
1 Introduction

1.1 Introduction

Adaptive filtering has been a widely utilized signal processing tool, and is the

subject of many textbooks including [1–9] just to mention a few. Usually, the

classical adaptive filtering algorithms belong to the class of supervised learning

algorithms, although there are unsupervised versions of them, such as the blind

adaptive filters. In the supervised case, filtering structures tend to be quite

simple, allowing the use of more complex learning algorithms. In the latter

case, filtering structures are usually nonlinear and can be quite complex so

that employing sophisticated learning algorithms might not be possible.

This book aims to describe more recent developments in this field not fully

addressed in the classical texts. This chapter summarizes the main equations

and features related to the most popular adaptive filtering algorithms. Often,

these algorithms serve as a basis to the algorithms introduced in the subse-

quent chapters. In all cases, we describe the actual objective function utilized

by each algorithm so that, from the engineering point of view, one can get a

grasp of what the algorithms are minimizing. In addition to that, this Intro-

duction establishes the notation used in this book. However, an experienced

researcher in adaptive filtering may choose to skip this chapter without further

consequences.

1.2 Data Description

The most common adaptive filtering configuration belongs to the class of su-

pervised learning where an input signal is transformed into an output signal

that in turn tries to track the behavior of a reference signal. Figure 1.1 depicts

the typical adaptive filtering setup.

In most cases, the signals to be processed by an adaptive filter consist of

an input signal denoted by x(k) and a reference or desired signal denoted by

d(k). The input signal in the simplest environment is collected in a delay line

vector as

x(k) = [x(k) x(k − 1) · · · x(k −N)]T, (1.1)
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Figure 1.1 Adaptive filtering configuration.

where vector x(k) ∈ C
(N+1)×1, with C representing the complex numbers. In

many situations, x(k) ∈ R
(N+1)×1, where R represents the real numbers.

The input-signal vector generates the output signal of the adaptive filter

through the inner product, also known as the tapped delay line,

y(k) = wH(k)x(k), (1.2)

where w(k) = [w0(k) w1(k) · · · wN (k)]
T

represents the adaptive filter coeffi-

cients or parameter vector, and y(k) is the adaptive filter output. The latter

output signal is compared with the reference signal to form the (a priori) error

signal as follows:

e(k) = d(k)−wH(k)x(k). (1.3)

The adaptive filter minimizes a cost function, also known as the objective

function, of the error signal represented as

ξ(k) = F[e(k)], (1.4)

with F[·] assuming distinct definitions depending on the algorithm and

application.

1.3 The LMS Algorithm

The least mean squares (LMS) algorithm is recognized as the most widely used

adaptive filtering algorithm ever, for its implementation simplicity and good

performance in many practical situations. The LMS origins are described in

the review chapters [10, 11], and its performance and features are addressed in

many textbooks [1–9].

The basic concept behind the LMS algorithm comes from the steepest descent

approach [1], where the coefficient vector is updated in the opposite direction
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of the gradient ∇w∗ξ(k), where ξ(k) = E[|d(k)−wHx(k)|2] is the mean square

error (MSE). In fact, the LMS algorithm uses an instantaneous estimate of the

gradient at instant k, with the simplest possible option given by

w(k + 1) = w(k)− μ∇w∗ ξ̂(k), (1.5)

where μ > 0, known as step size, is responsible for controlling the convergence of

the algorithm and ξ̂(k) = |e(k)|2. Another, and more elegant, way to obtain the

coefficient update of the LMS algorithm comes from minimizing the following

cost function:

ξLMS(k) = ‖w(k + 1)−w(k)‖2P(k)
+ μ|ε(k)|2

= ‖w(k + 1)−w(k)‖2P(k)
+ μ|d(k)−wH(k + 1)x(k)|2, (1.6)

where the weighted quadratic norm is defined as ‖x‖2P(k)
= xHP(k)x and

P(k) = I − μx(k)xH(k), with μ being small enough to guarantee that P(k)

is positive definite. It includes two terms: one related to the disturbance on

the coefficients ‖w(k + 1)−w(k)‖2 and the other related to the instantaneous

squared a posteriori error |ε(k)|2. It is worth mentioning that in Equation (1.6)

μ ≤ 1
‖x‖2 to keep the cost function convex.

