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Analytic inclined flow rule for determining
granular rheology under strong non-local effects
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This study theoretically establishes a flow rule for a granular flow down a rough inclined
plane, capable of determining granular rheology in the presence of strong non-local effects
resulting from grain cooperativity. To describe the non-local rheology, a Landau–Ginzburg
model is formulated in terms of the fluidisation parameter represented by the granular
inertial number. The exact solutions of the inertial-number field are solved and provide
physical insights into the evolution of the internal rheology and the flow arrest process
controlled by the flow height. Through asymptotic analysis in the regime dominated by
strong non-locality, the exact solutions are further reduced to yield an analytical flow rule
for the mean flow velocity. A comparison between the prediction of the flow rule and
experimental data from the literature for sand grains determines the underlying rheology
law and the relevant rheological parameters. Thus, the proposed flow rule serves as an
effective tool for inferring granular rheology from strongly non-local inclined flow data,
surpassing the limitations of the classical flow rule deduced from the local rheology
framework.

Key words: dry granular material, rheology

1. Introduction

Flows of granular materials encompass a wide range of geophysical phenomena, such
as debris flows, landslides and avalanches, and find applications in various industries,
such as metallurgy, pharmaceuticals and agriculture. Despite their ubiquity, granular flows
are often challenging to predict due to complex inter-particle frictional and collisional
interactions, rendering the flows to exhibit solid- and fluid-like behaviours (Campbell
2006; Andreotti, Forterre & Pouliquen 2013). To understand such a biphasic feature and
to simulate the flow dynamics in relevant applications, a unified model able to describe
granular rheology in various flow conditions is desired. Much effort has been made to
the so-called local μ(I)-rheology (GDR-Midi 2004; da Cruz et al. 2005; Jop, Forterre &
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Pouliquen 2006), based on dimensional analysis for homogeneous shear flow to relate an
effective frictional coefficient, μ = τ/P, defined as the ratio between the shear stress τ

and the pressure P, to an inertial number

I = γ̇ D√
P/ρ

, (1.1)

defined as the ratio of the time scales for macroscopic deformation and microscopic grain
rearrangement, where γ̇ is the shear rate, D is the mean grain diameter and ρ is the
intrinsic density of solid grains. The inertial number serves as a granular state indicator
from the quasi-static, dense inertial, to collisional regime as its magnitude increases.
A crucial concern arises regarding the determination of the μ(I) function, which has been
extensively studied through experiments and numerical simulations across various shear
flow configurations (GDR-Midi 2004; da Cruz et al. 2005; Jop, Forterre & Pouliquen
2005; Koval et al. 2009; Govender 2016; Barker, Zhu & Sun 2022). One typical method
is to infer the μ(I) function from an empirical flow rule for grains flowing down rough
inclined surfaces (Pouliquen 1999; Silbert, Landry & Grest 2003; GDR-Midi 2004). The
flow rule involves a relation for the depth-averaged mean velocity, ū, to the flow height, h,
and to the slope angle of inclination, θ . For spherical grains such as glass beads, the flow
rule is observed to follow a well-defined relation

ū√
gh

= β
h

hstop(θ)
, (1.2)

known as the Pouliquen flow rule (Pouliquen 1999). Here, g is the acceleration of gravity,
β is an empirical constant, and hstop(θ) is a critical height as a function of θ below which
a flow stops. The significance of the Pouliquen flow rule lies in its analytical connection to
the local μ(I) rheology. In the configuration of inclined-plane flow, the rheology predicts
the Bagnold velocity profile and the resulting mean velocity relation is consistent with (1.2)
(GDR-Midi 2004; Gray & Edwards 2014). Hence, the measured relation (1.2) contains
embedded information about the μ(I) function and the related rheological parameters.

