form of the μ(I)-rheology (Jop et al. 2006) will, however,
lead to grid-dependent results (Barker et al. 2015; Barker & Gray 2017). This is because
there is necessarily a region where the inertial number falls below IN

1 , and there may be a
region that exceeds IN

2 , both of which would be ill-posed. It is of interest to construct an
equivalent one-dimensional solution for the partially regularized μ(I)-rheology (Barker &
Gray 2017), which has a much wider range of applicability, and crucially does not become
ill-posed at low inertial numbers.

4.1. Exact solution for the shear stress and friction
The super-inclined slope coordinates Oxz, defined in figure 4, are used in this subsection,
with the origin O located at the free surface, so that z = 0 corresponds to the free surface.
The velocity u has components (u, w) in the (x, z) directions, respectively. The flow is
assumed to be steady and uniform in the down-slope x coordinate. This allows the mass
balance equation (3.9) to be integrated, subject to the condition that w = 0 at z = 0, to
show that

w = 0 (4.1)

everywhere within the flow. Since u = (u(z), 0), the strain rate and the second invariant of
the strain rate (3.13) reduce to

D =

⎛
⎜⎝ 0

1
2

du
dz

1
2

du
dz

0

⎞
⎟⎠ , ‖D‖ = 1

2

∣∣∣∣du
dz

∣∣∣∣ , (4.2a,b)
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respectively. Assuming that du/dz > 0, the alignment and yield conditions (3.12) and
(3.14) then imply that the deviatoric stress

τ =
(

0 μ(I) p
μ(I) p 0

)
(4.3)

and the down-slope and normal components of the momentum balance (3.10) are

dτxz

dz
+ ρg sin ζ − 2

W
μwp = 0, (4.4)

−dp
dz

− ρg cos ζ = 0, (4.5)

respectively. Integrating (4.5) with respect to z, subject to the boundary condition p = 0 at
z = 0, implies that the pressure is lithostatic:

p = −ρgz cos ζ. (4.6)

The linear dependence of the shear stress on pressure in (4.3) implies that τxz has to be
zero at the free surface to be compatible. Substituting (4.6) into (4.4), and integrating with
respect to z, subject to τxz = 0 at z = 0, implies

τxz = −ρgz sin ζ − μw

W
ρgz2 cos ζ. (4.7)

Using τxz = μ(I) p and (4.6), it follows that the friction is

μ(I) = tan ζ + μw

W
z. (4.8)

This implies that at the free surface (z = 0), the friction is μ(I) = tan ζ , independent of
the wall friction μW . This is extremely significant, because the experiments in § 2 show
that even at moderate mass-inflow rates, the free-surface inclination approaches ζ ∼ 50◦.
This can be a problem for the μ(I) function (1.3). If μd < tan ζ , then it is not possible to
invert the function μ(I) = tan ζ to determine I at the free surface, hence a steady uniform
flow solution does not exist. For example, this is the case for the parameters in table 1,
where μd = 0.557 is less than tan 50◦ = 1.19. It follows that either μd should be much
higher than assumed in table 1, or the friction does not tend to μd as I → ∞. In contrast,
the friction in the Barker & Gray (2017) partially regularized μ(I)-rheology has a linear
dependence on I at high inertial numbers, which implies that (3.19) can always be inverted
to determine I, hence a steady uniform flow solution exists for all slope inclination angles.

As well as probing the high inertial number regime, the inertial number also sweeps
through moderate and low inertial number regimes in the steady uniform flow that
develops on top of the heap. In particular, there is a finite depth z = zst in the flow,
where the inertial number equals zero and hence the friction reaches its minimum value
μ = μ(0). Beneath this level, the granular material is assumed to fall below yield (3.14)
and is stationary. Substituting μ = μ(0) into (4.8) implies that the height below which
everything is stationary is

zst = W
μw

(μ(0) − tan ζ ) . (4.9)

For the original μ(I) curve (1.3), the minimum value of the friction is μ(0) = μs, while
for the partially regularized function (3.19), μ(0) = 0. As a result, the partially regularized
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μ(I)-rheology of Barker & Gray (2017) apparently predicts a much thicker flowing layer
than the original μ(I) model of Jop et al. (2006). Equation (4.9) can also be written as

tan ζ = μ(0) + μw
h
W

, (4.10)

where the flow thickness is h = −zst > 0. This essentially recovers the Taberlet et al.
(2003) grain-size independent force balance (1.1). Determining the first point of yield,
and hence the flow depth h, is open to interpretation, however, because creep motion may
be visible only over longer time scales (Komatsu et al. 2001). One interpretation of the
Taberlet et al. (2003) experiments is that μi = μ(0) = μs = tan 23.3◦ and h is the depth
of the surface layer of particles that are in motion during the short observational time scale
in the experiments.

4.2. Numerical solutions for the associated velocity profile
To calculate the velocity profile, it is necessary to first invert (4.8) to obtain an expression
for the inertial number, i.e.

I = I
(

tan ζ + μw

W
z
)

, (4.11)

where I(μ) is the inverse function of μ(I). As discussed in § 4.1, it is not always possible
to do this inversion. Assuming that it can be done, the definition of the inertial number
(3.15) then allows an ODE for the velocity to be formulated as

du
dz

=
I

(
tan ζ + μw

W
z
)

d

√
−Φgz cos ζ , (4.12)

where the solids volume fraction Φ = ρ/ρ∗ is constant. This is integrated from u = 0
at z = zst up to the free surface at z = 0, using an explicit Runge–Kutta (4, 5) method
(Dormand & Prince 1980; Shampine & Reichelt 1997).

Figure 9(a) shows the computed velocity profiles for inclination angles ζ = 36.87 and
46.40◦, which lie just below and just above arctan(μd) = 41.98◦. At the lower inclination
angle, both models produce qualitatively similar results. For the original friction law (1.3),
the smooth transition to the unyielded material beneath occurs at zst = W(μs − tan ζ )/μw.
This contrasts with the partially regularized rheology (3.19), where the smooth transition
occurs much deeper down at zst = −W tan ζ/μw. Despite the fact that the flowing layer
is much thicker, the creep state at low inertial numbers ensures that there is very little
motion except near the free surface. As a result, the low-velocity regions look very similar.
However, the additional resistance afforded by the linear regime at high inertial numbers
in (3.19) retards the flow, and the partially regularized velocities near the free surface are
substantially lower than those using the original theory. The original model (1.3) breaks
down in the 46.40◦ case. This is because there is a finite depth at which the friction satisfies
μ → μd, which implies that I → ∞ and the velocity tends to infinity. In contrast, the
partially regularized friction law (3.19) of Barker & Gray (2017) can be inverted at all
inclination angles, and produces solutions that are qualitatively similar to those at the
lower inclination.

