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ABSTRACT. Large parts of the Arctic are covered by water bodies. Ice covers on lakes and rivers prohibit
the exchange of heat and water vapor between the water body and the atmosphere. With melt onset,
the ecosystem is subjected to changes, making it important to monitor the ice decay. As ground-based
monitoring of these vast uninhabited areas is expensive and thus restricted to a few locations, remote-
sensing techniques need to be applied. Here we evaluate the performance of the unsupervised k-means
classification for dividing ice and water fractions on lakes and river channels from spaceborne radar
data in comparison to threshold-based methods. The analysis is based on six TerraSAR-X and three
RADARSAT-2 images, obtained during spring 2011 over the central Lena Delta in northern Siberia.
The performance of the k-means classification is found to be similar to a fixed-threshold approach. As
the k-means classification does not need prior statistical backscatter analyses to account for the radar
configuration and ice conditions, it is easier to use than the threshold method. In addition, we found
that the application of a low-pass filter prior to the classification of river channels and a closing filter

on the classification results of lakes strongly improves the overall classification results.

1. INTRODUCTION

Large areas of the arctic and sub-arctic environments are
covered by lakes and rivers (e.g. >30% of the Lena Delta
in northern Siberia (Schneider and others, 2009) and 15—
40% of North America (Duguay and others, 2003)). With
melt onset and ice decay, the lake ecosystem underlies
dramatic changes. Thermal- and wind-driven mixing of the
water column starts, the albedo and heat fluxes change,
evaporation and the exchange of further gases increase. The
surrounding areas are also affected, because of the thermal
moderation effect of water bodies.

Changes in the timing of lake- and river-ice decay are
indicators for climatic change (Johnson and Stefan, 2006), as
ice growth and decay are directly controlled by atmospheric
fluxes (Prowse and others, 2007). For instance, earlier
thaw dates would lead to earlier starts of greenhouse-gas
exchange and to higher evaporation rates from the water
surfaces in early summer.

Satellite-borne synthetic aperture radar (SAR) is a suitable
tool for observing ice decay, as the backscattered signal from
the surface to the radar is highly dependent on the dielectric
properties and the structure of the surface and subsurface
layers. As the dielectric constants and losses of water and ice
are very different, their backscattering signature can be easily
distinguished in many cases. The satellite signal penetrates
the cloud cover and can be used to monitor vast uninhabited
regions, such as the Arctic tundra, cost-efficiently and in
near-real time. Threshold-based methods, change detection
techniques in time series and manual mapping are methods
commonly used to monitor ice decay from SAR images (e.g.
Jeffries and others, 1994; Geldsetzer and others, 2010). As
the backscatter of ice or water is dependent on the radar
wavelength, polarization and incidence angle (Wakabayashi
and others, 1993; Makynen and others, 2002) the threshold
for dividing ice and water needs to be matched to the radar
configuration. Change detection requires time series of
images taken with identical sensors and identical imaging
geometries. For monitoring at a very high spatial (down
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to a few meters pixel size) and temporal (weekly to daily)
resolution, the repeat pass time of recent satellite missions
is often not high enough. Mapping based on visual analyses
by an experienced operator is sensor-independent, and
relatively robust to errors due to misclassifications, but time-
consuming. A robust and time-saving method independent
of sensor configuration is not yet available.

One option for automated image segmentation is cluster-
ing methods. The most common clustering method is the
unsupervised k-means classification algorithm. The details
of the algorithm are given by Tou and Gonzdles (1974).
This algorithm is implemented in most image-processing
software packages. The advantage of unsupervised methods,
such as k-means clustering, is that they require no prior
training. The data points are partitioned to a defined number
of clusters using the minimum distance technique (Coleman
and Andrews, 1979; Jain and others, 1999).

The preparation of data prior to clustering influences the
classification results. Filters are often applied to the data
prior to image classification to suppress speckle (Deng, 2005;
Geldsetzer and others, 2010). The choice of the filter type
and filter size thus has a strong impact on the results. The
subsequent application of morphological filters can correct
small misclassifications. The morphological closing filter has
been applied successfully in several studies (e.g. Wesche and
Dierking, 2012).