By computing the gradient of the objective function with respect to w(k+1),

the coefficient update that minimizes the objective function is

w(k + 1) = w(k) + μe∗(k)x(k). (1.7)

As can be seen, the coefficient update equation of the LMS algorithm is quite

simple and requires low computational costs. There is a vast literature address-

ing several issues pertaining to the LMS algorithm for which the previously

mentioned references [1–9] represent a tiny sample.

1.4 The RLS Algorithm

The standard recursive least squares (RLS) algorithm minimizes the following

function [1, 12, 13]:

ξd(k) =

k∑

i=0

λk−i|ε(i)|2

=

k∑

i=0

λk−i
∣
∣d(i)−wH(k + 1)x(i)

∣
∣2 , (1.8)

where ε(i) is defined as the a posteriori error measured with the data entries

d(i) and x(i), and λ is the forgetting factor parameter. Another way to express

the objective function is
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ξd(k) = |d(k)|2 − 2Re
[
d∗(k)wH(k + 1)x(k)

]
+
∣
∣wH(k + 1)x(k)

∣
∣2

+ λ
k−1∑

i=0

λk−1−i|ε(i)|2, (1.9)

where Re[·] means real part of [·] from which a recursive solution can be ob-

tained.

As previously seen for the LMS algorithm, the RLS algorithm also has a

minimum disturbance cost function that is given as [14]

ξRLS(k) = λ‖w(k + 1)−w(k)‖2RD(k)
+ |d(k)−wH(k + 1)x(k)|2, (1.10)

where RD(k) =
∑k

i=0 λ
k−ix(i)xH(i), whose inverse is the matrix SD(k) used

in the following.

The corresponding update equations of the standard RLS algorithm consist of

e(k) = d(k)−wH(k)x(k), (1.11)

ψ(k) = SD(k − 1)x(k), (1.12)

SD(k) =
1

λ

[

SD(k − 1)− ψ(k)ψH(k)

λ+ψH(k)x(k)

]

, and (1.13)

w(k + 1) = w(k) + e∗(k)SD(k)x(k), (1.14)

where an initialization is required for the following quantities: SD(−1) = ρI,

ρ being the inverse of an estimate of the input signal power times 1 − λ, and

x(−1) = w(0) = [0 0 · · · 0]T.
In a more general RLS algorithm, employing a time-varying forgetting factor,

the objective function we seek to minimize is given by

ξd(k) =

k∑

i=0

λk−i+1(i)|ε(i)|2

=

k∑

i=0

λk−i+1(i)
∣
∣d(i)−wH(k + 1)x(i)

∣
∣2 , (1.15)

where ε(i) is also the a posteriori error measured with the comparison between

d(i) and wH(k + 1)x(i). The cost function can be written in an alternative

form as

ξd(k) =λ(k)
[
|d(k)|2 − 2Re

[
d∗(k)wH(k + 1)x(k)

]
+
∣
∣wH(k + 1)x(k)

∣
∣2
]

+

k−1∑

i=0

λk−i+1(i)|ε(i)|2. (1.16)

The basic update equations of the generalized RLS algorithm are given by

the following relations:
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e(k) = d(k)−wH(k)x(k), (1.17)

ψ(k) = SD(k − 1)x(k), (1.18)

SD(k) = SD(k − 1)− λ(k)ψ(k)ψH(k)

1 + λ(k)ψH(k)x(k)
, and (1.19)

w(k + 1) = w(k) + λ(k)e∗(k)SD(k)x(k). (1.20)

In the above relations, the initialization entails choosing SD(−1) = ρI, where ρ

can be the inverse of an estimate of the input signal power times 1− λ(0), and

x(−1) = w(0) = [0 0 · · · 0]T.
In the standard RLS algorithm, the value of the forgetting factor is usually

chosen as 0 � λ ≤ 1, whereas in the generalized RLS 0 � λ(k) ≤ 1 and

the choice of λ(k) depends on the cost function. The latter case encompasses

algorithms like BEACON versions of [17, 18] and of some references therein.