Nevertheless, numerous investigations have revealed that granular rheology as well as
its mean flow characteristics can be significantly affected by non-local effects arising from
cooperative motions among contacting grains (Pouliquen & Forterre 2009; Reddy, Forterre
& Pouliquen 2011; Bouzid et al. 2015; Zhang & Kamrin 2017). Such non-local effects
render the rheology at a specific location dependent on flow conditions over the entire
domain, thereby failing the local rheology law. In the case of spherical grains such as
glass beads, non-local effects are locally significant close to flow arrest, causing the mean
velocity to continuously decrease to zero as h is reduced to hstop, instead of converging
to the finite magnitude β as predicted by the Pouliquen flow rule (1.2) (Deboeuf et al.
2006). On the other hand, for irregular grains with rough and faceted shapes such as
sand, a pronounced deviation from the Pouliquen flow rule is observed across a wide
range of flow heights (Forterre & Pouliquen 2003; Félix & Thomas 2004; Aranson
et al. 2008; Malloggi, Andreotti & Clément 2015), indicating that the angularity of grain
shape induces a significant non-local effect. While the deviation can be described by a
modified Pouliquen flow rule, ū/

√
gh = γ + β(h/hstop), with γ being an offset (Forterre

& Pouliquen 2003; Félix & Thomas 2004; GDR-Midi 2004; Malloggi et al. 2015), or by
another form of the flow rule derived from a modified kinetic theory of dense granular
gases (Jenkins 2006; Börzsönyi & Ecke 2007), their connections to the underlying μ(I)
rheology is unclear.
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Analytic inclined flow rule

A promising method incorporating non-local effects into the μ(I) rheological
framework is the Landau–Ginzburg approach, originally developed in the context of
thermodynamic phase transitions (Aranson & Tsimring 2002). This approach introduces
an order parameter, λ, as a field variable to quantify the degree of material fluidisation at
a specific location. Its evolution in space and time is governed by a reaction–diffusion
equation, known as the Landau–Ginzburg equation, which includes source terms
associated with the local rheology and diffusive terms that describe non-locality resulting
from cooperative motions. Within the framework, Aranson & Tsimring (2002) first
proposed a partially fluidised theory, which postulates an order parameter to characterise
the ratio of solid to fluid stress and a polynomial source term to describe the local
rheology. Subsequently, a granular fluidity theory was developed by adapting a non-local
fluidity theory for emulsions to the granular Landau–Ginzburg framework (Kamrin &
Koval 2012; Kamrin & Henann 2015). More recently, Lee & Yang (2017) treated the
inertial number as an order parameter and used scaling arguments to formulate the
Landau–Ginzburg equation. These models have demonstrated their ability to capture many
significant features of granular inclined flows, including creep-flow behaviour (Aranson &
Tsimring 2002; Kamrin & Henann 2015; Lee & Yang 2017), the Bagnold profile (Kamrin
& Henann 2015; Lee & Yang 2017) and hysteresis of the flow thresholds (Aranson &
Tsimring 2002; Aranson et al. 2008; Lee & Yang 2017; Mowlavi & Kamrin 2021).

Despite these efforts, an analytical solution for the inclined flow rule derived from
granular non-local rheology is still missing. The difficulties lie in the mathematical
complexity arising from the introduction of non-local mechanisms and the uncertainty
of a unified formulation of the Landau–Ginzburg model. Yet such a solution holds
significance, as the irregular shapes exhibited by most grains encountered in reality give
rise to pronounced non-local effects that challenge the applicability of the Pouliquen
flow rule. Hence, this study focuses on granular materials with strong non-local effects
and aims to derive an analytic inclined flow rule from the Landau–Ginzburg framework.
As will be demonstrated, this is accomplished by utilising the inertial-number-based
Landau–Ginzburg approach (Lee & Yang 2017), which enables the derivation of exact
solutions for the order parameter and asymptotic solutions for the mean flow velocity in
the regime dominated by non-locality. The derived flow rule is shown to well capture
literature data for sand and provide insights into the rheology of sandy materials.