The slope inclination angle ζ emerges spontaneously during the experiments, and is
controlled only indirectly through the mass-inflow rate Q. However, since all of this
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Figure 9. (a) Exact solutions for the down-slope velocity u as a function of z at inclination angles arctan(μd −
0.15) = 36.87◦ and arctan(μd + 0.15) = 46.40◦ using the parameters in table 2. The solutions are shown for
the original (red lines) and partially regularized (black lines) forms of the μ(I)-rheology (GDR MiDi 2004;
Jop et al. 2006; Barker & Gray 2017). The circular and diamond-shaped markers show the height z = zst at
which the material falls below yield. The grey-shaded markers correspond to the 46.40◦ case. The dashed line
in the inset indicates that on the 46.40◦ slope, the velocity u → ∞ at a finite depth for the original friction law
(1.3). This corresponds to the height where the friction is μ → μd . (b) The inclination angle ζ as a function of
the mass-inflow rate Q for the partially regularized (black line) and the original (red line) laws using the same
parameters. The coloured triangles indicate the experimental cases from § 2, while the diamond and circular
markers indicate the solutions in (a). The dashed line and star show the maximum mass-inflow rate for which
a solution to the Jop et al. (2006) model exists.

material flows down the right-hand side of the pile at steady state, it is easy to calculate Q
for a given inclination angle ζ using the computed velocity profile, i.e.

Q = ρW
∫ 0

zst

u dz. (4.13)
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μ∞ = 1.3 μs = 0.4 μd = 0.9 IN = 0.05178 μw = 0.3727 I0 = 1.3
W = 0.003 Φ = 0.6 g = 9.81 d = 0.00073 m α = 1.9

ζ
exp
1 = 41.63◦ ζ

exp
2 = 49.35◦ ζ

exp
3 = 49.80◦

ζ
fit
1 = 43.38◦ ζ

fit
2 = 47.99◦ ζ

fit
3 = 49.53◦

Table 2. Rheological parameters for the partially regularized μ(I)-rheology, and wall friction, used in § 4 to fit
the experimental steady-state velocity profiles in figure 10 and the inclination angle as a function of mass-inflow
rate in figure 9(b). A summary is also included of the measured steady super-stable-heap angles ζ

exp
1 , ζ

exp
2 and

ζ
exp
3 for the experimental mass-inflow rates Q = 0.0020, 0.0046 and 0.0060 kg s−1. Using these parameters,

the one-dimensional exact solution produces slope inclination angles ζ
fit
1 , ζ fit

2 and ζ
fit
3 , for the same mass-inflow

rates. Note that μs is determined from the angle of repose in figure 1.

Figure 9(b) shows a plot of the inclination angle ζ as a function of the mass-inflow rate
Q, for both the original friction law (1.3) and the partially regularized curve (3.19). At
low mass-inflow rates, the two curves are almost indistinguishable from one another, and
have large changes in inclination angle for only very small changes in flux. As the flow
rate increases, the partially regularized model experiences larger friction, which retards
the flow, and therefore requires the super-stable heap to select inclination angles that are
steeper than in the original theory. Solutions exist for the original friction law (1.3) only
if the slope angle is ζ < arctan(μd), as discussed above. In particular, for the parameters
in table 2, this implies that there are no solutions to the Jop et al. (2006) model for the
two larger experimental fluxes in § 2, as shown in figure 9(b). Similarly, the parameters
in table 1 support a maximum slope angle of only 29.1◦. This is well below the angles
40◦–50◦ observed experimentally in § 2. In contrast, the slope angle is well defined for
the partially regularized μ(I)-rheology (3.19), and it continues to increase with increasing
mass-inflow rate. The fit of the theory to the experiments is very good for the parameter
values chosen in § 4.3.

4.3. Determining suitable parameters for the numerical simulations
Equation (4.8) implies that the friction varies from tan ζ at the free surface of the steady
uniform flow, to zero at a finite depth. Assuming that the grains satisfy a μ(I)-type law, it
follows that the inertial number also varies through the depth, rather than being equal to
a constant value as in Bagnold flow (B2). The steady uniform velocity profiles in figure 7
therefore contain a wealth of information that can be used to determine the parameters
μs, μd, μ∞ and I0 for use in the partially regularized law (3.19), as well as the wall
friction μw. Simultaneously fitting such a large set of parameters to all of the data is still
difficult. Moreover, the theory is not perfect because it assumes incompressibility, and
there is strong evidence that the flow dilates substantially close to the free surface, which
itself is not clearly defined (Taberlet et al. 2008). Despite this, it will be shown in § 6 that
the incompressible μ(I)-rheology is able to capture the entire formation and collapse of
super-stable heaps.

To simplify the parameter-fitting procedure, it was assumed that the static friction μs is
equal to the angle of repose of a static pile of grains, which from figure 1 is approximately
tan 22◦ � 0.4. The steady uniform flow solver from § 4.2 was then used to optimize the
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I
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(a)

0 0.2 0.4 0.6 0.8 1.0
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Q = 0.0060 kg s–1

Q = 0.0046 kg s–1

Q = 0.0020 kg s–1
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0

–0.015
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0

Figure 10. (a) The experimental down-slope velocity profiles with z (dot-dashed lines) for the three
mass-inflow rates in § 2, and the corresponding fitted profiles (solid lines) using the parameters in table 2.
For mass-inflow rates Q = 0.0020, 0.0046 and 0.0060 kg s−1, the resulting slope angles are ζ fit = 43.3769◦,
47.9899◦ and 49.5276◦, whereas the experimental angles were ζ exp = 41.63◦, 49.35◦ and 49.8◦, respectively.
(b) The corresponding exact solution for the inertial number through the flow depth. The black dashed line
indicates the upper limit of the well-posed region of the partially regularized μ(I)-rheology. This is equal to
1.0297 for the parameters in table 2.

remaining parameters so that they provided good fits to the measured steady uniform
velocity profiles for the three different mass-inflow rates (figure 10a), and so that the heap
angles lay within ±1.5◦ of their experimental values (table 2). A further constraint lies in
the fact that the theory should be well-posed throughout its entire flow depth, i.e. the values
of the parameters must ensure that I stays within the range of well-posed inertial numbers
according to the inequality (3.18). Figure 10(b) shows that for the optimized parameters in
table 2, the inertial number does indeed stay below the upper bound for well-posedness.
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Figure 9(b) shows the slope inclination as a function of mass-inflow rate for the partially
regularized μ(I)-rheology with the parameters in table 2. The solution curve passes close
to the experimentally measured values, and as opposed to the classical law (1.3), is well
defined for all mass-inflow rates. The parameter values that deviate most from those used
in Barker et al. (2021) are μd and μ∞. These have greatest effect in the high inertial
number limit. In future, it may be possible to use super-stable heap experiments and the
exact solutions in §§ 4.1 and 4.2 to determine an even better functional form for the μ(I)
law, or include bulk compressibility (Barker et al. 2017; Schaeffer et al. 2019). However,
it is important to stress that the partially regularized incompressible μ(I)-rheology does
a remarkably good job of simultaneously fitting both the slope inclination angles and the
velocity profiles, in figures 9(b) and 10(a), with a single set of parameters, given that the
flow self-selects both of these quantities as the mass-inflow flux is changed.