1.5 Affine Projection Algorithms

The affine projection (AP) algorithm assembles and reuses the last L+1 input

signal vectors in an input-vector matrix according to [1, 15]:

X(k) = [x(k) x(k − 1) · · ·x(k − L)], (1.21)

where X(k) ∈ C
(N+1)×(L+1). At iteration k, we define the desired signal vector

and the error vector, respectively, represented by

d(k) = [d(k) d(k − 1) . . . d(k − L)]
T

and (1.22)

e(k) = [e0(k) e1(k) · · · eL(k)]T , (1.23)

where vectors e(k) ∈ C
(L+1)×1 and d(k) ∈ C

(L+1)×1 retain information from

the L+ 1 last iterations. The entries of the error vector are defined as ei(k) =

d(k − i)−wH(k)x(k − i), for i ∈ {0, 1, . . . , L}.
The AP algorithm presented here minimizes the objective function

ξAP(k) = ‖w(k + 1)−w(k)‖2P(k)
+ ‖d(k)−XT(k)w∗(k + 1)‖2A(k)F, (1.24)

where

A(k) =
(
XH(k)X(k) + γI

)−1

and (1.25)

P(k) =
1

μ
I−X(k)A(k)FXH(k), (1.26)

where μ represents the step size (or a learning factor) of the adaptive algorithm

and γ is the regularization factor introduced to avoid numerical problems when

matrix
(
XH(k)X(k)

)−1

becomes ill conditioned. The value of μ is small to

keep the cost function convex. Matrix F might assume different forms depend-

ing on the desired characteristics of the adaptive algorithm and the affordable

computational complexity [19–21].
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The cost function in Equation (1.24) has two terms, where the first one

implements the minimum disturbance in the adaptive coefficients weighted by

matrix P(k), and the Euclidean norm of the a posteriori error vector properly

normalized through matrix A(k). Matrices A(k) and P(k) are positive definite.

The standard AP algorithm utilizes F = I, leading to the coefficient updating

in the form

w(k + 1) = w(k) + μX(k)
(
XH(k)X(k) + γI

)−1

e∗(k). (1.27)

1.6 The Normalized LMS Algorithm

The NLMS algorithm, proposed in 1967 [22, 23] and widely used in practice,

came as a response to the main drawbacks of the LMS algorithm, previously in-

troduced in 1960 [24]: the slow convergence for correlated input signals and the

need to choose an appropriate step size. One can note that the LMS algorithm

updates in the direction of the input vector x(k). If we assume perfect model-

ing and no observation error, we could figure out that, given the data pair d(k)

and x(k), the optimal point wo would belong to a hyperplane wHx(k) = d(k),

which happens to be orthogonal to the input vector x(k). Therefore, as shown

in Figure 1.2, we could choose a step size that leads to a null a posteriori

error. The variable step size can be easily obtained, and its value corresponds

to 1
xH(k)x(k) . We may also obtain the updating expression of the NLMS algo-

rithm by minimizing the following cost function:

ξNLMS(k) = ‖w(k + 1)−w(k)‖2P(k)
subject to wH(k + 1)x(k) = d(k). (1.28)

0

Hyperplane
w H

x(k) = d(k)

w(k)

w(k + 1)

e∗(k)
‖x(k)‖2 x(k)

Figure 1.2 Coefficient vector updating of the NLMS algorithm with null a posteriori
error.
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The resulting updating expression of the NLMS algorithm is given as fol-

lows, where another step size was added to allow a trade-off between speed of

convergence and misadjustment:1

w(k + 1) = w(k) + μ
e∗(k)

xH(k)x(k) + γ
x(k), (1.29)

where γ is a small positive number added to avoid divisions by 0.

