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Abstract. If p and q are probability vectors of equal entropy each having at least
three non-zero components then there exists a finitary homomorphism between
the corresponding one-sided Bernoulli shifts.

1. Introduction
Let C = { 1 , . . . , n) and D = { 1 , . . . , m} be finite sets. X = CN (similarly Y = £>N)
denotes the space of one-sided sequences indexed by N = {1, 2,...} with values in
C. Suppose that p and q are probability measures on C and D respectively and
denote by n (respectively v) the infinite product measure pN (respectively qN). The
shift transformation a acting on (X, n) is called a one-sided Bernoulli shift. We
also denote by r the shift on (Y, p). A homomorphism (or code) from (X, fi) to
(Y,v) is a measure-preserving map <f> which commutes with the shifts, that is
<j>°a = T°<l>. <f> is said to be finitary if, for a.a. xeX, <f>(x)(l) depends only on
finitely many coordinates in x. More precisely, if C?,={ye Y: y(l) = i}, then for
each ieD, <̂ ~1(O,-) agrees a.e. with a countable union of cylinder sets in X (and
by shift invariance the same is true of the inverse image of any finite cylinder in
Y). The entropy h(p) of p is defined by

fc(p) = - I p(0 logp(i).

(We use log2 throughout.) The purpose of this paper is to prove the following result.

THEOREM 1. / / the probability vectors p and q each have at least three non-zero
components and h(p) = h(q), then there is a finitary homomorphism <p:(X, ^i)-*

Theorem 1 is equivalent to the assertion that there exists a finitary and non-
anticipating (one-sided) code ^ between the two-sided Bernoulli shifts (Cz,pz)
and (Dz, qz), that is for pz-a.a. x e Cz, ty(x)(0) depends only on finitely many of
the coordinates x(0), x(l),.... If we drop the finitariness requirement, this result
was proved by Sinai [7] without any restriction on p and q and for a general ergodic
shift-invariant measure in place of pz. Ornstein & Weiss [6] have given another
proof of Sinai's theorem. Although the new feature here is the finitariness, the
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reader will notice that our argument gives the easiest and most elementary proof
of Sinai's theorem (albeit in a less general setting). Meshalkin [5] constructed an
isomorphism between the two-sided Bernoulli shifts based on (4,4,4,4) and
(2,1, 8, 8, s) which is both finitary and non-anticipating, with an inverse which is
finitary and forgetful (one-sided in the opposite direction). It is well known [8] that
an isomorphism and its inverse cannot both be non-anticipating unless p = q.

Keane & Smorodinsky [4] have established the existence of a finitary isomorphism
between any two Bernoulli shifts of equal entropy (also without restrictions on p
and q). Our approach uses the Keane-Smorodinsky marker and skeleton technique,
but with some essential differences which seem to be forced by the one-sidedness.
In particular, it seems that one cannot use the marriage lemma of [4] in this context.
This is a virtue as well as a necessity, for it makes the present approach almost
completely elementary.

In § 2 we describe our choice of markers (the same as in [4]). § 3 defines skeleta
in a one-sided way and defines their filler sets. § 4 describes our method of
constructing joint measures, which we call the *-joining. Instead of the marriage
lemma we use the elementary fact that one can always join two partitions P and
Q so that fewer than #Q atoms of P are split. In § 5 we construct the superpositions
(following the terminology of [2]) corresponding to each skeleton. Unlike previous
work, these superpositions actually form a consistent system of measures. We
conclude the proof by using these superpositions to construct directly a joint measure
o n X x V which corresponds to the graph of a homomorphism.

We have not as yet been able to obtain theorem 1 in the case when p or q has
only two components. In fact, it is not hard to see that it is impossible to construct
the desired code by exactly matching markers, as in this paper, if the distribution
of fillers after a marker is affected by that marker occurrence. (This is the reason
for the three-state assumption - it allows us to use a word of length one as a
marker, so that this does not happen.) However, we do have the following result.

THEOREM 2. / / (CN, /x) is a (one-sided) stationary ergodic Markov process and
(DN, v) is a Bernoulli shift with strictly lower entropy then there is a finitary
homomorphism 4>: CN-+DN.

Of course theorem 2 includes the case of general one-sided Bernoulli shifts with
unequal entropies. Theorem 2 is proved by combining the methods of the present
paper with those of [3]. For this purpose, the Rohlin-type marker of [3] should be
chosen to have bounded return time, which is possible if one allows it to be finitary,
instead of actually finite, as in [3]. We shall not give any details here.

As an application of theorem 2 we mention the following result which is a
consequence of theorem 2 and the construction of Markov partitions for toral
automorphisms [1].