5. Numerical method

5.1. Extended system of equations
The numerical method developed by Barker et al. (2021) is used in this paper to solve
the width-averaged mass and momentum balances (3.9) and (3.10). In order to handle the
evolving free surface, a two-fluid mixture approach is used to solve the equations in an
extended domain that includes an excess-air phase in regions that are not occupied by the
grains. The excess air is introduced purely for numerical convenience, and is not the same
as the interstitial air between the grains. The grains and the interstitial air (which will be
referred to as grains for short) are assumed to occupy a volume fraction ϕg ∈ [0, 1], and
the excess air occupies a volume fraction ϕa ∈ [0, 1] per unit mixture volume. It follows
that their sum equals unity:

ϕg + ϕa = 1. (5.1)

The aim of the method is to keep the two phases/species largely separated from one
another, so that the interface between them represents the free surface of the grains. This is
accomplished by requiring the volume fractions to satisfy a pair of segregation equations

∂ϕg

∂t
+ ∇ · (

ϕgu
) + ∇ · (

fgaϕ
gϕa e

) = 0, (5.2)

∂ϕa

∂t
+ ∇ · (

ϕau
) + ∇ · (−fgaϕ

aϕg e
) = 0, (5.3)

where u is the bulk velocity field, fga is the segregation velocity between grains and the
excess air, and e is a unit vector that sets the segregation direction (Gray & Thornton 2005;
Gray & Chugunov 2006; Gray & Ancey 2011; Gray 2018). The first terms on the left-hand
sides of (5.2) and (5.3) are the time rates of change of the species concentration; the second
terms represent transport by the bulk flow; and the third terms segregate the phases from
one another, driving the local concentrations to 0 or 1. Note that summing (5.2) and (5.3),
and substituting (5.1), implies that the bulk velocity field u is still incompressible:

∇ · u = 0. (5.4)

The width-averaged momentum balance (3.16) is written in conservative extended form
∂

∂t
(u) + ∇ · (u ⊗ u) = −∇p + ∇ · (2η̂D) + g − 2

W
ϕgμWp

u
|u| , (5.5)

where  is the mixture density, ⊗ is the dyadic product, and η̂ is the mixture viscosity.
Note that in (5.5), a factor ϕg has been added to the wall friction terms, so that they do not
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act on the excess air. The mixture density  is defined as

 =
∑
∀ν

ϕνν, (5.6)

where the species densities ν are constant. In particular, the density of the air ϕa is a lot
less than that of the grains: a � g = ρ = ρ∗Φ. The mixture viscosity η̂ is also defined
by a volume fraction weighted average of the individual species viscosities:

η̂ =
∑
∀ν

ϕνην. (5.7)

The granular viscosity ηg = η is given by the nonlinear function (3.17), while the air
viscosity ηa = 1 × 10−2 kg m−1 s−1 is chosen to be higher than a more realistic value
ηa = 1.81 × 10−5 kg m−1 s−1, to suppress turbulent motion in the air (which can increase
computational time). Choosing a higher value of ηa is legitimate here, since the excess air
is included purely for ease of tracking the granular free surface.

5.2. Interface sharpening
For a pure phase of granular material (ϕg = 1), the extended width-averaged mass and
momentum equations (5.4) and (5.5) are formally equivalent to the original width-averaged
equations (3.9) and (3.16). Conversely, in a pure phase of excess air (ϕ = 1), the system
reduces to a low-density incompressible viscous fluid. The method rests on driving
the species concentrations towards these two limiting states. A common problem in
multi-phase methods is the smearing/blurring of the interface that forms between the
two phases. The usual two-fluid approach uses the counter-gradient transport method
to sharpen the air–grain interface (Rusche 2002; Weller 2008). The interface-sharpening
equation for the excess air and granular phases would be

∂φa

∂t
+ ∇ · (

ϕau
) + ∇ ·

(
cag |u|φaφg ∇φa

|∇φa|
)

= 0, (5.8)

where cag|u| determines the strength of sharpening, with the direction given by the
gradient of the excess air concentration ∇φa/|∇φa|. Equation (5.8) has close structural
similarities with the segregation equations (5.2) and (5.3); however, Barker et al. (2021)
showed that although it does sharpen the interface between the air and the grains, it also
causes (i) thin layers of excess air to be trapped adjacent to solid boundaries, and (ii)
excess air bubbles to become trapped within solid-like granular regions. Both of these
effects are unphysical for granular systems, because the excess air is able to escape through
the connected pore space between the grains. Since Barker et al. (2021) were primarily
concerned with solving for the motion and segregation in size bi-disperse mixtures of
grains, they suggested extending the system of particle segregation equations to include
the segregation/separation of the air phase. This has the advantage that the direction
and magnitude of the segregation can be chosen by the user. Barker et al. (2021) chose
e parallel to the gravitational acceleration vector g, i.e. e = g/|g|. The air segregation
equation (5.3) therefore segregated any excess air that was in danger of being trapped,
upwards in the opposite direction to gravity, into the excess air layer above the grains. This
produced an air-bubble-free granular material with a very sharp surface interface.
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5.3. OpenFOAM implementation
The incompressibility condition (5.4) and the extended momentum balance equations
(5.5) are solved in OpenFOAM using the PIMPLE algorithm. This is a combination
of the SIMPLE algorithm (semi-implicit method for pressure-linked equations), and
the PISO algorithm (pressure implicit with splitting of operator), which is an iterative
method to solve for the pressure (Issa 1986). The concentration equations (5.2) and (5.3)
are solved using the multi-dimensional universal limiter for explicit solution (MULES)
algorithm (Weller 2006). Both schemes are explicit, and a Courant–Friedrichs–Lewy
(CFL) condition must therefore be satisfied. For many multi-phase flows, the convection
term dominates the CFL criterion, but for granular flows with static regions, the viscosity
(3.17) can reach large values. As a result, the CFL number is defined in terms of both the
velocity and the viscosity (Moukalled, Mangani & Darwish 2016):

CFL = |u|�t
�x

+ η̂ �t
ρ �x2 . (5.9)

A backward Euler integration scheme is used with an adaptive time stepper that ensures
that the CFL number is always less than unity for numerical stability. Following Lagrée
et al. (2011) and Staron et al. (2012), a viscosity cap is applied,

η̂ = min(η̂, η̂max), (5.10)

to prevent the time step from becoming unreasonably small. The value of η̂max must
be chosen to be sufficiently high that the high Newtonian viscosity is active only in
regions where the granular material is essentially static. The two-dimensional periodic
box solutions in Appendix B are used to validate the numerical algorithm against the
exact solutions in § 4.