Although the NLMS step size can theoretically range from 0 to 2, we recom-

mend its use within 0 < μ ≤ 1. Since the fastest convergence is obtained with

μ = 1, using a larger value would increase misadjustment and decrease conver-

gence speed. Although developed independently and with another approach,

the AP algorithm with the particular case where L = 0 becomes the NLMS

algorithm.

1.7 Set-Membership Affine Projection Algorithms

Set-membership filtering (SMF) is a noteworthy example of connecting set-

theoretic estimation with data selection, enabling a reduction of computational

burden and, consequently, energy savings. As a bonus, in addition to reducing

computational burden, SMF-based algorithms tend to be more robust against

noise [16, 29].

The SMF concept appeared in [25] and is suitable for linear adaptive filtering

problems. Its criterion aims to estimate the vector w that leads to an error

signal e = d−wHx ∈ C whose magnitude is upper bounded by a constant γ for

all possible pairs {x, d}. Variable γ determines how much error is acceptable and

is usually chosen based on a priori information about the sources of uncertainty.

Most of the time, we assume that such uncertainty is caused by an observation

error whose variance is σ2
n, and γ is chosen as a function of σ2

n.

Denoting S as the set comprising all possible pairs {x, d}, we can state SMF

is interested in finding w that satisfies |e| = |d−wHx| ≤ γ, ∀{x, d} ∈ S. That
is, by defining the feasibility set as

Θ �
⋂

{x,d}∈S

{
w ∈ C

N+1 : |d−wHx| ≤ γ
}
, (1.30)

the SMF criterion can be summarized as finding a vector w ∈ Θ.

Considering online applications, the previous expression does not provide a

practical way of determining Θ or a point in it since we do not have S. The
set-membership approach to iterative techniques, referred to as set-membership

1 Misadjustment is defined as the ratio between the excess MSE and the minimum MSE,

that is, M =
ξ(∞)−ξmin

ξmin
[1], where ξ(∞) corresponds to the steady-state MSE.
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adaptive recursive techniques [25], is an alternative adaptive filtering formula-

tion featuring a data-selective updating. This approach maintains the concept

that, if the set of parameters leads to an error magnitude below a given thresh-

old, no coefficient update is required at that particular iteration.

Consider a set of data pairs {x(i), d(i)}, for i ∈ {0, 1, . . . , k}, and define H(k)

as the set containing all vectors w such that the associated output error at time

instant k is upper bounded in magnitude by γ̄, so that,

H(k) = {w ∈ C
N+1 : |d(k)−wHx(k)| ≤ γ̄}. (1.31)

This set H(k) is called the constraint set. In the two-dimensional case (N = 1),

the boundaries of H(k) are such that the error values are γ̄ejφ, for φ ∈ [0, 2π),

that is, H(k) comprises the region between the lines where
∣
∣d(k)−wHx(k)

∣
∣ =

γ̄. For higher dimensions, hyperplanes delimit H(k); see [25–27] for details

and [1, 28] for further developments.

Following the formulation of Section 1.5, the set-membership affine projection

(SM-AP) algorithm, when updating, minimizes the following objective function:

ξsm(k) = ‖w(k + 1)−w(k)‖2P(k)
+ ‖d(k)−XT(k)w∗(k + 1)− γ̄(k)‖2A(k)F,

(1.32)

where γ̄i(k), the entries of γ̄(k), are chosen such that |γ̄i(k)|≤γ̄ for i ∈
{1, . . . , L+1}.

There are many ways to choose the entries of the constraint vector as long

as they correspond to points represented by the adaptive-filter coefficients in

H(k − i+ 1), that is, |γ̄i(k)| ≤ γ̄. The choice of γ̄(k) affects the overall com-

putational complexity. By choosing γ̄1(k) = e(k)/|e(k)| and all the remaining

elements of γ̄(k) as zeros, the solution is called a simple choice and results in

a reduced computational complexity version of the SM-AP algorithm [16, 29].