THEOREM 3. / / (£> is an ergodic automorphism of the 2-torus and h{p)<h(<5>), then
there is an independent partition for <J> with distribution p, each atom of which consists
of a set of fibres in the expanding direction, that set being identified (a.e.) by a
countable union of intervals in the contracting direction.
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2. Markers
[4, lemma 2] enables us to assume that p(l) = q(l). The symbol 1 will be used as
a marker in both X and Y just as in [4], so we briefly review some facts from [4].
X and Y are fibred by the positions of marker occurrences as follows. For x e X,

X = {O,1}N is defined by

otherwise.

For xeX, X(x) denotes the fibre over x, that is {geX: £ = x}. The projection
of fi on X, denoted by fi, is pN, where p denotes the projection of p on {0,1}
(p(l) = p(l), p(0)= l -p( l ) ) . Similar definitions apply to Y and evidently fi = v.
fix (respectively v*) denotes the conditional measure on X(x) (respectively Y(x)),
so that

fi = I findfiix).

Setting A={2,...,n}, B={2,...,m} and I{x) = {i:x(i) = 0}, X(x) is naturally
identified with AI(x) and with this identification /u,£ is p'0

M, where p0 denotes p
conditioned on A. Similarly, vt is q'ox), where q0 is q conditioned on B.

3. Skeleta
Let No < Ni < N2 < • • • be a sequence of positive integers to be specified later. For
r > 0 a skeleton y of rank r consists of the integer r together with a sequence of
0s (blanks) and Is indexed by some finite interval J in N (so that ye{0,1}1) which
has the form

O™.i».om*l"*...Om*l'\ (3-D
where w, > 0, n, > 0 and

max «,• <Nr<: «fc.

Note that the configuration (3.1) may have several possible ranks. We distinguish
between subskeleta of different rank with the same configuration, {iel: y(i) = 0},
the set of blank indices of y, is denoted by \y\.

A subskeleton y of y is the restriction of y to some subinterval J of I such
that y ends with a full block of markers from Sf and y is itself a skeleton with a
rank not greater than that of y. If y is a subskeleton of Sf we write 9'<y. Note
that, if / e \y\, the restriction of y to / D [/, oo) is always a subskeleton of y which
also has rank r and every subskeleton of full rank is of this form. This is the main
difference between one- and two-sided skeleta, which gives rise to the new ideas
needed here. Note also that subskeleta 9i and y2 of y may overlap without one
containing the other. However, if we define a subskeleton of rank s to be rank-
maximal if it is maximal among the subskeleta of Sf which have rank s (that is, it
cannot be extended to the left in y), we have the following lemma.

LEMMA 3.1. If 9\ and y2 are rank-maximal subskeleta of y then either one is a
subskeleton of the other or \yx\ n \y2\ = 0 .
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Proof. If |y i |n |y 2 | is not empty, then (interchanging S'I and P2 if necessary) the
final marker block in Ŝ i is a marker block of 5̂ 2 so that Ŝ 2 may be extended to
the left to cover S î. Since P2 is rank-maximal, it follows that 9*i < 9*2. •

li Sf,,..., S"o are the rank-maximal subskeleta of rank r — \ of a skeleton of rank
r, listed in order of appearance from left to right, then the Ŝ  are pairwise disjoint
and U.'=o|^,| = M- We write Sf = if, x • • • x2>0 and refer to this as the rank-
decomposition of y. Note that the rank decomposition may consist of £P alone.
We will make frequent use of induction on rank Sf and the fact that, if 9* < £f and
rank 9< rank &, then 9'<Sfi for some /.

We write /(SO for #|S*|. For /e|S*| and r<rank^, ie\<?\ for a unique rank-
maximal subskeleton 91 of rank r which we denote by Sf{i, r). If the domain of
definition of £f(i, r) is I, say, we set

where Sf is the restriction of S"(/, r) to / n [/, oo). Informally, /(/, r, 5") is the distance,
measured in \Sf(i, r)\, from i to the beginning of the rightmost marker run in Sf(i, r).
We write L{Sf) = min M and R(Sf) = max \Zf\.

Our next task in this section is to define suitable subsets /(SO and /(SO so that
A7(S0 and BJ(£f) can play the role of filler sets. Because of the method we will use
to define superpositions on Aim x f i ; m , it is crucial that #/(50 be bounded for
skeletons of a given rank (see lemma 4.5). This accounts to a large extent for the
complications in the definition of /(SO and /(SO-

First we define a method of truncating skeleta. Let

0<C0<C1<C2<- • •

be a sequence of positive integers to be specified later. We define a set of 'stopping
times' F(SO depending on the skeleton Sf (but not on the filler, as in [4]) by

T(S0 = {/e |S*|: for ()</•<rank S", l(.i,r,Sf)>Cr or i = L(Sf(i,r))}.