5.4. Artificial dilution of the free-falling granular jet
The μ(I)-rheology was designed to model dense liquid-like granular flows, such as the
avalanches that develop on inclined slopes, and in the free-surface layers of heaps and
partially filled rotating drums (GDR MiDi 2004; Jop et al. 2006; Lagrée et al. 2011; Staron
et al. 2012; Barker & Gray 2017; Barker et al. 2021; Maguire et al. 2024). Importantly,
the μ(I)-rheology was never intended to apply to the dilute high-speed granular jet,
which develops as the grains fall from the inlet (figure 2). However, in order to model
the time-dependent growth of the super-stable heap, it is necessary to find a means of
delivering the grains to the apex of the pile, even if this is not physically realistic.

Initial attempts to model the jet closely paralleled the experimental system, with
a 0.02 m inlet at x̃ = 0.1–0.12 m (figure 4) delivering grains into the system with
mass-inflow rate Q and concentration ϕg = 1 − ϕa = 1. However, this approach failed,
because as the grains accelerated due to gravity, incompressibility caused the jet to thin
to such a degree that impractical levels of grid refinement were needed to resolve it. At
low inflow velocities, the narrow jet was also prone to instabilities with the excess air
phase. In reality, the free-falling granular jet does not remain dense, but rapidly breaks
apart and becomes highly dilute. A practical approach is therefore to assume that the jet is
already dilute at the inflow, i.e. ϕg = 1 − ϕa = 0.2, but the mass-inflow rate Q is the same.
Figure 11 shows a simulation of the dilute free-falling jet in gravity-aligned coordinates
(X, Z). This also accelerates and narrows as it falls, but not as strongly as for a pure phase
of grains. As a result, it can be resolved in the numerical simulations, and is not prone
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Figure 11. Numerical simulation of a free-falling jet using the the partially regularized μ(I)-rheology in the
absence of wall friction and interface-sharpening forces. (a) The volume fraction of granular material in the
free-falling jet, and (b) the velocity magnitude. (c) The blue circles represent the computed width-averaged
flow rate through the jet at each z coordinate, while the red line represents the flow rate input by the boundary
conditions, i.e. Q = 0.0046 kg s−1.

to disturbances from the air. Artificial dilution of the inflow is therefore closer to what
happens physically than trying to impose a pure phase of grains throughout the jet.

An immediate consequence of the artificial jet dilution is that the interface-sharpening
method must be shut off in the free-falling jet to prevent the granular phase from separating
out again. The phase separation terms in (5.2) and (5.3) are therefore multiplied by a factor

Ω =
{

0, inside the jet region,

1, outside the jet region.
(5.11)

The boundaries of the jet region are chosen to be 0.025 m away from the edges of the
inlet boundary in gravity-aligned coordinates. It is important that the heap never enters
this region as it grows. The bottom boundary of this region, Hb, is therefore set to be

Hb = max(0.02, H + 0.02), (5.12)

where H is the highest point of the super-stable heap in gravity-aligned coordinates. Wall
friction opposes the inflow of the jet and can also cause issues at low inflow rates. It is
therefore also shut off in the jet region. The final system of conservation laws that are

1002 A27-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
06

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1106


H.A. Lloyd and others

solved in OpenFOAM is therefore

∂ϕg

∂t
+ ∇ · (ϕgu) + ∇ · (Ωfgaϕ

gϕa e) = 0, (5.13)

∂ϕa

∂t
+ ∇ · (ϕau) + ∇ · (−Ωfgaϕ

aϕg e) = 0, (5.14)

∂

∂t
(u) + ∇ · (u ⊗ u) = −∇p + ∇ · (2η̂D) + g − 2Ω

W
ϕgμWp

u
|u| . (5.15)

The super-stable heap simulations are performed in experimental-box-aligned coordinates
(x̃, z̃) defined in figure 4, which are inclined at θ = 29.2◦ to the horizontal. At the base, a
no-slip boundary condition is applied (u = 0), and there is no flux of air or grains across
it. As described above, at the inlet, the concentrations of the air and grains are prescribed,
with an associated gravity-aligned velocity to produce the correct mass-inflow rate Q into
the domain. The left- and right-hand boundaries, as well as the remaining part of the
top boundary, are open to allow material to exit the domain, and zero pressure boundary
conditions are applied.

6. Simulating the growth and decay of super-stable heaps

Figures 12–14 show contour plots of the simulated flow speed |u|, pressure p and
base ten logarithm of the inertial number I at a sequence of times for a mass-inflow
rate Q = 0.0046 kg s−1. Movies 3–5 in the supplementary material show the complete
time-dependent evolution of these fields. Throughout the growth, steady-state behaviour
and decay of a super-stable heap, the velocity magnitude is very low, except in a very
narrow boundary that develops at the free surface of the pile (figure 12). The region
where the partially regularized granular rheology is active occupies a considerably
deeper layer, as can be seen in figure 14. It follows that throughout the simulation, the
high-viscosity-capped region lies sufficiently deep within the pile that it does not affect
the surface motion.

6.1. Detailed development of the numerical simulation
During the initial phase (t < 18 s), a pile develops rapidly beneath the falling jet, and the
apex rises steadily as material flows down either side of it. More material flows down the
longer right-hand face than the shorter left-hand face, and attains higher velocities. During
these early times, both slopes have approximately the same gradient. On the right, there
is a point near the base of the pile where there is a break in slope, which moves steadily
downstream as the pile grows. To the right of this break in slope, the no-slip condition at
the base results in the grains forming a steady uniform Bagnold-type flow down the plane.
By approximately 18 s, this point reaches the outlet, and the pile enters into a new phase
of motion (t = 18–106 s) in which the right-hand face of the pile progressively steepens,
allowing the mass-inflow rate Q to balance the mass-outflow rate.