Using F = I and the simple constraint vector, the SM-AP algorithm has the

following coefficient updating form:

w(k + 1) = w(k) + μ(k)X(k)
(
XH(k)X(k) + γI

)−1

e∗(k)u1, (1.33)

where uT
1 = [1 0 · · · 0],

e(k) = d(k)−wH(k)x(k), and (1.34)

μ(k) =

{
1− γ̄

|e(k)| if |e(k)| > γ̄,

0 otherwise;
(1.35)

see [1] for details.

The algorithms presented in a simplified form in this chapter will appear in

modified forms in the forthcoming chapters, each one adapted to the situation

at hand.
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Table 1.1 Expressions related to the misadjustment

Algorithm M

LMS
μtr[R]

1−μtr[R]
NLMS μ(N+2)

(2−μ)(N−1)

AP (L+1)μ
2−μ

1−(1−μ)2

1−(1−μ)2(L+1)

simple SM-AP
(L+1)pup
2−pup

(
γ̄2

σ2
n
+ 1

)

RLS (N + 1) 1−λ
2−(1−λ)

Table 1.2 Computational complexity in adaptive filtering algorithms

Algorithm Multiplication Addition Division
LMS 2N + 3 2N + 2 0
NLMS 2N + 4 2N + 5 1
AP (2.5N + L+ 10)(L+ 1) (1.5N + 2.5)(L+ 1) + 2N L+ 2
simple SM-APa (1.5N + 3L+ 7.5)(L+ 1) (1.5N + 7.5)(L+ 1) + 0.5L L+ 2

RLS 3N2 + 11N + 8 3N2 + 7N + 4 1
a This estimate is an upper bound assuming that the updates occur all the time.

1.8 Performance and Computational Complexity

Table 1.1 lists the misadjustment expressions for the main adaptive filtering

algorithms for a stationary environment. This information reveals the accuracy

of the algorithms after convergence in stationary environments. The expression

of the misadjustment related to the simple SM-AP algorithm includes the ratio

between the threshold parameter and the background noise variance σ2
n, as well

as the probability of achieving an update, denoted as pup. Reference [1] details

how to derive these expressions.

As for the computational complexity, Table 1.2 lists the expressions (num-

ber of operations per update) for the classical adaptive filtering algorithms.

This information is relevant to choose correctly the right family of algorithms,

particularly in computationally sensitive applications.

1.9 Conclusion

This chapter introduced the classical adaptive filtering algorithms that are

widely used in many applications. This presentation sets the conditions to ex-

tend and modify these algorithms to solve problems related to kernel adaptive

filtering, sparsity aware learning, distributed learning, array processing, and

learning on graphs. The algorithms were described in a concise format starting

from their actual cost functions. We believe this is a shortcut to simplify the

description of the more general algorithms addressed in the following chapters.

We summarize in Algorithm 1.1 all classical adaptive algorithms reviewed

in this introduction. In the forthcoming chapters, real and complex arithmetic

versions of these algorithms are utilized where appropriate.

https://doi.org/10.1017/9781108896139.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108896139.002


10 Introduction

Algorithm 1.1 The classical algorithms

Initialization

wLMS(k) = wNLMS(k) = wAP(k) = wSMAP(k) = wRLS(k) = 0

uT
1 = [1 0 . . . 0]

For k > 0 do

The LMS Algorithm

e(k) = d(k)−wH
LMS(k)x(k)

wLMS(k + 1) = wLMS(k) + μe∗(k)x(k)
The NLMS Algorithm

e(k) = d(k)−wH
NLMS(k)x(k)

wNLMS(k + 1) = wNLMS(k) + μ e∗(k)
xH(k)x(k)+γ

x(k)

The Affine Projections Algorithm

d(k) = [d(k) d(k − 1) · · · d(k − L)]
T

X(k) = [x(k) x(k − 1) · · · x(k − L)]

e∗(k) = d∗(k)−XH(k)wAP(k)

wAP(k + 1) = wAP(k) + μX(k)
[
XH(k)X(k) + γI

]−1
e∗(k)

The Set-Membership Affine Projections Algorithm (simple choice)

e(k) = d(k)−wH
SMAPx(k)