2. Theoretical analysis

2.1. Landau–Ginzburg granular rheology model
By treating granular material as a bi-phasic system undergoing a solid–fluid phase
transition, a Landau–Ginzburg equation describing the evolution of the fluidisation
parameter, λ, is formulated as

t0
Dλ
Dt

= l2∇2λ+ r(μ)λ− Bλ1+b. (2.1)

Here, t0 represents a relaxation time, l denotes a microscopic length associated with
non-local transport and B > 0 and b > 0 are rheological parameters. The function r(μ)

controls the occurrence of granular phase transitions at a critical effective frictional
coefficient, μc, requiring that r(μ) > 0 for μ > μc and r(μ) < 0 for μ < μc. The
functional form of r(μ) will be determined by comparing the model solution with
empirical data. Note that, in the partially fluidised theory (Aranson & Tsimring 2002;
Aranson et al. 2008) and the granular fluidity theory (Kamrin & Henann 2015; Mowlavi
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& Kamrin 2021), the source terms are assumed a priori to present the form of an analytic
expansion with integer power exponents. However, Lee & Yang (2017) have demonstrated
that the power exponent in the dissipative term, 1 + b, is crucial for accurately reproducing
the observed rheology, so here, b is treated as a free parameter to be determined. Note also
that an additional bistability term may be introduced in (2.1) to account for hysteresis of
flow onset and arrest (Aranson & Tsimring 2002; Lee & Yang 2017; Mowlavi & Kamrin
2021), which is, however, beyond the scope of this study focusing on the flow-to-arrest
process.

Three potential candidates for the physical definition of λ are discussed as follows. In the
partially fluidised theory (Aranson & Tsimring 2002; Aranson et al. 2008), λ conceptually
denotes the concentration of granular solid phase to fluid phase, requiring an additional
empirical relation to relate it to the flow variables, thereby introducing further complexity.
In the granular fluidity theory (Kamrin & Koval 2012; Kamrin & Henann 2015; Mowlavi
& Kamrin 2021), λ is defined as a granular fluidity parameter, the inverse of effective
viscosity rescaled by pressure, γ̇ /μ. This definition introduces dimensional aspects and
makes the coefficient B a flow variable (Kamrin & Henann 2015), posing challenges for
analytical analysis. For the sake of simplicity, here λ is chosen as the inertial number, i.e.
λ = I, which is dimensionless and defined directly by the flow variables (Lee & Yang
2017). With this choice, in a steady homogeneous shear flow, (2.1) yields a local rheology
relation given by

Iloc(μ) =
(

r(μ)

B

)1/b

. (2.2)

2.2. Application to inclined-plane flow
Consider a steady granular flow on a rough inclined plane, where the flow height h is
uniform and the slope angle θ is measured from the horizon. A Cartesian coordinate is set
at the bottom somewhere upstream, where x points down the inclined plane and z is the
direction normal to the plane. Assuming the material is incompressible with a constant
solid volume fraction φ, the shear stress τ and the pressure P can be derived from the
momentum balance equations at steady state, given by

τ = ρφg sin θ(h − z), (2.3)

P = ρφg cos θ(h − z), (2.4)

which leads to the effective frictional coefficient

μ = tan θ. (2.5)

In this configuration, the Landau–Ginzburg equation (2.1) reduces to

0 = l2
d2I
dz2 + r(θ)I − BI1+b. (2.6)

Multiplied by dI/dz, the (2.6) can be manipulated to yield

0 = d
dz

[
l2

2

(
dI
dz

)2

+ r(θ)

2
I2 − B

2 + b
I2+b

]
, (2.7)

or
l2

2

(
dI
dz

)2

+ r(θ)

2
I2 − B

2 + b
I2+b = const. (2.8)
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Analytic inclined flow rule

To proceed with the analysis, the boundary conditions for the order parameter at the free
surface and bottom are required. Since no fluidisation enters or leaves the free surface, the
surface condition is typically assumed to be flux free (Aranson & Tsimring 2002; Kamrin
& Henann 2015; Lee & Yang 2017)

dI
dz

= 0, at z = h. (2.9)

For irregular grains flowing down a rough plane considered here, the bottom can be fairly
assumed to be highly dissipative, indicating a pure solid phase

I = 0, at z = 0. (2.10)

This bottom condition is supported by direct experimental observation of sand flows on a
rough inclined plane in which a thin jammed layer forms at the bottom below the flowing
layer (Aranson et al. 2008; Malloggi et al. 2015). Now, with the surface condition, (2.8)
reduces to

l2

2

(
dI
dz

)2

+ r(θ)