The aim of this study is to analyze the performance
of the unsupervised k-means classification method for
estimating lake- and river-ice decay from SAR observations.
The algorithm was tested with TerraSAR-X images for lakes
and applied on RADARSAT-2 data for several lakes and
river channels located in the central part of the Lena
Delta. The effect of low-pass filtering of the data prior
to classification and of the morphological closing filter
on the classification results was also investigated. The
outcome was compared to corresponding results derived
with the commonly used threshold method and hand-
mapped references. Lakes and rivers were treated separately
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Fig. 1. Location of the area investigated. Left: RADARSAT-2 image (Canadian Space Agency, 2011); middle: Landsat-7 Enhanced Thematic
Mapper Plus (ETM+) mosaic (NASA 2000/01); right: circum-Arctic map (Hugo Ahlenius, United Nations Environment Programme/Global

Resources Information Database (UNEP/GRID)-Arendal 2008).

in this study, as ice conditions on the river channels differed
from those on the lakes.

2. MATERIAL AND METHODS
2.1. Study area

The lakes and river sections analyzed in this study are
located in the southern central part of the Lena River Delta,
northern Siberia, Russia, at 72° N, 126° E (Fig. 1). The area
is a polygonal Arctic tundra landscape, located in a zone
of continuous permafrost and covered by several ponds,
lakes (with areas from 15 m? to 1.7 km?) and river channels.
The mean annual air temperature is —13.6°C, with monthly
mean temperatures of around —35°C in winter and up
to 13.4°C in summer. The average annual precipitation is
263 mm. Snow depth is ~13-24 cm on average, but highly
variable between the years and across the landscape because
of redistribution through strong winds (Boike and others,
2008). The polar night lasts from 15 November to 28 January
and the polar day from 7 May to 7 August. Lake-ice decay
commonly starts at the end of May and lasts until the end of
June. River-ice break-up commonly occurs at the end of May
or early in June (personal communication from J. Boike and
others, 2010).

2.2. Data

All images were acquired on the ascending orbit. TerraSAR-
X operates at X-band, i.e. at a frequency of 9.6 GHz
(wavelength 3.1cm), and RADARSAT-2 operates at C-
band (5.4 GHz, 5.6.cm). The polarization of the TerraSAR-
X images is HH (i.e. the transmitted and received signal
are horizontally polarized); the RADARSAT-2 images are
in Quad-Pol mode, i.e. polarizations HH, HV, VH and
VV are measured simultaneously (V: vertically polarized).
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Additional information is given in Table 1. Our time series
covers the whole spring period, from the end of April to
the end of June, at the highest possible temporal resolution,
considering that similar imaging geometries are required.

2.3. Methods

Six TerraSAR-X and three RADARSAT-2 images (all originally
in SLC (single look complex) format) were analyzed for this
study. The SARScape and ENVI software packages were used
for image processing and further image analyses. The images
were radiometrically calibrated, normalized and geocoded
(WGS84, UTM 52N). After geocoding, the pixel size of
the TerraSAR-X images was 3.74 m x 3.74 m and that of the
RADARSAT-2 data was 10.96m x 10.96 m. The output is
given in terms of the radar backscattering coefficient, o°.
A Lee filter (Lee, 1980) with a kernel size of 3 x 3 was
applied to the geocoded data to reduce speckle. Following
this basic data processing, different methods were applied to

Table 1. Characteristics of the TerraSAR-X (TSX) and RADARSAT-2
(RS-2) images

Date Sensor Incidence angle Local time
25 May 2011 TSX 31.94-34.56° 18:37
30 May 2011 TSX 38.12-40.42° 18:46
02 Jun 2011 RS-2 32.40-34.00° 18:42
05 Jun 2011 TSX 31.94-34.56° 18:37
10 Jun 2011 TSX 38.12-40.42° 18:46
12 Jun 2011 RS-2 36.40-38.00° 18:50
16 Jun 2011 TSX 31.94-34.56° 18:37
21 Jun 2011 TSX 38.12-40.42° 18:46
26 Jun 2011 RS-2 32.40-34.00° 18:42
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Fig. 2. Workflow description for (a) lakes and (b) rivers.

determine which processing chain delivers the best results
for separating ice and water surfaces. An overview of the
different processing chains is given in Figure 2.

As shown in the figure, a low-pass filter (kernel size
3 x 3) was used in addition in one of the processing chains.
Each center pixel value is replaced with an average of
the surrounding values. This filter suppresses high-frequency
variations in the data, which reduces strong intensity outliers,
but also blurs natural sharp backscatter variations, as they
occur (e.g. at ice/water edges).

In the next step, regions of interest (ROIs) were defined,
covering lake surfaces and river sections. For classification
into ice and water fractions, each ROl was treated separately.
All pixels outside a ROl were masked out, leaving only pixels
inside the ROI for further analysis.