μ(k) =

{
1− γ̄

|e(k)| if |e(k)| > γ̄

0 otherwise

wSMAP(k + 1) = wSMAP(k) + μ(k)X(k)
(
XH(k)X(k) + γI

)−1

e∗(k)u1

The RLS Algorithm

e(k) = d(k)−wH
RLS(k)x(k)

ψ(k) = SD(k − 1)x(k)

SD(k) =
1
λ

[

SD(k − 1)− ψ(k)ψH
(k)

λ+ψH
(k)x(k)

]

wRLS(k + 1) = wRLS(k) + e∗(k)SD(k)x(k)

end

Problems

1.1 Warming up your mathematical skills: from Equation (1.6), compute the

gradient of the LMS cost function with respect to w∗(k+1) and make it equal

to the null vector, ∇w∗(k+1)ξLMS(k) = 0, to obtain the LMS updating expres-

sion given in Equation (1.7).

1.2 In the system identification problem depicted in Figure 1.3, the linear and

time-invariant unknown system has a pole in 0.8182 and a zero in −0.8182, that

is, it can be represented by the difference equation

y(k) = x(k) + 0.8182x(k − 1) + 0.8182y(k − 1).

The input signal x(k) corresponds to zero-mean white Gaussian noise (WGN)

with variance σ2
x = 1, while the observation noise n(k) is also zero-mean WGN
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Figure 1.3 The LMS algorithm identifying an unknown system (Problem 1.2).

with variance σ2
n = 10−6. Set the step size of the LMS algorithm to 1

5(N+1)σ2
x

and plot an estimate of the MSE (learning curve) with an ensemble of 100

independent runs (20 000 samples each run). Use order N = 29 or, equiva-

lently, 30 coefficients. Also plot, in a dashed red line, the minimum theoretical

MSE, ξmin, which corresponds E[e2(k)] if we used wo, the Wiener solution.

Hint: The unknown system is an infinite impulse response filter and we are

using a finite impulse response adaptive filter to identify it. Therefore, we do

not have perfect modeling, and ξmin shall be larger than σ2
n. See Chapter 2

in [1] for more details on how to obtain ξmin = σ2
n + σ2

x

∑∞
k=N+1 h

2(k), with

h(k) being the impulse response of the unknown filter, in this case.

1.3 In the same setup of the previous problem, assume that x(k) corresponds

to a zero-mean unitary variance WGN r(k) after passed through an autore-

gressive (AR) system with a pole in −0.9, that is, x(k) = r(k) − 0.9x(k − 1).

Re-run the simulation with the LMS algorithm, the NLMS algorithm, and the

AP algorithm with L = 1 (two hyperplanes, which corresponds to the Binor-

malized LMS (BNLMS) algorithm). Adjust the step sizes of the NLMS and the

BNLMS algorithms such that they present the same misadjustment provided

by the LMS algorithm with μ = 1
5(N+1)σ2

x
. Note that, now that the input signal

is not white, the value of ξmin, or its estimate, is slightly more complicated to

obtain.

1.4 In forward linear prediction, we try to predict a sample of a signal s(k)

under analysis from its past values, that is, d(k)= s(k) andx(k)= s(k−1). We can

use an adaptive filter to estimate the prediction coefficients w = [w0 · · · wN ]
T

as indicated in Figure 1.4(a). For generating signal s(k), we assume that the op-

timum coefficients are given by wo = [1.44 −0.68 −0.42 0.24 0.37 −0.35]
T
.

Signal s(k) is synthesized as shown in Figure 1.4(b) where the excitation

input e(k) is a train of impulses with period 51 samples (meaning 6.375 ms or,
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ANALYSIS

z−1 ws(k)

e(k)

d(k)

x(k)

SYNTHESIS

s(k)e(k) H(z)

Figure 1.4 The adaptive filter in the signal prediction application.
(a) The overall filter (analysis) corresponds to A(z) = 1− w0z

−1 · · · − wNz
−(N+1).

(b) Note that the synthesis filter is given as H(z) = 1
A(z)

.

equivalently, a “pitch” approximately equal to 156.86 Hz). The signal s(k),

obtained as previously described, corresponds to a segment of a synthetic vowel

“ah.”