2
I2 − B

2 + b
I2+b = r(θ)

2
I2
s − B

2 + b
I2+b
s , (2.11)

where Is denotes the inertial number at the free surface. In terms of the following
normalised variables:

I∗ = I
Is

, z∗ = z
h
, ε = Is

Iloc(θ)
, (2.12a–c)

where Iloc is given by (2.2), (2.11) can be rewritten as

dI∗

dz∗ = π

2
κ

√
1 − I∗2 − 2

2 + b
εb(1 − I∗2+b), (2.13)

where

κ = 2
√

BIloc(θ)b/2h
πl

. (2.14)

With the bottom condition I∗ = 0 at z∗ = 0, (2.13) gives rise to an integral equation

π

2
κz∗ =

∫ I∗

0

dX√
1 − X2 − 2

2 + b
εb(1 − X2+b)

. (2.15)

Substitution of the surface condition I∗ = 1 at z∗ = 1 into (2.15) gives

π

2
κ =

∫ 1

0

dX√
1 − X2 − 2

2 + b
εb(1 − X2+b)

. (2.16)

The above two equations suggest I∗ = I∗(z∗, κ, b) and ε = ε(κ, b). With (2.14) and (2.16),
the stopping height hstop can be determined by prescribing the flow-arrest condition ε = 0,
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given by

κε=0 = 2
√

BIloc(θ)b/2hstop

πl
= 1. (2.17)

By using (2.2) to replace Iloc in (2.17), the stopping height is expressed in terms of r(θ) as

hstop = πl
2
√

r(θ)
. (2.18)

As a result, the relation (2.14) can be rewritten as

κ = h
hstop(θ)

, (2.19)

which reveals that κ is the ratio of the flow height to the stopping height.

2.3. Determination of b
The parameter b is determined by comparing the mean velocity relation with the
phenomenological observation. The mean velocity is evaluated by integrating the local
velocity over the depth divided by the flow height, ū = (1/h)

∫ h
0 u(z) dz. By exploiting

integration by parts and assuming a no-slip condition at the bottom, u = 0 at z = 0,

ū = 1
h
(z − h)u

∣∣∣∣
h

0
− 1

h

∫ h

0
(z − h)

du
dz

dz = 1
h

∫ h

0
(h − z)

du
dz

dz. (2.20)

By replacing du/dz with I using (1.1)

ū =
√

φg cos θ

Dh

∫ h

0
I(h − z)3/2 dz. (2.21)

In terms of the normalised quantities (2.12a–c), the above equation can be rewritten as

Fr =
√

φ cos θ
h
D

Iloc(θ)ε(κ, b)

∫ 1

0
I∗(z∗, κ, b)(1 − z∗)3/2 dz∗, (2.22)

where Fr ≡ ū/
√

gh is the Froude number. Note that the
√

cos θ term can be treated as a
constant since it varies slightly within the steady flow range (Jop et al. 2005). With the
help of (2.2), (2.18) and (2.19), (2.22) can be manipulated to be

Fr =
√

φ cos θ

(
2
√

BD
πl

)−2/b [
D

hstop(θ)

]2/b−1

κε(κ, b)Q(κ, b), (2.23)

where

Q =
∫ 1

0
I∗(z∗, κ, b)(1 − z∗)3/2 dz∗. (2.24)

There has been substantial experimental and numerical evidence showing that the Froude
number is one to one with the height ratio h/hstop over a wide range of h/hstop (Pouliquen
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1999; Silbert et al. 2003; Deboeuf et al. 2006; Aranson et al. 2008; Malloggi et al. 2015).
To be consistent with this observation,

b = 2, (2.25)

has to be selected such that Fr depends on κ only

Fr = α0κε(κ)Q(κ), (2.26)

with

α0 = πl
2D

√
φ cos θ

B
. (2.27)

The above analysis significantly demonstrates that the choice of b = 2, leading to the
cubic term in the Landau–Ginzburg equation (2.1), is crucial to reproducing the observed
mean flow characteristic. This explains why the common formulation with a quadratic
dissipative term fails to yield the one-to-one Fr − κ relation (Kamrin & Henann 2015).
Note that the previous study by Lee & Yang (2017) employed scaling analysis to derive
the same result (2.25) to reproduce the Bagnold scaling in the dense inertial regime. In
contrast, the mean velocity analysis adopted here is not limited to a specific flow regime,
indicating that the cubic term in the Landau–Ginzburg equation is a general result valid
across the quasi-static and the dense inertial regime.