The above definition is obviously equivalent to the following inductive one, which
is more useful in practice: for rank y = 0,

r(S0 = {/eM:/(*,(), SO ^ Co or i = L(9>)}

and for rank S" = r, &1 = Sf, x • • • x 5% T(SO consists of those / e U>=i HS*,) such that
/(/, r, SO s C, together with L{Sf). We set

C(S0 = [max T(SO, co)r\\St\.

It is immediate by induction that

--- + Cr ifrank(SO = r.

To illustrate this definition and the ones to follow choose No = 1, N1 = 2, N2 = 3,
Co = 2, Ci = 3, C2 = 17 and consider the following skeleton if of rank two and its
F(SO indicated by dots below the appropriate zeros. (/(SO and /(SO will be defined
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later.) The row below T{if) gives the Fs for the 1-skeleta in the rank decomposition
oiif.

^ = 00100100001100100100001100101011001000100110111 (3.2)

nsn
HSft

Note that

where the if-, lie between runs of two or more Is and

if,: = Vi.2 x ifi.i x Vi.o for />0,

while if0 has a single 0-skeleton if00 in its rank decomposition. (We cannot write
ifo = ifoo because they have different ranks.)

It will be crucial for us that the definition of C{if) is non-anticipating in the
sense that if if is a full-rank subskeleton of if then

that is, one only has to look to the right of / e M in order to know what C(if) looks
like to the right of /. This follows from a corresponding non-anticipating property
of F, namely

which is immediate by induction on rank if, using the inductive definition of T(if).
In the following lemma and throughout this paper KJ, where / and / are subsets
of M, means /<j for i el, je J.

LEMMA 3.2. If 9< if then C(9) intersects T{if) in at most min C(9). In addition,
C{9) < C(if) or C(9) <=• C{if).

Proof. The first assertion says that C(^)-min C{9") is caught between successive
intervals of Y{if) (by which we mean to include the possibility that C(^)>
max T(if)). This is clearly true when ranky = 0. To prove it in general we may
assume that rank 9 < rank if (otherwise C(9) > max Y{if)), so that 9 < ift for some
ifi in the rank decomposition of if. By induction, C(9) — min C(9) is caught between
successive intervals of F(5^), which implies the same for F(50. This establishes the
first assertion and the second is an immediate consequence. •

Let nti< m2<... be another sequence of positive integers to be specified later. If
if = if, x • • • x if0 has rank r, say that ifi is principal if / > mr and C(if{) c C{if).
(There may be no principal Sfim) Say that Sft is initial if / < mr. Set

We are now ready to define I {if) and J{9). If rank if = Owe set
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lfy=y,x---xy0 has rank r,

,): Sft principal} u {R (y): 1 < i < m},

): ^ , principal}.

Note that these definitions are non-anticipating. Observe also that /(SO and /(SO
are both contained in C(S0- See (3.2) for an example of 7(50 and 7(50 with m, = 0,
m2 = 1. Note that in (3.2) y3 and S"2 are principal and Sfi and 5 0̂ are initial.

LEMMA 3.3. If 9<y then either 7(50^/(50 or I(&)n7(50 = 0 . 7n tfu? /zrsf case
/(SO <= /(SO and m the second case /(SO n /(SO = 0 .

7Jroo/. We can assume that 7(50 # 0 (otherwise the lemma is vacuously true). We
may also assume that rank 57><rank y otherwise / ( ^ ) c / ( ^ ) and J{y)aj(y) so
we have finished. Thus 9" < 5̂ , for some S", in the rank decomposition of Sf. We
look at three cases:

(i) C(9) c C(S^), y, principal;
(ii) C(&) c C(y,), 5^ not principal;
(iii) C(S0<C(S",).
In the first case

so

/(SO c 7(50 and

In the second case

so

7(5 )̂ n 7(50 = 0 and

In the third case

so
/(SO n 7(Ŝ ) = 0 and /(SOn/(SO=0. D

We conclude this section by defining two families of subskeleta of SP. The first
of these, denoted by A(50, might be called the C-decomposition of Sf and has the
property that the sets C(S0, S^eA(S0 are precisely the gaps in T(Sf) (ignoring
marker indices). It is defined inductively as follows. If rank S^= 0, then A(S0 = iP\
if & = yt x • • • x Ŝ o has rank r, then

is non-anticipating in the sense that, if y* denotes the restriction of y to
[/, oo) n \y | for any fixed / 6 N, then
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Evidently, the sets C(9), 9 e A(9), are just the sets

[max /, min /') n \9\,

where / is an interval in Y(9) and / ' is the next interval to the right. It follows
from this and lemma 3.2 that, if 9<9, then C(9)cC(9) for some 9e A(9).