Use the following commands to generate Δt = 20 ms of this voiced speech.

We use Matlab R© to describe the signal generation accurately but any other

computer language can be easily adapted.

fs=8e3; T=1/fs;

Deltat=20e-3; t=0:T:Deltat;

exc=zeros(length(t),1);

period=51; exc(1:period:end)=1;

wo=[1.44 -0.68 -0.42 0.24 0.37 -0.35];

A=[1 -wo]; s=filter(1,A,exc);

Run an adaptive filter using the LMS algorithm with step size μ = 0.1, order

N = 5, and data pair {d(k),x(k)} as depicted in Figure 1.4. In the end, plot

the optimum filter and the LMS result in the same figure. You will observe

that they are quite different (the LMS did not have enough time to converge).

Increase Δt and re-run the experiment; the LMS coefficient will get closer to

the optimum coefficients. Further, increase Δt until the norm of the error in

the coefficient vector is smaller than 0.2, that is, ‖wo−wLMS‖ < 0.2. How long

did it take to converge? After convergence, check if the a priori prediction error

e(k) resembles the train of impulses with period 51 samples.

1.5 In Figure 1.5, we observe an adaptive signal enhancement where the in-

terfering signal n(k), after passing through an unknown room impulse response

(RIR), corrupts the signal of interest (SOI) s(k). In this application, the cor-

rupted signal corresponds to the reference signal d(k) = s(k)+n(k)∗h1(k). The
input for an adaptive filter running the RLS algorithm is a signal also coming

from the noise source but through another RIR, x(k) = n(k) ∗h2(k), such that

it is not correlated with the SOI.

https://doi.org/10.1017/9781108896139.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108896139.002


1.9 Conclusion 13

Adaptive
filter

RLS
algorithm

s(k)

n(k)
x(k)

d(k)

e(k)

≈ s(k)

∑

h1(k)

h2(k)

Figure 1.5 The RLS algorithm in a signal enhancement setup (Problem 1.5).

For this problem, assume that:

(a) The sampling frequency is fs = 8 kHz.

(b) The SOI s(k) corresponds to 4 s of speech signal (32 000 samples). Make

it zero mean and unitary variance. You can record speech, use any recorded

utterance, or synthesize the signal with a text-to-speech tool. If you are using

Matlab R© on MS R© Windows operating system, you can use:
(see www.mathworks.com/matlabcentral/fileexchange/18091-text-to-speech)
txt=’I like spring in California and winter in Rio de Janeiro.’;
SV = actxserver(’SAPI.SpVoice’);
TK = invoke(SV,’GetVoices’);
SV.Voice = TK.Item(1);
MS = actxserver(’SAPI.SpMemoryStream’);
MS.Format.Type = sprintf(’SAFT8kHz16BitMono’);
SV.AudioOutputStream = MS;
invoke(SV,’Speak’,txt);
s = reshape(double(invoke(MS,’GetData’)),2,[])’;
s = (s(:,2)*256+s(:,1))/32768; s(s >= 1) = s(s >= 1)-2;
s=s(1:4*32000); s=s-mean(s); s=s/std(s);

(c) The interfering signal n(k) corresponds to 4 s of the music signal. If you

are using Matlab R©, you can use load handel; make sure that the sampling

frequency is the same (resample otherwise) and trim it to the same number

of samples (32 000).

(d) The RIRs are h1(k) = δ(k−1)+0.5δ(k−2) and h2(k) = δ(k)−0.25δ(k−2).

(e) There is no observation noise.

(f) The filter order is N = 9 or, equivalently, the adaptive filter has 10 coeffi-

cients.

Run the RLS algorithm with λ = 0.999 and observe the e(k) that should

be approximately s(k) after convergence. Compare the filter coefficients with

h1(k)∗h2(k) which, in this case, corresponds to the optimal coefficients. Measure

the SNR (in dB) of d(k) (before enhancement) and of e(k) (after enhancement).

What is the SNR gain (in dB)?
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