For t = 106–150 s, the super-stable heap is essentially in a steady state, in which the
slope angle ζ of the right-hand face is spontaneously selected as part of the fully coupled
problem. There is a very thin steady uniform flow at the surface of the right-hand face,
which transports virtually all of the incoming grains from the jet out of the domain. As
a consequence of this, the right-hand face is inclined at a constant angle approximately
50◦. This is very close to the observed value 49.35◦. Beneath the rapid surface avalanche,
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Figure 12. Contours of the simulated velocity magnitude |u| for a mass-inflow rate Q = 0.0046 kg s−1 during
(a) the growing phase and (b) the draining phase. The simulation times from (a i) to (a vi) are tsim = 7.2, 12.4,
16.8, 30.8, 56, 150 s (steady), while for (b i) to (b vi), tsim = 151.2, 155.2, 174.4, 202, 252, 297.6 s. Movie 3
of the supplementary material shows the full time-dependent evolution. The heap shapes are compared with
the experimental free surfaces (magenta lines) when the granular areas are approximately equal. The areas
are (a) A = 0.02, 0.045, 0.065, 0.11, 0.15, 0.175 m2, and (b) A = 0.175, 0.16, 0.11, 0.08, 0.04, 0.01 m2. The
experimental data are taken at texp = 6, 12, 20, 43, 83, 321 s (steady) and texp = 341, 344, 346, 370, 398, 424 s.

the material is slowly creeping. The creep just under the free surface is due to the low
inertial number creep state in the partially regularized μ(I)-rheology (Barker & Gray
2017). However, sufficiently deep within the pile, the viscosity cap (5.10) becomes active,
and the creep is due to Newtonian viscosity. For t = 106–150 s the left-hand side of the
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Figure 13. Contours of the simulated pressure p for a mass-inflow rate Q = 0.0046 kg s−1 during (a) the
growing phase and (b) the draining phase. The simulation times are the same as those in figure 12. Movie 4 of
the supplementary material shows the full time-dependent evolution.

pile continues to evolve very slowly due to this combined creep, so a true steady state is
never really achieved, although it will be referred to as such.

At t = 150 s, the inflowing jet shuts off. As a result, the steady uniform flow of grains on
the right-hand face rapidly drains off and is replaced by a much slower flow that gradually
erodes the super-stable heap. By t = 154 s, a slope-parallel straight section has formed
in place of the pile apex, and downstream of it there is a more steeply inclined linear
section that connects to the outlet. Upstream of the slope-parallel section, the left-hand
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Figure 14. Contours of the base ten logarithm of the inertial number I for a mass-inflow rate Q =
0.0046 kg s−1 during (a) the growing phase and (b) the draining phase. The simulation times are the same
as those in figure 12. Movie 5 of the supplementary material shows the full time-dependent evolution. The
viscosity cap (5.10) is active below the white dashed line.

face is essentially stationary, although there is some very slow upstream creep. As time
progresses, the slope-parallel section erodes downwards and grows in size, both upstream
and downstream, while the gradient of the downstream inclined region slowly diminishes.
By t = 290 s, the downward erosion from the apex is sufficient for the left-hand base of
the pile to begin to move downstream, and all the grains have drained from the chute by
320 s.
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During the entire development and collapse of the heap, the pressure in the free-surface
layers is approximately lithostatic. Deeper down, there is some deviation from this. As a
result, the maximum pressure during the growth of the heap is not directly under the apex,
but very slightly to the left of it, as shown in figure 13. Note that the high-viscosity cutoff,
(5.10), is active deep within the pile, as shown in figure 14. The pressure in this region is
therefore that which would develop for a highly viscous incompressible fluid, and may not
be representative of what would develop in a granular material. In particular, the sidewall
friction is not able to support the grains in this region, so the pressure does not tend to
a constant value, i.e. there is no Janssen effect (Janssen 1895; Sperl 2006). This does not
matter for simulating the overall behaviour of a super-stable heap, because the velocities
in the high-viscosity cutoff region are negligibly small, but for other problems this may
prove to be more significant.

Figure 14 also shows that there is very strong variation in the inertial number through
the free-surface layers, which contrasts strongly with Bagnold flow down an inclined
plane, where I is constant (GDR MiDi 2004; Jop et al. 2005; Gray & Edwards 2014).
This variation in the inertial number combined with the fact that a steady uniform-depth
free-surface avalanche develops along the right-hand face of the pile implies that
super-stable heaps are an important rheometric flow, which can be exploited to determine
the functional dependence of μ on I, as well as the wall friction μw.

6.2. Quantitative comparison of the mass balance data and the evolving free surface
In order to make a quantitative comparison between the simulations and the experimental
data, it is useful to consider the accumulated outflow mass, for a mass-inflow rate Q =
0.0046 kg s−1. The inset in figure 15 shows that there is approximately a 1 s delay between
opening the hopper and the particles landing on the balance. At early times t < 30 s, the
experimental mass (on the balance) accumulates faster than in the simulations. This is
because the simulations assume no slip along the base of the chute, whereas in reality
there is some basal slip that allows the grains to flow out faster. The numerically simulated
pile therefore grows faster, and reaches steady state slightly quicker, than the experiments.
The difference in the shapes of experimental and computed piles, for the same volume of
grains in the system, is shown in figure 12. Once the toe of the computed heap reaches the
outflow, the pile steepens progressively and uniformly along the right-hand face, and is
in close agreement with the experiments. The slow exponential decay towards a constant
mass accumulation rate is consistent with the Taberlet et al. (2004) DEM/DPM simulations
(see their figure 2) and occurs on a much longer time scale than it takes a single surface
particle to flow through the system.

The experimental and numerical steady states are both closely approached by texp =
106 s, and their shapes are in very good agreement. In order to demonstrate that a
stable steady state had been achieved, the experimental inflow was not shut off until
texp = 340.5 s. This is much longer than the numerical shut-off time tsim = 150 s, which
was chosen to save computational expense. In order to compare the experimental and
numerical mass balance time series, it was therefore necessary to correct for the different
shut-off times. This was easy to do, because at steady state, the mass accumulates linearly
in time at a known rate.

Figure 15 shows the experimental and numerical drainage of the chute for a common
time t > 340.5 s. The experimental system drains faster than the numerical one. The reason
for this is that the apex of the experimental pile collapses not into a slope-parallel straight
region, but into one that is inclined at a slightly steeper angle to the numerically computed
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Figure 15. Comparison between the experimental (red solid line) and computed (blue solid line) accumulated
mass at the outlet as a function of time for a mass-inflow rate Q = 0.0046 kg s−1. The experimental data are the
same as in figure 5, while the numerical curve is computed from the simulations. Both systems start filling at
t = 0 s and run until steady state is reached, during which the accumulated mass rises linearly in time. However,
in the computations, the inflow is shut off at t = 150 s, which is shorter than in the experiments that shut off
at texp = 340.5 s. To account for this, the computed steady-state regime has been extended (blue dashed line)
so that the draining phase can be compared directly with the experimental data. Both systems therefore begin
draining at t = 340.5 s. The inset shows a close-up of the early-time behaviour.

one (see figure 12 and movies 1 and 3 of the supplementary material). In the experiments,
there is a slope break, to a steeper region that connects to the outflow, as predicted by the
numerics. However, the increased experimental slope angles in these two sections allow
the pile to erode, and material to flow out, faster. In particular, the gradient of the lower
section remains close to that of the super-stable heap for longer, allowing a lot of grains to
flow out just after the inflow is stopped (figure 15). Since the inclination angle θ = 29.2 of
the base is greater than the angle of repose, all the grains flow out of both the experimental
and computational systems.