2.4. Exact solutions of the internal flow profiles
With b = 2, (2.15) and (2.16) reduce to

π

2
κz∗ =

∫ I∗

0

dX
√

1 − X2
√

1 − 1
2ε2(1 + X2)

, (2.28)

and
π

2
κ =

∫ 1

0

dX
√

1 − X2
√

1 − 1
2ε2(1 + X2)

, (2.29)

respectively, which can be further manipulated to yield

π

2

√
1 − 1

2
ε2κ = K

⎛
⎝

√
ε2

2 − ε2

⎞
⎠ , (2.30)

and

z∗K

⎛
⎝

√
ε2

2 − ε2

⎞
⎠ = F

⎛
⎝I∗;

√
ε2

2 − ε2

⎞
⎠ . (2.31)

Here, K(
√

ε2/(2 − ε2)) and F(I∗;
√

ε2/(2 − ε2)) are the complete and incomplete elliptic
integrals of the first kind, respectively (Abramowitz & Stegun 1964). Equation (2.30)
indicates that ε is a function of κ only. On the other hand, (2.31) describes the cross-depth
profiles of the normalised inertial number I∗, whose shapes depend on ε and hence κ .

The exact solutions (2.30) and (2.31) reveal that the internal flow rheology evolves with
the height ratio κ . Figure 1 plots the profile of ε vs κ . It shows that, as κ increases from
unity, Is monotonically increases from zero and eventually saturates to Iloc. Figure 2(a)
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Figure 1. Profile of ε vs κ given by (2.30).
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(b)(a) (c)

Figure 2. Depth profiles of (a) the inertial number I normalised by the surface magnitude Is, (b) the inertial
number I rescaled by the local rheology Iloc at θ = 32.2◦, where the functional form and the parameters
in Iloc are obtained in § 3, and (c) downslope velocity u normalised by the surface magnitude; (a–c) κ =
1.004, 1.111, 1.987, 3.736, 5.81, 13.07. Dashed line: the Bagnold profile given by (2.33).

displays the cross-depth profiles of I/Is at various κ . For a very thick flow as κ � 1, the
profile is nearly uniform except at the very bottom where a boundary layer with large
gradients of I forms to conform to the solid-phase bottom. According to the ε − κ profile
shown in figure 1, the values of I in the uniform region approximate Iloc. This indicates
that very thick flows fall into the regime dominated by local rheology. On the other hand,
for a thin flow with κ � 1, the profiles of I are non-uniform across the layer. This case
corresponds to the regime dominated by non-local effects, where the solid-phase bottom
strongly correlates with the rheology throughout the depth. The transition between the
local and the non-local features of the two regimes can be further illustrated by plotting
the cross-depth profiles of I/Iloc at a particular slope angle θ in figure 2(b). This shows
that as κ is increased, the profiles gradually collapse onto the uniform distribution I/Iloc =
1, while when κ is decreased to unity, the profile gradually vanishes. The above results
provide physical insights into how the flow height controls the flow-to-no-flow transition:
as the flow becomes thinner, the non-local transport capability is progressively enhanced,
causing the bottom solid phase to spread and diminish fluidisation over the entire domain.
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Analytic inclined flow rule

Note that similar transitions in the inertial number profiles have been predicted by the
numerical solutions of the I-based Landau–Ginzburg equation with a hysteretic bistability
term reported in Lee & Yang (2017). This suggests that the hysteresis effect does not
significantly influence the non-local flow behaviour. However, the hysteresis effect can
result in sudden-jump transitions between flow and arrest (Pouliquen & Forterre 2002; Lee
& Yang 2017; Edwards et al. 2019; Mowlavi & Kamrin 2021), which cannot be captured
by the non-hysteresis exact solutions (2.30) and (2.31) which predict the transition to be
smooth.