An unsupervised k-means classification was applied to
the remaining data. With this method, the image intensity
values are partitioned into k classes in which each intensity
value belongs to the class with the nearest mean. For the
approach of dividing lake or river surfaces into ice and water
areas, the number of classes was set to two. The initial
clusters are randomly chosen. Then the class members are
adjusted in an iterative refinement approach until the sum
of all distances between the intensity value and the mean
is as small as possible for both clusters (minimum-distance
technique). Five iterations were allowed for reclassification
of the pixels.

The closing filter, a morphological filter, was applied to
the classification results. This filter eliminates small holes,
and fills gaps which are smaller than the structural element
of the surrounding pixels (Haralick and others, 1987).

The outputs are the areas of the water and ice fractions,
given by the number of pixels. The spatial pattern of the
classes can be displayed.

To estimate the performance of the k-means classification
in comparison with the threshold method, the performance
of the latter was also tested for all investigated lake surfaces.
To determine the threshold value for the TerraSAR-X images,
the mean backscatter value and the standard deviation of the
ice surfaces of seven randomly chosen lakes were calculated.
Then the threshold, 7o, was fixed by

To =0 — 5§ (1)

where & is the mean ice-surface backscatter of all statistically
investigated lakes and s is the mean standard deviation of
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o. Here, 7, is —17.58dB for the TerraSAR-X HH-polarized
data. This threshold was applied to all lakes during the entire
thaw period. Pixels containing values <7, were classified as
water, those with >7, as ice. The slightly varying incidence
angles of the different acquisition dates were not taken
into account, as the backscatter difference caused by the
change in the incidence angle lies within the range of the
standard deviation, s = 3.62 dB. This is in agreement with
Wakabayashi and others (1993), who modeled an incident-
angle-dependent backscatter change of 1dB between 30°
and 40° (C-band, VV polarization) for floating lake ice,
and with Mdkynen and others (2002), who measured
the same backscatter shift on deformed sea ice. For the
RADARSAT-2 data we used threshold values of —21.35dB
for HH-polarized and —24.35 dB for HV-polarized data, as
determined by Geldsetzer and others (2010).

No ancillary data were available to quantify the accuracy
of either method and the influence of the different filters.
Therefore, ice areas on the lakes were mapped by an
experienced operator for 30 cases (described in detail in
Section 3.1), chosen from the TerraSAR-X data. Under calm
wind conditions, ice appears brighter than water in the radar
images. However, at higher wind velocities the water also
appears bright, because its rougher surface due to waves
causes enhanced backscattering. The higher brightness of
wind-influenced water makes it difficult to distinguish water
from ice. Polygons including the ice surface were drawn
carefully along the ice/water edges for each case separately.

Finally, we tested whether the k-means classification is a
suitable tool for partitioning ice and water on river channels.
The workflow is the same as for lake surfaces (with the steps
listed in Fig. 2b).

3. RESULTS
3.1. Lakes

Fourteen lakes were analyzed to evaluate the different
methods: two lakes were analyzed at four different dates
(four different stages of lake-ice melt); three lakes at three
dates; four lakes at two dates; and five lakes at one date.
Thus, a total of 30 cases were investigated (as described in
Section 2.3), all with TerraSAR-X data. Some examples of the
performance of each method and ice-cover fractions ranging
from ~88% to 27% are shown in Figure 3.
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Fig. 3. TerraSAR-X subsets of six lakes taken on 16 June 2011. The classification results show the water surfaces in black and the ice surfaces
in white. The percentages quantify the fraction of the ice class. Threshold is —17.58 dB. C is closing filter and L is low-pass filter.

To evaluate the accuracy of the different methods, the
classification error was calculated in comparison to the
manually derived reference for each case and method
separately. The box plots in Figure 4 show the overall
performance of the different methods compared to the
reference. The values are also given in Table 2. The reasons
for the statistical outliers are discussed in Sections 4.1
and 4.3.