Next we define D(9), a family of subskeleta of 9 which could be called the
/-decomposition of C(9). For rank 9 = 0 set D(9) = {9}. Now suppose D(9) has
been defined for rank 9<r and that 9 = 9,x• • • x y 0 has rank r. For principal 5̂ ,
let A(5"f) be the collection of skeleta ^ in A(#) such that C(9)<C(9t) and
C(^) c C(50; for initial # let A(9t) be A(#) and set

£>(y) = {^}uU{O(^): 9eA(9i), 9t initial or principal}.

Notice that the definition of D(9) is non-anticipating in the same sense as A(9).
To check his understanding of A(9) and D(SO the reader may verify that in (3.2)

In connection with the following lemma note that in (3.2) /(.S^) consists of the
middle zero in ifx, while / of any 0-skeleton is just the second zero from the right
in that 0-skeleton.

LEMMA 3.4 The sets 1(9), 9eD(£f) are disjoint and contained in C{9). The J(9),
9&D(¥), are disjoint and contained in C{<f). If 9<Sf and I(9)cC{Sf), then
1(9) c 1(9") for some 9" eD(9).

Proof. The first assertion is easily proved by induction on rank 9 and the second
assertion follows from the first. For the third assertion, if rank ^ = rank 9, then
1(9)^1(9) and 9eD(9), so we may assume that rank 5^<rank 9. Then 9<9t

for some initial or principal 9{ in the rank decomposition of 9, and we consider
three cases:

(i) C(9) c C(9i), 9t principal;
(ii) C(9)<C(9i), 9t principal;
(iii) 9i initial.

In case (i) I(9)cl(9) and 9eD(9). In both cases (ii) and (iii)

C(9) <= C(9) for some 9 e A(9t)
and then, by induction,

1(9) c 1(9') for some 9' eD(9).

In case (ii) because C(9) < C(9t) we see that also

C(9)<C(9i) so 9eA(9t).

In case (iii) 9sA(9i) is immediate. Since 9'eD(9) in both cases we have
9' 6 D(9) as desired. •

4. *-joinings and superpositions
Suppose p and CT are probability measures on finite sets E and F each of which is
totally ordered so that

E={ei<e2<- • -<er}, F = {f1<f2<---<fsl
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We define a joining p • a of p and a (that is, a measure o n £ x f with marginals
p and <x) as follows. Let

0 = xo<JCi<- • -<xr = l

be points in [0,1] such that

A (Xi-i, xt) = p(et) for 1 < / < r,

where A denotes Lebesgue measure. Similarly,

are such that

A(yy-i,yy) = o-(//) forl</<5.

Set

p • o-(ei,fi) = \((Xi-i,Xi)n(yj-i, y,-)).

The proof of the following lemma is immediate from the definition.

LEMMA 4.1. Suppose E, F and G are finite totally ordered sets and ExF is given
the reverse lexicographic ordering:

(eufi)<(e2,f2)<$fl<f2 orfi=f2 andex<e2.

If p and a are probability measures on ExF and G respectively and p is the marginal
of p on F, then the marginal of p • <r on F x G is p • a.

Next suppose TT2 and TT\ are probability measures on E2xF2 and Et xFt respec-
tively, where Ex and F2 are totally ordered. For / = 2,1 we denote by Pt the partition
of Ei x Fi according to the Et coordinate and by Q, the partition of Et x F, according
to the Ft coordinate. By a slight abuse of notation P, (respectively (?,•) will also be
used for the partition of (E2xE1)x(F2xFi) according to the £, (respectively F)
coordinate. For qieQi, d^^Pilqi) denotes the conditional distribution of P\ on
<7i, with respect to TT\. d^^iP^qi) is a measure on the totally ordered set E\ and
similarly for p2 e P2, dn2 (Q2\p2) is a measure on F2, so that

d^{Q2\p2)-d^(PMi)

is meaningful. Setting E = E2xEi and F = F2xFi, we now define a joining n =
ir2 * TT\ on E xF by decreeing that

P2 and d are independent on ExF and, for each atom p2qi of P 2 vQion£xF,

Note that ir2 * TT\ # ir\ * TT2 (in fact TT\ * TT2 is not defined in general).

LEMMA 4.2. TT is a joining of n2 and TT\. Moreover, with the above notation P2 is
independent of Pi v Qx with respect to n and Q\ is independent ofP2 v Q2 with respect
tO 77.