The rheological features of the locality- and the non-locality-dominated regime is also
reflected in the shapes of the velocity profiles. With the no-slip bottom, the velocity
is evaluated by u = ∫ z

0 (du/dz) dz̃. By replacing du/dz with I and using the normalised
quantities (2.12a–c), the velocity is derived to be

u =
√

φgh3 cos θ

D
Iloc(θ)

∫ z∗

0
I∗(z̃, κ)(1 − z̃)1/2 dz̃. (2.32)

Figure 2(c) displays the normalised velocity profiles given by (2.30), (2.31) and (2.32)
for the values of κ corresponding to those in figure 2(a). For the large values of κ in
the locality-dominated regime, the velocity profiles collapse onto the Bagnold profile
(obtained by setting I∗ = 1 in (2.32)), i.e.

uBag = 2
3

√
φgh3 cos θ

D
Iloc(θ)[1 − (1 − z∗)3/2], (2.33)

plotted as the dashed line in figure 2(c). In the non-locality-dominated regime with κ close
to unity, the profile shapes become noticeably concave near the bottom, characterising
creep-flow behaviours. The predicted shape transition is qualitatively consistent with the
simulation findings of inclined-plane flows of polyhedral irregular grains (Azéma et al.
2012). Similar theoretical predictions of the velocity shapes have been reported in the
previous Landau–Ginzburg modelling studies (Kamrin & Henann 2015; Lee & Yang
2017).

Note that, in the locality-dominated regime with a vanishing boundary layer as ε → 1
and I∗ → 1, the Pouliquen flow rule is obtained from (2.26), given by

ū√
gh

= 2
5
α0

h
hstop(θ)

. (2.34)

This demonstrates that the flow with a highly dissipative bottom considered here can be
captured by the Pouliquen flow rule when it is sufficiently thick. However, this situation
takes place when κ � 10, according to the fact that the boundary layer thickness of I
is predicted to be approximately one tenth of the flow height at κ ≈ 10 as shown in
figure 1(b). This result agrees with the observation that the Pouliquen flow rule does not
emerge within the typical experimental ranges for sandy flows, 1 < κ < 20 (GDR-Midi
2004; Deboeuf et al. 2006; Börzsönyi & Ecke 2007; Aranson et al. 2008; Malloggi et al.
2015), which should fall in the non-locality-dominated regime.

2.5. Asymptotic solution for the flow rule
In the non-locality-dominated regime as κ → 1, the asymptotic solution of the mean flow
rule (2.26) is sought as follows. In this limit, since ε2 → 0 as κ → 1 according to (2.30),
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(2.28) can be asymptotically expanded in terms of ε2, resulting in

π

2
κz∗ =

∫ I∗

0

dX√
1 − X2

+ ε2

4

∫ I∗

0

1 + X2
√

1 − X2
dX + O(ε4). (2.35)

After evaluating the integrals, the equation becomes

π

2
κz∗ = sin−1(I∗) + ε2

8
[3 sin−1(I∗) − I∗√1 − I∗2] + O(ε4). (2.36)

By inserting the free-surface condition I∗ = 1 at z∗ = 1 into (2.36), an asymptotic relation
for κ(ε) is then obtained, given by

κ − 1 = 3
8ε2 + O(ε4), (2.37)

which indicates an asymptotic relation for ε in terms of κ − 1

ε2 = 8
3 (κ − 1) + O[(κ − 1)2]. (2.38)

To evaluate the integral relation (2.24) for Q, the explicit solution of I∗ is derived as
follows. First, (2.36) is rewritten as

I∗ = sin
(

4π

8 + 3ε2 κz∗ + ε2

8 + 3ε2 I∗√1 − I∗2 + O(ε4)

)
. (2.39)

By replacing ε2 with κ − 1 given by the relation (2.38), the above equation reduces to

I∗ = sin
(

π

2
z∗ + 1

3
κ − 1

κ
I∗√1 − I∗2 + O[(κ − 1)2]