3.1.1. Application to RADARSAT-2 data

The k-means classification algorithm was then applied on
C-band Quad-Pol RADARSAT-2 data. The classification was
carried out separately for each image. Again, the results
were compared to references and the threshold method.
The results of the HV- and the VH-polarized images were
the same, but they differed slightly between the HH- and
VV-data. We did not test the performance of the threshold

Table 2. Statistical performance of the different methods on the TerraSAR-X data. The error is given as the percentage difference between

the methods and the reference for all 30 cases

Method Mean Median Minimum 25% quartile 75% quartile Maximum
k-means 16.03 14.54 0.64 6.67 24.10 38.66
Closing filter 10.48 3.08 0.06 1.19 9.54 12.06
Threshold 16.50 12.15 0.19 3.18 29.15 51.07
Low-pass filter 12.97 8.45 0.16 2.28 18.03 40.37
Low-pass and closing filter 9.86 4.40 0.65 2.13 14.22 30.44
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Fig. 4. Error of the different classification methods compared to the
reference for the TerraSAR-X data. C is closing filter, L is low-pass
filter.

method on the VV-polarized data, as no threshold value
for this data is given by Geldsetzer and others (2010). As
our RADARSAT-2 data captured only this one partly ice-
covered lake (all other lakes were ice-free during image
acquisition), the data were not suitable for estimating a
reasonable threshold value. The classification results of one
lake recorded at the different polarizations are shown in
Figure 5.

3.2. Rivers

To determine the ice and water fractions of river channels,
25 ROIs were set to analyze different parts of the river in the
TerraSAR-X and RADARSAT-2 images. In two of the available
TerraSAR-X images (acquired 25 and 30 May 2011) and in
one RADARSAT-2 image (acquired 2 June 2011), fractions of
ice and water were observed in the river channels. Again,
the classification was performed on images which were

k-means k-means C
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low-pass-filtered to analyze the effect of the filter on the
classification results (Fig. 2b).

As the ice cover on the river was broken into several
smaller floes, it was not possible to mark all ice fragments
by ROIs. Instead, we visually compared the classification
results, focusing on the pattern of the spatial distribution of
the ice and water surfaces. The pattern of the ice and water
distribution in the classification results is in good agreement
with the observations from the SAR images, even though the
backscatter of the ice surface is more variable on the river
channels than on the lakes. This results in comparatively less
pronounced backscatter differences between the ice and the
water surfaces, which may cause problems in the clustering
via the minimum-distance technique. One example of the
patterns of the backscatter in the X- and C-band SAR images
and the corresponding classification results is shown in
Figure 6.

On 25 May 2011, the ice surface was very wet, as the
air temperatures rose above 0°C in the days before image
acquisition and snowmelt had started (Sobiech and others,
2012). Therefore, the backscatter intensity of the ice was low
and close to the backscatter values of the water. This leads to
misclassifications of the wetter parts of the ice-covered areas.
Before the acquisition of the next image (30 May 2011) in the
time series, the main river-ice break-up occurred, completely
changing the ice-cover characteristics. The ice then consisted
of several ice sheets with different properties which were
pushed together during break-up, remaining in place after
the peak of the flood. Some parts of the ice sheets which
appear dark in the radar image were misclassified as water,
whereas the ice sheets appearing lighter were fully classified
as ice.

The acquisition of the image on 2 June 2011 was carried
out with the RADARSAT-2 sensor, delivering data in all
polarizations. As HV and VH have the same properties, the
VH data are not shown here. The ice conditions were the
same as described for the former image. The results show
that the classification performed best with HH-polarized
input data. In case of cross-polarized data, the ice surface is
underestimated. VV-polarized images are more sensitive to

Threshold L k-means L k-means C

21.92%

Fig. 5. Results of the application of k-means classification and filtering, and the threshold method on RADARSAT-2 data from 26 June 2011.

C is closing filter, L is low-pass filter.
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Fig. 6. Separation of water (blue) and ice (white) surfaces
in a river channel northeast of Samoylov Island with the k-
means classification algorithm. L is low-pass filter. Dates are
day/month/year.

wind effects on the water surface (Section 4.5), so the water
area marked in Figure 6 is partly misclassified as ice. The ice
sheets which appear dark in the radar image are also partly
misclassified as water, which makes the image recorded with
VV-polarization the least suitable choice for automatic image
classification.

The application of the low-pass filter before image
classification improves the results. The water surfaces,
especially, are classified with a higher accuracy. The closing
filter should not be applied to the classification results, as
the natural backscatter variations on river sections are high.
Small gaps between the ice floes would be misclassified as
ice, and the number of misclassified water pixels would rise.

4. DISCUSSION

Sections 4.1-4.5 refer to lakes only. The results of the
k-means classification on river channels are discussed
separately, in Section 4.6.