Proof. Since
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we have

dAQ2\p2qi) = d^2(Q2\p2)

and hence

dAQ2\p2) = d

Since dn{P2) = d,2 (P2) it follows that

Similarly, 77 has marginal 77!. Moreover, we have just observed that (with respect
to 77) Q2 and d are independent given P2. Since d and P2 are independent by
construction, Q2 v P2 is independent of d - Similarly, P2 is independent of P\ v d .

D

If / and / are finite subsets of f̂J we denote by /J.I and vj the measures p'o and <?o
on A1 and i?J respectively. For a finite set / c / ' c N we write P 7 for the partition
of A7 according to coordinates in /. Q1 has the analogous meaning for B1. A
measure 77 on A1 xBJ with marginals /u,/ and ̂ / will be called a superposition. 77
will be called non-anticipating if, for each t e f̂ j,

1 p ' v Q (with respect to 77).

We now fix once and for all total orderings of A and B. For finite J C N , J 4 ' (similarly
Bl) is totally ordered by the reverse lexicographic ordering:

for x, x € A1, x <x<=>for some io€.I, x(io)<x(io) and x{i) = x(i) for all / e i , j > / 0 .

Thus, if 772 and 771 are superpositions, 772 * 771 is meaningful. In the following lemma,
and throughout the rest of the paper, 772 x 77! denotes product measure.

LEMMA 4.3. Suppose I2, Iu J2 and J\ are finite subsets of N such that I2 n / i = 0 ,
J2

 c I2 and J\ c Iu and suppose that 77,- is a superposition on A1' x BJi (i = 2,1). Then
we have

(a) 772x IT 1 and TT2 * 771 are superpositions on Al2Kj!l x B J 2 ^ J \
(b) 7/772 flitf" 77i are non-anticipating then so is TT2XTTI.

(c) If 772 ^ 1 ^ v\ are non-anticipating and I2 < I\ then TT2 * 771 is non-anticipating.

Proof. 772
 x ffi is obviously a superposition and 772 * 771 is a superposition by lemma

4.2. It is easy to see that 772X771 is non-anticipating if 772 and 771 are. Setting
77 = 772 * 77i, to prove (c) we must show that (with respect to 77)

p(J2i_i/,)i-.[l,t) 1 p(/2w/jMr,oo) Q(72u7j)n[l.ao) Q S

and we may as well assume that t e I2 or t e / ^ If t e 7i, (1) reduces to
p/2w(/,n[l,i)) . p/^ft.oo) y-j7,i->[r,oo)

which is true since 771 is non-anticipating and P'2 1 P'1 v QJ\ by lemma 4.2. If
t e/2, (1) becomes

p/2n[l,l) , p(/2n[!,oo))w/, Q(72O[(,OO))UJJ , y .

Let p 2 e p ^ " " - " , p* e p^"t'-») and q, e QJ\ Because
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because of lemma 4.1 and because of the way B*2 is ordered we see that

Since ir2 is non-anticipating we see that the distribution on the right of (3) does
not depend on p2, so the same is true of the distribution on the left. On the other
hand,p2andp2<7iareindependent(sincep2P* ± qiandp'2 1 p2)so(2)follows. •

LEMMA 4.4. Suppose I2<I\, J2^I2 and J\<^h are all finite subsets of N and TT2

and IT\ are superpositions on A'2*. B*2 and A ; ' x BJ* respectively. For t€l2 set

It =I2n[t, cc), / f =J2n[f,oo)

and let IT* denote the marginal of n2 on A'2 XB J * . / / TT2 is non-anticipating then
the marginal ofir2 * TTX on A1*"'1 x f l ' H is irf * TTX.

Proof. Adopting the notation in the proof of lemma 4.3(c), it follows from (3) in
that proof that

dAOJ'Ph\p*qi) = d^(OJ'2\ph • d^(P'*\qi).

Moreover, p* and qx are independent with respect to ir (since P*2 1 QJl), which
establishes the lemma. •

We say a superposition ir on A1 x BJ splits p e Pl if ir(p, q) # 0 and ir(p, q') ̂  0 for
distinct q, q' € QJ. Say p is contained (with respect to IT) in q e QJ if ir(pq) = fi{(p).

LEMMA 4.5. Supposed </„_!<• • •< Io are finite subsets of N, Ji alifori = n,..., 1,
77, is a superposition on A1' x BI{ for i-n,...,\ and set ir0 = /"-v Write

li= t *h,

for j = n,..., 0 and

for ] = n,..., 1. 5ef /i = /i(p0) = Mflo) and fix e > 0. / / p' € P7' /or / > i > 0, p =
p' • • • p° e P' is called good if

p is called completely good (e.g.) if p'... p° is good for all j > i > 0. For / > 1 call
q=q' • • • q^eQ1 good if

and completely good if q'... q1 is good for all / > / > l . Finally, say that p e P' is
desirable if p is not split by

I L = 777 * ( T T , - ! * ( • • • * ( T T I * TTO) •• • ) ) ,

p is contained {with respect to II,) in a completely good qeQ' and p is completely
good. Then, setting

Pi = /"•/{/>e P' '• P is not desirable},
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we have

Pi < ixj{p e P': p is not e.g.} + p,{q e Q': q is not e.g.}

M = maxis,sn #5 J / , m = #/0.