)
, (2.40)

which can be expanded in terms of κ − 1 to yield

I∗ = sin
(π

2
z∗

)
+ 1

3
(κ − 1) cos

(π

2
z∗

)
I∗√1 − I∗2 + O[(κ − 1)2]. (2.41)

According to the leading-order behaviour I∗ ∼ sin(πz∗/2), (2.41) can then be
asymptotically reduced to

I∗ = sin
(π

2
z∗

)
+ 1

3
(κ − 1) sin

(π

2
z∗

)
cos2

(π

2
z∗

)
+ O[(κ − 1)2]. (2.42)

Substitution of (2.42) into (2.24) gives

Q =
∫ 1

0
sin

(π

2
z∗

)
(1 − z∗)3/2 dz∗

+ 1
3
(κ − 1)

∫ 1

0
sin

(π

2
z∗

)
cos2

(π

2
z∗

)
(1 − z∗)3/2 dz∗ + O[(κ − 1)2]. (2.43)

After evaluating the integrals, Q is derived to be

Q ≈ 0.1625 + 0.03227(κ − 1) + O[(κ − 1)2]. (2.44)

Substitution of (2.38) and (2.44) into (2.26) yields an asymptotic relation for Fr in terms
of κ − 1, given by

Fr = α0C0(κ − 1)1/2[1 + C1(κ − 1) + O[(κ − 1)2]], (2.45)
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Figure 3. The stopping height hstop vs the tangent of slope angle θ . Symbols: experimental data in Malloggi
et al. (2015). Solid line: the fit function (3.1).

where C0 = 0.265 and C1 = 0.407. Finally, the analytical solution of the flow rule (2.45)
to the (κ − 1)3/2-order can be explicitly expressed in terms of u/

√
gh and h/hstop as

ū√
gh

= α0C0

(
h

hstop(θ)
− 1

)1/2 [
1 + C1

(
h

hstop(θ)
− 1

)]
. (2.46)

Note that α0 is to be determined by fitting of the solution (2.46) to empirical data.

3. Comparison with empirical data

The analytical solutions are compared with experimental measurements of inclined-plane
flow for sand reported in Malloggi et al. (2015). In the experiment, the material is
Fontainebleau sand of a narrow size distribution around D = 312 ± 60 μm, and the width
of the plane was around 1200 times larger than the grain size, so the lateral wall effects
can be neglected, justifying the use of the current two-dimensional solutions. Figure 3
shows the experimental measurement of the scaled stopping height hstop/D vs tan θ (open
circles), which is well fitted by the function (solid line)

hstop

D
= A

μ2 − tan θ

tan θ − μc
, (3.1)

where the fit parameters are μc = 0.559, μ2 = 1.423 and A = 0.73. By comparing the fit
function (3.1) with (2.18), l/D = (2/π)A = 0.465 is obtained and the functional form of
r(μ) is determined in replacement of tan θ with μ, given by

r(μ) =

⎧⎪⎪⎨
⎪⎪⎩

(
μ − μc

μ2 − μ

)2

for μ > μc,

−
(

μ − μc

μ2 − μ

)2

for μ < μc.

(3.2)
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Figure 4. The Froude number ū/
√

gh vs the height ratio h/hstop. Solid line: analytical solution (2.46). Dashed
line: numerical solution solved from (2.26), (2.30) and (2.31). Symbols: experimental data in Malloggi et al.
(2015), where the legend shows the corresponding symbols to different slope angles. Inset: the relative error of
the predicted Froude number between the analytical and numerical solutions vs h/hstop.

According to (2.2), the local μ(I) rheology for sand is obtained as

μ = μc + (μ2 − μc)
I

I0 + I
, (3.3)

where I0 = B−1/2 is a characteristic inertial number. Note that this form is identical to
the typical μ(I) function used for glass beads determined by the Pouliquen flow rule (Jop
et al. 2005). Yet it should be noted that the form of the μ(I) function varies if a different
fit function other than (3.1) is used.