4.1. Low-pass filtering

The low-pass filter smooths the image as it replaces the
center pixel values with an average of the surrounding values.
The advantage is that intensity outliers are suppressed. The
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disadvantage is that the edges of the lakes and the ice/water
transitions are blurred (as mentioned in Section 2.3). Our
results show that the majority of the pixels are better
classified after application of this filter, but the ice pixels
along the ice/water boundary are often misclassified as water.
Thus the filter can be recommended if the overall result is of
interest, but should not be applied if the correct ice/water
edge is essential.

The filter worsens the results when the ice surface is wet
and many pixels representing the ice surface have relatively
low backscatter values (e.g. if melt ponds are present). In
this case, the backscatter value of the pixels surrounding the
melt ponds is lowered and consequently later misclassified
as water.

4.2. k-means classification vs threshold method

The methods are both based on the backscatter differences
of the signal from ice and water surfaces. The backscatter
received by the sensor is usually higher from an ice surface
than from a water surface, due to the different dielectric and
surface properties of water and ice and due to scattering
contributions from the ice volume. The absolute backscatter
values also depend on the radar wavelength, polarization
and incidence angle (Section 1).

To determine the threshold value for allocation of the
pixels to either the ice or the water class, some statistics
need to be performed first. The usual way to obtain the
threshold is to investigate the mean backscatter values and
standard deviations of some randomly chosen ice surfaces.
Geldsetzer and others (2010) took the lowest mean ice
backscatter value from a number of different lakes minus
the standard deviation as the threshold value for C-band
HH-polarized data. In the present study, some of the lakes
were covered by ice with a very wet surface, leading to very
low backscatter values compared to typical values for ice.
Taking this value minus the standard deviation would lead to
such a low threshold value that the water surfaces would be
greatly overestimated. Thus, the mean backscattering value
of all statistically investigated ice surfaces minus the standard
deviation was used in this study for the TerraSAR-X data
(as described in Section 2.3). The general problem with the
threshold method is that a new threshold has to be defined
for each radar wavelength, polarization and incidence angle,
and also for different ice and meteorological conditions.
This implies that either statistics need to be performed for
each new condition, or that a relatively large error occurs
under changing conditions. In this study, we tested the
performance of one carefully estimated threshold value on
TerraSAR-X data acquired on different dates and slightly
varying incidence angles (Table 1).

The advantage of an unsupervised classification method,
such as k-means, is that the algorithm itself sets the limits of
the backscattering intensity intervals for pixel allocation to
classes, i.e. the threshold between ice and water. Therefore,
the absolute values of the backscattering coefficients are
not important. The simple fact that the sigma values from
ice and water surfaces are significantly different is used. It
is not necessary to first perform statistical analysis of the
backscatter values to determine a threshold. In addition, the
k-means algorithm is flexible to the ice conditions during
image acquisition.

The unsupervised k-means classification algorithm is
implemented in most image-processing software packages.
The user defines the ROI and the number of classes, but the
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recording conditions of the input images do not have to be
taken into account. As the image processing from each sensor
and image can be the same for this approach, the image-
processing chain can be automated easily, saving time and
manpower.

The results of the performance of the unsupervised k-
means classification are comparable to those of the threshold
method (Fig. 4; Table 2). The mean values are almost the
same. The median is slightly better for the threshold method
than for the k-means method, but the 75% quartile value, as
well as the maximum error, are reasonably lower for k-means
than for the threshold method.

Taking into account that the k-means classification
approach does not require any prior data analysis, thus
saving a large amount of time compared to the threshold
method, and that this approach adapts itself to new image-
recording conditions and natural conditions, the k-means
approach is superior to the threshold method. However, the
k-means classification is only suitable when water and ice
fractions are present. To determine the onset of ice break-
up from a time series, other methods (e.g. visual image
inspection, change detection or thresholding) are needed.

4.3. Application of the closing filter

Usually the lake ice melts from the shore to the inner part of
the lake. If so, the ice surface is continuous and the closing
filter reduces misclassifications due to speckle or wet ice
patches and helps to display the natural conditions.

As shown in Figure 4, the closing filter has good overall
performance and strongly enhances the results in most cases.
However, the application of the closing filter can, in some
cases, worsen the results, leading to the outliers shown in
Figure 4. These outliers occur if the water surface is rough,
leading to a large number of misclassified pixels in the
water area. The closing filter then connects the misclassified
pixels. The result is that most of the water surface is wrongly
classified as ice. Since X-band data are more sensitive to
wind speed and direction than images acquired at lower
frequencies (Long and others, 1996), this problem is less
critical at C-band. These outliers are easy to identify through
a quick comparison of the original SAR image and the
classification results by an operator. Thus our suggestion is
to apply the closing filter in general, as it usually improves
the results, but to perform a quality check.