Figure 15 shows that there is a slight difference between the experimental and computed
total masses on the balance at the end of the experiment. This difference is due to the fact
that at t = 340.5 s, when both inflows shut off, the experimental and numerical systems
have slightly different pile volumes. Overall, the mass balance data show that there is good
quantitative and qualitative agreement between the experiments and theory. However, the
experimental system has a tendency for the pile to grow slightly more slowly and erode
slightly faster.

6.3. Quantitative comparison of the steady-state flows
Numerical simulations have been performed for the three experimental mass-inflow rates
investigated in § 2. A comparison of the simulated steady-state heap shapes with the
experimental ones is shown in figure 16. The computations are in good qualitative
agreement with the experiments, and show an increase in the super-stable heap size with
increasing mass-inflow rate, and that the right-hand side of the pile has an approximately
linear profile whose gradient also increases with the mass-inflow rate. The computed
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Figure 16. Comparison of the steady-state heap shape for the experiment (solid heaps) and the numerical
simulations for mass-inflow rates Q = 0.0020 (yellow line), 0.0046 (red line) and 0.0060 kg s−1 (blue line).
The experimental heaps are identical to those in figure 4.

right-hand pile gradients are, however, all slightly steeper than in the experiments, which
leads to a slight offset in the position of the apex of the pile.

Figure 17 shows a series of down-slope velocity profiles measured perpendicular to
the pile free surface at a sequence of locations down the right-hand face. The velocity
profiles almost exactly superimpose on top of each other, which implies that the flow is
steady and uniform. The simulated velocity profiles can therefore be compared to both
the measured profiles and the exact steady uniform flow solutions in § 4. Figure 18 shows
that the computed velocity profiles are very close to the exact steady uniform solutions
for all three cases, except right at the free surface, where the computed profile is blunter.
This occurs because even though the interface tracking method is very sharp, the very top
cells contain a mixture of excess air and grains, which moderates and slightly diffuses the
velocity profile, as shown in the inset in figure 17(b). The moderation of the computed
velocity in the top grid cells reduces the mass-inflow rate and causes the computed heap
to over-steepen slightly to compensate. These issues could be improved by increasing the
spatial resolution of the grid. The grid resolution of the results presented in this paper
has, however, been optimized to achieve sufficiently good resolution of the free surface
boundary layer, while not making the simulations excessively costly.

7. Conclusions

Super-stable granular heaps form when grains are poured onto a flat plane, or chute, that
is confined by lateral sidewalls that lie close enough together to form a narrow gap. These
sidewalls retard the flow by exerting friction, and the flow responds by super-inclining
the free surface to compensate (Taberlet et al. 2003, 2004, 2008). Super-stable heaps are
of fundamental rheological significance, because in steady state, a uniform-depth flow
develops along the free surface. Both the velocity and inertial number vary through the
depth of this flow, which is also free to choose its inclination. Super-stable heaps therefore
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Figure 17. (a) Computed velocity magnitude |u| measured perpendicular to the free surface and taken at a
series of positions down the right-hand face of the pile. The colour of the profile corresponds to the position of
the slice in (b). The inset in (b) is a close-up of the free-surface flowing layer; the colour map for the velocity
magnitude is the same as that in figure 12. The opacity is used to show the transition between the excess air
phase (white) and the region occupied by grains, which is at full saturation.

provide a sensitive test of rheological models. In particular, continuum models need to be
able to correctly predict the super-inclination angle for different mass-inflow rates.

Despite their rheological importance, super-stable heaps have received very little
attention. This is in part because DEM/DPM simulations of the formation of the whole pile
are extremely computationally expensive (Taberlet et al. 2008), and continuum theories
struggle to model the simultaneous existence of solid-like, liquid-like and gaseous granular
regimes. The problem is further complicated by the fact that sidewall friction makes
free-surface flows thinner and faster than they would otherwise be (Jop et al. 2005),
so adequately resolving the thin boundary layer that forms at the pile free surface is a
challenge. The experiments performed in § 2 also show that long simulations are necessary
to fully realize a steady state.

This paper focuses on the dense liquid-like and solid-like regimes, which can be
reasonably well captured by the partially regularized incompressible μ(I)-rheology of
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Figure 18. Comparison of the computed (coloured lines), measured (grey dashed) and exact (black dot-dashed)
steady uniform velocity profiles through the flow depth for mass-inflow rates (a) Q = 0.0020, (b) 0.0046,
(c) 0.0060 kg s−1.

Barker & Gray (2017). The granular jet, which delivers the inflowing grains to the top
of the heap, cannot be captured with this rheology, but it is parametrized in a simple
way by artificially diluting the inflow and using a segregation-based interface-sharpening
technique to compact the material as it lands at the top of the pile (see § 5.4 and Barker
et al. 2021; Maguire et al. 2024). To simplify the system further, the mass and momentum
balances are averaged across the width of the cell in § 3.1. This reduces the spatial
dimensions by one, while still allowing the sidewall friction to be accounted for through
momentum source terms. It is also consistent with the Taberlet et al. (2003) experimental
observation that the surface velocity has a blunt profile across the width of the cell.

The partially regularized μ(I)-rheology introduces a creep state at low inertial numbers,
which, unlike the original form of the μ(I) function (1.3), keeps the theory mathematically
well-posed at low inertial numbers (GDR MiDi 2004; Jop et al. 2006; Barker et al. 2015).
At high inertial numbers, the partially regularized function has a linear dependence on I,
which significantly extends the well-posed region of parameter space, but the theory can
still become ill-posed if the inertial number is high enough. Indeed, the simulations of the
super-stable heap, performed here, push the theory towards the limit of its applicability,
which is perhaps one reason why it has not been attempted before.
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One-dimensional exact solutions for the pressure p, shear stress τ and friction μ = τ/p,
as a function of depth z through the steady uniform flow at the pile surface, are derived
in § 4. Equation (4.8) shows that at the free surface (z = 0), the friction is equal to the
tangent of the super-inclination angle ζ , independent of the wall friction μW . This already
presents a problem for the classical μ(I)-rheology, because if the maximum allowable
friction μd is less than tan ζ , then there are no steady uniform solutions. The experiments
in § 2 show that slope angles approach 50◦, which is already higher than typical values
of ζd = arctan(μd) � 29◦ in table 1, or, for that matter, ζd � 42◦ in table 2. This is a
simple but significant result, because it provides strong evidence that the classical μ(I)
curve (1.3) does not have the correct functional behaviour in the high inertial number limit
(see Appendix A). Indeed, the original authors of the GDR MiDi (2004) project knew that
the μ(I) curve was valid only over a limited interval of inertial numbers (I < 1), but the
reciprocal law (1.3), which asymptotes to μd at high inertial numbers, has since become
de rigueur.