Proof. Notice that the definition of desirable is meaningful for peP° and that we
trivially have the estimate

Po < fJ-oip e P°: p is not e.g.}.

To prove the lemma by induction it suffices to assume that the estimate on p, holds
for / = n -1 and prove it holds for ; = n. For peP" write

p=p"p*, P"eP\ P*ePn\

We obviously have

Pn^Pn-l + fln(T), (1)

where

r = {pnp* e P": p* is desirable but pnp* is not}.

We claim that

+ «/„ {bad <j>Ve <?":<?* is eg.}. (2)

To see this first observe that if p e Y then p belongs to one of the following sets:

Ei = F n {p e P": p is split},

£ 2 = rn{p eP": p is contained in a good qe Q"},

E3 = rn{p eP": p is contained in a bad q 6 Q"}.

We estimate the measure of E\ by regarding it as a subset of P" xQ" and
conditioning it on sets of the form piq*, where p"eP'n, q*eQ"~x. Since £\ is
contained in the union of completely good Q""1 atoms, we may assume that q* is
completely good. Fixing piq*, if pnp*eE1, then pnp*r^piq* is either empty or
equal to p"p* (since p* is not split). In the second case

is split by QJ" npiq* (otherwise pnp* would not be split by Q"). Thus to estimate
TlniEtlpiq*) it suffices to estimate the p"q*-conditional measure of desirable p* e
P"'1 such that p*cq* and p*np1q* is split by QJ"np"q*. By the definition of
nn = nn * nn_i, there are fewer than #BJ" such p*, and the conditional measure
Yln(p*\p"q*) of such a p* is Tln(p*\q*) (lemma 4.2) which is estimated by

nn(p*|q*)<2-e ' - ' ,
since p* <= q* and both are completely good. Thus

nn(£1 |p^*)
whence also
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Now, if peE2, p is bad (otherwise p would be desirable) so v(E2) is less than
the second term on the right of (2), while TT(E3) is clearly less than the third term.
This establishes (2).

Now by (1), (2) and our induction hypothesis we have

pn^/j.n-i{peP"~1:p is not e.g.} + ft,, {bad p"p*eP": p* is e.g.}

+ vn-x{q € O""1: q is not c.g.} + vn {bad q"q* eQn:q* is e.g.}

+ M V 2-eU+

= Hn{p £ Pn•• P i* not e.g.}+vn{qeQn:q is not e.g.}+ M\ 2"u+m). D

5. Construction of superpositions and proof of theorem 1
We now define for each skeleton 9 a superposition TT> on A/ ( 5 F )xS/ ( y ) . For
0-skeleta if,

Now suppose vy has been denned for rank if <r and if = if,Y.- • • x if0 has rank r.
For each / s i such that ifi+mr is principal set

/,• = C{ifi+mr), l=h-\J{I(9):

Define a superposition TT; on A1' xBJ' by

77, = n{7ry: ^ s D(Srl+mr)} x M/- x v/(.

(This makes sense in view of lemma 3.4.) Also set

h = \J{R(&t): l s i s w r } , TTo = /*/o,

and define

7 T y = 7 T r * ( 7 T , - - 1 * ( • • • * ( 7 7 1 * T T o ) • • " ) ) ,

where r is the largest / such that ifi+m, is principal.

LEMMA 5.1. The superpositions iry are consistent in the sense that if if < if then either
1(9") n I{if) = 0 and / ( ^ ) n / (50 = 0 or)

gmal o / Try on A / ( y ) x B J m is TT$-. Moreover, if if' is the translate of if by teN

(formally if{i + t) = if(i) and rank if" = rank if), then ny is the translate of TTV by t.

