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The advent of high-speed, high dynamic range, and low-noise pixelated detectors ushers in a new 

regime for scanning transmission electron microscopy (STEM) [1]. The efficient acquisition of a full 

diffraction pattern at each point in a scan enables analyses across a vast range of length scales. The 

information-rich 4D datasets are well suited to factor analysis, and machine learning techniques have 

proven invaluable for feature extraction in multidimensional datasets [2].  Efficient and physically 

transparent analyses remain challenging. Here we discuss a physically-motivated basis for efficiently 

representing scanning diffraction data and present interpretable results of component analysis. 

 

Factor analysis is a popular approach for extracting features in large datasets. However, the inherently 

nonlinear relation between diffraction data and the underlying properties of a material makes linear 

methods less than ideal. While the nonlinearities can be accounted for by the careful training of 

supervised machine learning algorithms such as convolution neural networks, the need for extensive 

simulation can make this approach prohibitively time consuming [3]. Here, we transform the data into a 

basis where linear operations map to the correct nonlinear interaction, allowing standard component 

analysis to provide more physically meaningful results. 

 

Linear decomposition aims to extract characteristic components and their concentration maps. An 

example ideal result for scanning diffraction data would give unique local structure factors as 

components and the corresponding thicknesses as concentrations. The relation between the measured 

diffraction patterns and the structure factors/thicknesses is highly nonlinear, but can be approximately 

linearized by applying a physically-motivated homomorphic filter to the data. Once the data is in this 

natural basis, linear techniques such as principal component analysis (PCA) and non-negative matrix 

factorization (NNMF) can yield interpretable components and concentrations. Figure 1 demonstrates the 

results of non-negative matrix factorization on raw data and on data in the proposed natural basis. The 

concentration map from the raw data is plagued by the usual artifacts of diffractive imaging whereas the 

natural basis data shows clean distinctions between grains without significant dynamical diffraction 

artifacts. 

 

One of the greatest challenges in the application of unsupervised machine learning and factor analysis is 

the choice of metaparameters, such as the number of components. A common approach to determining 

the number of components is to first apply PCA and to examine the variance captured by each 

component. Once a suitable cutoff has been selected, then constrained analysis such as NNMF can be 

performed. Figure 1g compares the variance captured by components from raw data and those from the 

filtered data. The natural-basis data requires up to 68x fewer components to capture the same amount of 

variance. 

 

Finally, analysis in this basis allows for the easy identification of structural changes such as strain 

relaxation, as demonstrated in Figure 2, even though the nanoparticle is not on zone axis. In conclusion, 
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careful consideration of bases must be taken to maximize the utility of linear signal processing. 

Exploiting a priori connections between experiment and data permits more effective analyses [4].  
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Figure 1. Comparison of the concentrations in the three-component Non-Negative Matrix Factorization 

of unmodified data (a,b,c) & of  the same data in the natural basis (d,e,f). The 124x124x128x128 300kv 

nanodiffraction data is of a grain boundary in Nb3Sn, sample courtesy of Daniel Hall & Mattias Liepe. 

NNMF on the unmodified data produces concentrations that are dominated by changes in thickness and 

tilt. Using the natural basis instead yields clear distinction between vacuum and the two grains, without 

diffraction contrast artifacts. (g) Comparison of the variance captured with each principal component. The 

unmodified data requires up to 68x more components to capture the same percentage of variance. 

 

 
Figure 2. EMPAD data recorded from a randomly-oriented PtCo@Pt core-shell nanoparticle. (a) The 

extracted annular dark field image.  (b,c) After natural basis transformations, the principal component 

analysis concentrations physically identifiable as Pt+Co (b) and the Pt shell showing strain relaxation (c). 
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