The linear dependence on I of (3.19) at high inertial numbers implies that it is always
possible to invert (4.8) at the free surface. The partially regularized μ(I)-rheology is
therefore valid in a surface layer z ∈ [zst, 0], where zst is the height at which the friction
reaches its minimum value μ = μ(0) at I = 0. Below this level, the material is assumed
to be below yield. If h is defined to be −zst, then the equation for the depth of the yield
point (4.10) essentially recovers the Taberlet et al. (2003) force balance equation (1.1),
where μi must be interpreted as μ(0) = μs, and the thickness h is the depth of the surface
layer of particles that are clearly in motion over a short observational time scale. When
adopting the partially regularized μ(I)-rheology, however, the material creeps deep down
in the pile, which is perhaps more physically realistic (Komatsu et al. 2001). This makes
the flow depth h apparently far deeper for the partially regularized theory than for the
classical μ(I)-rheology. However, for much of this extended depth, there is very little
motion, as shown in figure 9. The Taberlet et al. (2003) force balance (1.1) is therefore
open to considerable interpretation, dependent on how the flowing layer depth h and the
friction μi are defined.

Provided that (4.8) can be inverted, the definition of the inertial number (3.15) can then
be used to formulate an ODE for the velocity profile in the surface layer (4.12). This can
then be solved numerically (figure 9a), and the velocity profiles can be integrated through
the depth to determine the super-inclination angle ζ as a function of the mass-inflow rate
Q (figure 9b). These quantities provide strong constraints on the system. The experimental
measurements in § 2 were used to determine a set of best-fit parameters for the partially
regularized μ(I) function (3.19), which are summarized in table 2. These parameters,
which include a value for the wall friction μw, are able to provide reasonable fits to the
velocity profiles for all three mass-inflow rates, as shown in figure 10, while also ensuring
that the theory remains well-posed. Critically, the measured super-inclination angles as
a function of mass-inflow rate are all in close agreement with the theoretically predicted
curve using the partially regularized μ(I)-rheology (figure 9b). In contrast, it is possible
to construct only a single solution, for the lowest mass flux case, using the classical μ(I)
curve (1.3).

The experimental and numerical slope angle and velocity profile comparisons in
figures 9(b) and 10(a) are good, but not perfect, which is probably an indication that
compressibility needs to be taken into account in the flowing layer. Taberlet et al. (2008)
used DEM/DPM simulations to show that there was a steady decrease in the solids volume
fraction as the free surface was approached. This would reduce the pressure in the surface
layers and moderate the sidewall friction, potentially allowing better fitting of the velocity
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profiles. Solids volume fraction variations can be incorporated by using the compressible
I-dependent rheologies (Barker et al. 2017; Schaeffer et al. 2019), but this is not done
here, because it introduces considerable additional complexity and requires new numerical
methods to be developed. It is also of interest to see how closely an incompressible
theory can simulate a super-stable heap, given that significant volume fraction changes
are confined to a very thin layer at the surface of the pile.

Having determined suitable parameters to model the steady-state behaviour, numerical
solutions of the growth and decay of a super-stable heap were performed in § 6 using the
numerical method described in § 5. The results are shown in figures 12–15 and movies 3–5
of the supplementary material for a mass-inflow rate Q = 0.0046 kg s−1. The simulations
have the correct qualitative behaviour, with the inflowing material forming a pile that
grows in time. The right-hand pile face, adjacent to the outflow, gradually steepens over
time, until it allows all the inflowing grains to flow out of the domain. When this happens,
a steady state is achieved in which the right-hand face has a constant slope and a steady
uniform depth flow at its surface. Once the inflow stops, the pile slowly collapses, and all
the material flows out of the domain, because (in this case) the chute is higher than the
angle of repose. During the entire evolution of the pile, the free-surface flowing layer is
very thin, and is barely visible in figure 12. Figure 12 also shows a comparison between
the computed and experimental pile shapes. These are broadly in very good quantitative
agreement with one another, although the numerically simulated pile grows slightly faster
and drains slightly slower than the experimental one, as shown in figure 15. By way of
contrast, figure 19 shows what happens in an identical simulation, but in the absence
of wall friction (μw = 0). In this case, a heap does not form, although there is a small
static region just up-slope of the jet impact point, and a steady uniform Bagnold flow
(Appendix B) develops rapidly along the incline, which transports all the inflowing grains
off the chute. This shows that as Taberlet et al. (2003) surmised originally, sidewall friction
is critical to the formation, steady-state behaviour and decay of super-stable granular
heaps.

The numerical method was also used to simulate the formation of the pile at
different mass fluxes, and the results are compared with the experiments in figures 16
and 18. Qualitatively, these show that increasing the mass-inflow rate steepens the
super-inclination angle of the pile, that the maximum velocity in the free-surface
flow is increased, and that the steady uniform flow depth deepens. The quantitative
agreement is also good, but, as mentioned previously, there is potential for improvement if
compressibility were included in the model.

The simulations in § 6 demonstrate that it is possible to quantitatively model the
entire development and collapse of a super-stable heap with the partially regularized
incompressible μ(I)-rheology. However, the theory is close to the bounds of its
applicability, since the inertial number reaches values that are close to the threshold for
ill-posedness at the free surface (figure 10b). Higher mass-inflow rates may therefore push
the theory over this threshold, allowing grid-resolution-dependent instabilities to develop
near the top of the free surface (Barker et al. 2015; Barker & Gray 2017). In future, it
may therefore be necessary to introduce compressibility (Heyman et al. 2017; Barker et al.
2017; Goddard & Lee 2018; Schaeffer et al. 2019) or non-local behaviour (Bouzid et al.
2013; Henann & Kamrin 2013; Goddard & Lee 2017) to keep the theory well-posed.

In conclusion, the steady uniform flow that develops along the surface of a super-stable
heap is a very important rheological flow that has largely been overlooked. Conventionally,
chute flow experiments have been used to determine the μ(I) curve (Pouliquen 1999a,b;

1002 A27-36

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
06

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1106


On the formation super-stable granular heaps

0 0.05 0.10 0.15 0.20 0.25 0.30

|u| (m s–1)

Figure 19. Numerical simulation of the system with inflow rate Q = 0.0046 kg s−1 and no sidewall friction;
all other parameters of the system remain the same as in table 2. The close-up shows that the material develops
a steady uniform Bagnold velocity profile (B2), sufficiently far down the inclined section of the chute.