Proof. First observe that vy is non-anticipating for all if, as can be seen by induction
on rank if using lemma 4.3. Now, by lemma 3.3,1(9') and J(9) are both contained
in, or both disjoint from, I (if) and J(if) respectively. If I(9)^I(if) and
rank if < rank if, then 9 < ift for some principal ift in the rank decomposition of
if and 1(9) c C(ift), so by lemma 3.4,1(9) c I (if) for some if e D(#) . By induc-
tion we then have that irsr has marginal irg,. But since -rry has marginal iry we
see that TT^ has marginal TT .̂

Now suppose that rank 9 = rank if, so that ^ is the restriction of if to [/, oo)
for some / 6 f̂ . For I <=-H write
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for a skeleton 9 write 9* for the restriction of 9 to [/, oo) and for a measure IT
on A1 y.BJ, write TT* for the marginal of TT on A7* xBJ*. What we want to show
is that 7r.y. = (TTVJ*. (Note TT^ is a measure on Aim* x B"50* since /(#*) = 7(50*
and /(#*) = 7(50*.) Observe that <rry = (v<?)* if Sf is a 0-skeleton and assume that
this is also so for rank if< r. Suppose Sf = if, x • • • x <?0 has rank r and /' € |y,+mr|,
i > l , (If j € |5^| for an initial ifk what we are trying to show is obvious.) Recall that

7Ty = 7 r r * ( T T F - I * ( • • • * ( T T I * T T O ) • • • ) )»

where we adopt all the notation introduced in the definition of TJV. Thus

if — J i + mr X Ji-\ + mr X • • • X Ô o-

Since

D^tm,) = {&*: ^ € D(y,+mr)}, C(^f+mr) = C(SPl+mr)* and C(^f+mr) = C(Sfi+nir)*,

we have

7 7 ^ » = i r ' i * ( 7 7 , - 1 * ( • • • * ( 7 7 1 * T T o ) ' • • ) ) »

where

Now by our induction hypothesis

so

^ : 9e

and evidently

M / ? = ( M / ; ) * and ^ /*

Thus TT| = 7T f. Now Try has marginal

7T, * ( 7 7 V i * ( • • • * ( f f i * T T o ) • • • ) )

and by lemma 4.4, since TT, is non-anticipating, this measure in turn has marginal

TT* * ( 7 T , _ i * ( • • • * ( T T I * TTo) • • ' ) ) = ( % ) * .

This completes the inductive argument.
The assertion about translation invariance is clear. •

LEMMA 5.2. Suppose Nt, C, and w, have been chosen for i<r. If mr is chosen
sufficiently large then for all skeleta if of rank r

ixi(y){x eA"4'1: Try splits x}<Tq.

Proof. Again adopting the notation in the definition of Try,

7 J V = 1TJ * ( 7 7 7 - 1 * ( • • • * ( T T I * T T o ) • • • ) ) ,

so the hypotheses of lemma 4.5 are satisfied with

7, = C(y,+m,), J, = £{.Sri+mr) f o r i > l
and
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We adopt all the notation and terminology of lemma 4.4 and, in addition, we will
write

/"= I *Ji-

Recall that

so

It follows that

/ " < ( l - ^ ) / , for ally,

and

It follows that

M-^)'' f o r a l l / -
Fix e > 0 such that

( i ) (1)

By the strong law of large numbers, given 17 > 0 we may choose k such that, for
all K > k,

vll,K}{yeB^K1:ni,n(y[l,T])>2Hh+c)T for k ^ T^K}> 1-TJ. (2)

(Here y[l, T] denotes the restriction of y to [1, /].) Choose m, so that
<''-2E)m' forally€S[ i n ,0<r<fc, (3)

(4)

M £ 2-•'•<!,. (5)

Now if q = q" ... q1 e O" is not completely good then for some / > 1

so that, by (3), Tt > k. Moreover,

By (2), the ^-measure of ^'s in Q" such that (6) occurs for some /,>fc is less
than 17, so we have

vn{qeQn:q is not e.g.} < 17. (7)
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(4) implies that

fj.n{peP": p is not e.g.}< 17. (8)

The result now follows from (5), (7), (8) and lemma 4.5. •

If / = [i, /] is an interval in P̂ , x e X and Sf is an r- skeleton, we say that Sf occurs
in x on / if JC(/ + 1) = O and the restriction of x to / is Sf. We also say that Sf is
the (unique) r-skeleton beginning at i in x. It is clear that, for /1-a.a. x eX such
that *(/') = 0, there is a unique /•-skeleton beginning at time / in x. For xeX we
denote by Sfr{x) the unique r-skeleton beginning at time /o in x, where f'o is the
least ; such that x(i) = 0. We also write

and Jr(x) = J(yr(x)).

We say an r-skeleton Sf is caught if Cr> *\Sf\, which implies that C{Sf) = \&\. We
also say that Sf is substantial if it contains at least one principal r - 1 skeleton.