4.4. Lake size

The lake size does not seem to be important for the
performance of any method. The smallest lake analyzed in
this study has a size of 0.049km?, the largest an area of
1.729km?. No connection was found between classification
error and lake size. However, all lakes analyzed in this study
are typical High Arctic polygonal tundra lakes, which are
rather small and usually have a uniform ice cover. Larger
lakes may have a less uniform ice cover, which would make
the classification more difficult.

4.5. Wind

In former descriptions of the separation of lake ice and water
in SAR images, the wind velocity was used as a criterion to
decide whether it is possible to automatically classify the
surfaces into ice and water (Geldsetzer and others, 2010). If
local near-real-time wind data are available, this is a useful
criterion. In coastal or mountainous environments, wind
conditions change on local scales and the surroundings of
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the lake play a significant role (e.g. if the lake is located in
a depression and thus wind-protected, or (in other biomes)
surrounded by forest). The region investigated in the present
study covers an area of 300km?, and the largest distance
between the investigated lakes is ~20km. Even within this
small area, the classification of some of the lakes performed
excellently, whereas during the same acquisition others
failed due to high backscatter values from the water surface.
As the next station providing near-real-time wind data for
our test site is located in Tiksi ~200 km to the southeast, and
the grid of modeled wind data is far too coarse, the wind
velocities were not used as a criterion in this study.
Regarding the sensitivity of SAR to wind on water surfaces
in general, previous studies have shown that HH-polarized
SAR data are less sensitive to wind-induced changes of
the backscattering coefficient of open water surfaces than
VV-polarized data (Long and others, 1996; Partington and
others, 2010). Cross-polarized data are less sensitive to wind
effects than co-polarized data, but as the signal from open
water surfaces (as well as that from lake ice) is often at
or below the noise floor (Geldsetzer and others, 2010;
Partington and others, 2010), the use of cross-polarized data
is limited. Therefore, HH-polarized images are best suited for
separation of ice and water surfaces (see also Section 3.2).

4.6. Rivers

As shown in Figure 6, the classification of river ice is possible
with the unsupervised k-means algorithm. The quality of the
results depends, as expected, on ice conditions in the inves-
tigation area and on the conditions of image acquisition.

For the RADARSAT-2 image, the different polarizations
were classified separately and the classification results
were significantly different, demonstrating the importance
of polarization. As mentioned in Sections 3.2 and 4.5
and shown in Figure 6, HH-polarization is the most
suitable polarization and VV-polarized data deliver the
poorest results.

The application of the low-pass filter on the data prior
to classification enhances the overall classification accuracy,
but the closing filter should not be applied. This is in contrast
to the best processing chain for the classification of lake
ice. The reasons are that the water surface in rivers may
be roughened by currents in addition to wind, leading to
higher mean backscatter values. In addition, ice floes with
different physical properties occur in one ROI, making the
classification even more difficult.

Overall, the classification of river ice is more complicated
than that of lake ice, which may cause a lower classification
accuracy. But, as the general pattern of the ice and water
distribution is still well displayed, the k-means classification
is, especially in combination with the low-pass filter prior to
image classification, a promising tool for the separation of
ice and water surfaces on rivers.

5. CONCLUSION

Our test cases show that unsupervised k-means classification
is a suitable method for monitoring lake- and river-ice decay
from SAR data when ice and water fractions are both present.
The outcome is the distribution of ice-covered and open-
water areas on lakes or rivers, as well as the area fractions.
The best overall results on lakes were achieved when a
morphological closing filter was applied on the k-means
classification results (outliers can be identified easily by
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the operator). For river sections, a low-pass filter should be
applied on the data at the beginning of the classification, but
the closing filter should not be used.

Limitations of the method are reached when high
backscatter occurs on the water surfaces due to wind effects,
which leads to backscatter values close to those of the ice
cover. Also, when the ice surface is wet and wind speed
is low, ice and water are difficult to separate. The same
limitations are valid for common threshold methods. Small
misclassifications, occurring mainly due to speckle or melt
ponds on the ice can be corrected by the closing filter.

Overall, the k-means method performed similarly to the
threshold method, but does not need statistical investigations
prior to the classification. It can thus be applied to data
without explicitly considering the radar configuration. The k-
means algorithm reacts flexibly to changing conditions and
thus can deal better with changing environmental and ice
conditions than a fixed threshold.
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