Pouliquen & Forterre 2002), as reprised in Appendix A. Since the inertial number
is constant through the depth of these flows, a large number of experiments must be
performed to determine the frictional dependence on the inertial number. The flows are
also relatively slow, and the value of μd in the classical μ(I) law (1.3) is poorly constrained.
The super-stable heap, on the other hand, requires only a modest amount of material, and
a great deal of constitutive information can be extracted from a single experiment. This is
because the inertial number varies from zero, deep enough into the pile, to μ−1(tan ζ ) at
the surface of the steady super-inclined heap. High super-inclination angles ζ , and hence
high inertial numbers, are easy to access by increasing the mass-inflow rate. Measurements
of the velocity, and potentially density, profiles perpendicular to the inclined free surface
allow the functional dependence of both the friction and solids volume fraction as a
function of the inertial number to be determined. The slope super-inclination angle
dependence on the mass flux also provides a strong constraint on rheological models.
Indeed, it is shown here, in §§ 4.1 and 4.2, that the classical μ(I) curve, which has
maximum value μ = μd at high inertial numbers, fails to generate a steady uniform state
for typical values of μd used in the literature.

Supplementary material. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.1106.
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Appendix A. Origin of the classical μ(I) function

The classical form of the μ(I) law (1.3) emerged from the papers of Pouliquen (1999a,b),
Pouliquen & Forterre (2002) and Jop et al. (2005, 2006). In order to understand some
of the issues in fitting the friction law, it is useful to recall how it was developed. When
a constant flux of grains is released from a hopper onto a rough inclined plane, a front
propagates down-slope with constant speed uF, and builds up a steady uniform flow behind
it, with thickness h and depth-averaged velocity ū = uF. Pouliquen (1999a) measured the
front speed uF and flow depth h at different slope inclination angles ζ , and with different
sized glass beads, and found that all the data collapsed onto the straight line

Fr = β
h

hstop
, (A1)

where Fr = |ū|/√gh cos ζ is the Froude number, hstop is the deposit thickness after the
flow had ceased, and β is a constant of proportionality. Pouliquen & Forterre (2002)
measured hstop as a function of slope angle ζ , and fitted the data with a rational function

tan ζ = μs + μd − μs

hstop/L + 1
, (A2)

where μs = tan ζs, μd = tan ζd, and the length scale L is proportional to the grain size.
In steady uniform flow, the down-slope and normal components of the momentum balance
imply that the friction is μ = tan ζ through the depth of the flow. Pouliquen & Forterre
(2002) therefore determined a depth-averaged friction law

μ(Fr/h) = μs + μd − μs
βh

L Fr
+ 1

(A3)

by using (A1) to substitute for hstop in (A2). The depth-averaged friction law (A3) was
then converted into the classical μ(I) function by observing that since μ = tan ζ , and
μ = μ(I), the inertial number I is also constant through the flow depth. Since the pressure
(4.6) is lithostatic, the definition of the inertial number (3.15) reduces to an ODE (B1),
which can be solved to determine the Bagnold velocity (B2). Following Jop et al. (2005)
and Gray & Edwards (2014), the depth-averaged Bagnold velocity then determines an
explicit relation between Fr/h and the inertial number given by

Fr
h

=
(

2
√

φ

5d

)
I, (A4)

which can be substituted into (A3) to obtain (1.3), i.e.

μ(I) = μs + μd − μs

I0/I + 1
, (A5)

where the constant

I0 = 5β

2
√

Φ

d
L

. (A6)
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Figure 20. Down-slope velocity profiles u as a function of z, calculated from two-dimensional periodic box
simulations (circles) and by solving (4.12) for the profile in a steady uniform flow. The light to dark blue curves
correspond to angles ζ = 41◦, 47◦, 51◦, 54◦, 57◦ and 59◦, which generate volume flow rates Q = 0.1051,
0.5007, 1.2047, 2.2171, 3.9787 and 5.8308 m2 s−1. The gap width is assumed to be W = 0.04, the wall friction
coefficient μw = 0.277, and the rest of the rheological parameters are summarized in table 1.
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Figure 21. Down-slope velocity profiles u as a function of z, calculated from two-dimensional periodic box
simulations (circles) and by solving (4.12) for the profile in a steady uniform flow at ζ = 28◦. The light to dark
blue curves correspond to gaps W = 0.18, 0.45, 1, 3 and 500 m. The red dashed line represents the Bagnold
profile (B2). All remaining parameters are as defined in table 1.
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Note that the classical μ(I) curve (A5) inherits its reciprocal dependence on the inertial
number from the fit to the hstop curve (A3). In this fit, the value of μs corresponds to
the tangent of the angle at which the deposit depth tends to infinity, while the value of
μd is set by the lowest angle at which no deposit is left on the chute. Although the hstop
phenomenology is routinely used to fit the μ(I) parameters, it is an odd concept, because
hstop itself does not emerge as a solution of the theory. It is reasonable that the value of μs
may be closely linked to the deposit depth, because μ → μs as I → 0 in (1.3). However,
the evidence for the friction in thick, highly sheared flows asymptoting to μd as I → ∞ is
far less strong.

Appendix B. Validation of the numerical method using periodic box simulations

In this appendix, the numerical solver developed in § 5 is tested against the steady uniform
flow solution derived in § 4. The two-dimensional numerical domain (0.21 × 0.0022 m) is
assumed to be inclined at an angle ζ to the horizontal, so that the gravitational acceleration
vector is g = (9.81 sin ζ, 0, −9.81 cos ζ ). Initially, the granular material is at rest and
occupies a 0.2 m deep layer, with a 0.01 m thick layer of excess air above it. A no-slip
condition is applied at the base of the flow, and the left- and right-hand boundaries are
assumed to be periodic. The top boundary allows free outflow. Once the system is released,
the grains accelerate down-slope, and a steady-state solution develops rapidly. Figure 20
shows a comparison between the computed down-slope velocity profiles for a series of
inclination angles. All of the profiles are in good agreement with the exact solution,
computed by solving the ODE (4.12). Larger inclination angles produce deeper, faster
flows. Figure 21 shows the effect of keeping the inclination angle constant, and changing
the gap width. Again, the numerical solutions are all in good agreement with the exact
solutions, and show that as the gap is increased progressively, the effect of the sidewall
friction diminishes, and the profile tends towards the Bagnold profile (Silbert et al. 2001;
GDR MiDi 2004; Jop et al. 2006; Gray & Edwards 2014). This occurs when W → ∞, or
μw = 0, and the ODE (4.12) reduces to

du
dz

= I(tan ζ )

d

√
−Φgz cos ζ . (B1)

This can be integrated, subject to no slip at the base (z = zb), to give the explicit solution

u = 2I(tan ζ )

3d

√
Φg cos ζ

[
(−zb)

3/2 − (−z)3/2
]
, (B2)

where, recall, I = I(tan ζ ) is the inverse function of tan ζ = μ(I). This is equivalent to
the solution given in (3.21) of Gray & Edwards (2014), once the non-dimensionalization
and the shift in the coordinate origin are accounted for. Note that the small periodic length
of the domain (just four grid cells wide) suppresses the formation of roll waves, which
develop when the Froude number exceeds approximately two-thirds (Forterre & Pouliquen
2003; Forterre 2006; Gray & Edwards 2014; Edwards & Gray 2015; Barker & Gray 2017).
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