Now fix a sequence {17,} decreasing to 0 such that £ r\T < 00. Suppose that Nh C,
and m, have been chosen for / < r. By lemma 5.2 we may choose mr so that for all
skeleta Sf of rank r

HiwixeA1^: try splits x\<r\r. (5.1)

Next we can choose Nr and C, so that

fi{xeX: Sfr{x) is substantial} > 1 - t\n (5.2)

/*{jc€X:^r(jc)iscaught}>l-T/,, (5.3)

To see that this is possible set

G = {x £ X: x[l, 7Vr_i + 2] = 01N—0},

and observe that K can be chosen so large that the fi.-measure of

is greater than 1 -517,. {& denotes the shift on X). Then, setting

F = {xeX:x[l,Nr]=lN'},

Nr can be chosen so large that the /I-measure of

H2 = {xeX:&'(x)eF forO</<AT}

is greater than 1 - \r]r. If xeH1r\ H2, then Sfr(x) is substantial, which takes care of
(5.2). Then C, can clearly be chosen so that (5.3) holds. We now assume that the
Nn Cr and mT have all been chosen so that (5.1), (5.2), and (5.3) hold for all r.

By (5.2), (5.3) and the Borel-Cantelli lemma, there is a set X*<=X such that
/1(X*)= 1 and, for each xeX*, there is an integer ro(x) such that, for r>ro(x),
Sfr(x) is substantial and caught. If 5̂ r(jc) is substantial and caught and 5^r_i(x) is
caught, then

Also, for r'<r,

IAx)^Ir(x) and /,.(*) <=Jr(x).
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Thus we see that for x e X*

U Mx) = U /,(*) = {/: x(i) = 0} =

and the sequences I,{x) and Jr(x) are eventually increasing. In view of these
remarks and lemma 5.1, we can define TT* to be the measure on AHx)xBHx)

whose projection on each A'M)
 XBJ'M is TT^U). Using the natural identification of

AI(x)xBHx)v,ith
X(x)xY(x)^XxY

we define

= 1 TTidfi.{x),

a measure on XxY supported on {{x, y): x = y}. The proof of theorem 1 is now
concluded by the following lemma.

LEMMA 5.3. There exists a finitary homomorphism cf>: X->Y such that v(B) =
»{xeX:(x,<f>(x))eB}.

Proof. For xeX* define <£*: X(x)^Y(x) by requiring that $t(x)(Jr(x)) (the
restriction to Jr{x)) be yr, whenever x(Ir(x))<^yr with respect to nyrii). Define
<t>(x) = 4>n(x). To see that this definition is unambiguous suppose that

r'>r, IAx)=>Ir(x) and /,(*)=>/,(*)

(if this is not the case/ r( jc)n/ r(x)= 0 and / ,• (x) n /r(jc) = 0 ) . By lemma 5.1, 7ryr(x-)
has marginal 7ryr(X-) so we see that, if x(Ir'(x))<=-yr- with respect to TTyr.a), and
x{IT{x)) c yr with respect to TTyAS), then we must have

y,•(/,(*)) = yr.

To see that < X̂-(JC) is defined on all of I(x) observe that by inequality (5.1), for
Hz-a.a. x eX{x), x(Ir(x)) is split by Try,^ only for finitely many r. Thus, for large
r, <f>j;(x) is defined on Jr(x), hence it is defined on I(x).

<f> is finitary because, by the remarks preceding this lemma, for sufficiently large
r, <f>(x) is determined on all of

by x(Ir(x)) and yr(x), which are both determined by a finite segment of x. To see
that <j> is shift invariant first note that, for fi.- a.a. x,

where 5(50 denotes y shifted one unit to the left (if Sf is indexed by [1, n] then
one must also delete the initial zero and if, in addition, y has a single initial zero
one must delete the following run of l's as well). By lemma 5.1

where S again denotes the left shift, now acting on measures. It follows that, if
x(¥r(x))c y with respect to 7TyA£h and also

then y' = ry. Thus <£<x = r<f>.
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To show that

VL{x:(x,<Hx))eB} = ir(B)

it suffices to show that, for xeX*,

lii{xeX(S):(x,4>s(x)eB}=iri(B).
Suppose that poeP''°x) and q0eQ'roix). By the definition of </>f one sees that
fj.i{x€X: (x, $t(x)) € poqo}

= Y\mfj.i[J{pePI'(x):pcp0 and 3q e QJ'(x) s.t. p <=q ^q0 w.r.t.
f » 0 O

c q 0 w.r.t. v<?rVl)}

<Jim ir<?,(i)(poqo) = ir^o(j,(Po<?o) = ff(Po<?o).

Thus, whenever 5 is a cylinder in X(x) x V(jc), and hence for all B, we have

Since both sides of the above inequality are probability measures we can replace
the inequality by equality. Thus we have

/*{*eX: (*,<*(*))6B} = ir(B),
and, in particular, 4> is measure-preserving. •
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