Figure 4 shows the experimental measurement (open circles) and the analytical
prediction (2.46) (solid line) for u/

√
gh vs h/hstop, where the

√
cos θ term in the relation

for α0 (2.27) is calculated with the average angle θ = 42.05◦ of the minimum tan−1(μc)
and the maximum tan−1(μ2). As can be seen, the flow rule (2.45) quantitatively captures
the experimental data over the experimental range with the fitted value of α0 = 0.4742.
Using the relation (2.27) and taking φ = 0.6 for dense flows as commonly adopted (Jop
et al. 2005), along with the fitted values of α0 and l/D, the parameter B = 0.248 and hence
I0 = 2.025 in the local rheology (2.2) is finally determined.

To assess the validity of the asymptotic approximations, the analytical solution (2.45)
is compared with the numerical solution solved from (2.26), (2.30) and (2.31) using the
material parameters given by the forgoing fitting. The deviation between the two solutions
is quantified by the relative error of the Froude number, |(Frnum − Franaly)/Frnum|, as a
function of h/hstop. As shown in figure 4, the analytical solution (solid line) and the
numerical solution (dashed line) show a good quantitative agreement with slight deviations
due presumably to the neglected higher-order effects in the current analysis. Nonetheless,
the inset of figure 4 reveals that the relative error is below 7 % over the investigated range,
justifying the asymptotic approximations.

Figure 5 compares the obtained local μ(I) rheology for sand (solid line) and that for
glass beads (dashed line) proposed in Jop et al. (2005) with the parameters μc = 0.382,
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Figure 5. The local μ(I) rheology for sand (sold line) and glass beads (dashed line). Symbols: simulation
data for polyhedral grains in Azéma et al. (2012).

μ2 = 0.644 and I0 = 0.279. The result shows that the μ values for sand are higher than
those for glass beads across the entire range of I. This difference can be attributed to the
angularity of sand grains which enhances bulk frictional resistance. Similar enhancements
in bulk friction due to angularity effects have been reported for non-spherical grains in
other flow configurations (Mandal & Khakhar 2016; Salerno et al. 2018; Fazelpour, Tang
& Daniels 2022). To further validate the obtained rheological law, it is compared with
the data of contact dynamic simulation from Azéma et al. (2012) for inclined-plane flows
of polyhedral grains, which share similar geometric characteristics with sand grains. The
simulation evaluated μ and I by extracting the internal flow data far from the surface and
bottom to avoid non-locality near the boundaries. Figure 5 shows that the magnitude of
μ in the theoretical prediction for sand and the simulation results for polyhedra (symbols)
are comparable, with slight deviations likely stemming from differing grain properties and
angularity.

Furthermore, figure 5 shows that μ saturates to its maximum value μ2 at larger I for sand
than for glass beads, arising from the larger characteristic I0 for the former. The saturation
has been known to indicate the transition from the dense inertial to the collisional regime
(Forterre & Pouliquen 2008), suggesting that generating a collisional flow of sand requires
imposing a higher deformation rate than glass beads as other flow conditions are fixed.
This finding aligns with the simulation results of Azéma et al. (2012), showing flows of
polyhedral grains enter the collisional regime at larger I than flows of spheres. It may result
from an angularity effect that limits the degree of freedom for irregular grains to undergo
collisional interactions.

4. Conclusion

In this study, an inclined flow rule has been analytically established to determine the
rheology of granular materials with strong non-local effects. The Landau–Ginzburg model
based on the inertial-number approach has been formulated to describe the non-local
rheology. By analysing the mean velocity property, an important finding is that the
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dissipative term in the Landau–Ginzburg equation must take the form of a cubic term
to account for the one-to-one relationship between Fr and h/hstop observed in extensive
experiments and simulations. It is emphasised that this result is valid for all flow regimes,
generalising the scaling analysis in Lee & Yang (2017) in which the same result is obtained
but limited to the dense inertial regime. The resulting model allows for obtaining of
the exact solutions of the inertial number, expressed in the forms of the complete and
incomplete elliptic integrals of the first kind. The solutions have been shown to account for
how the internal flow evolves from the locality- to the non-locality-dominated regime and
leads to the flow arrest when the flow height is reduced. Through asymptotic expansions
in the non-locality-dominated regime, these solutions are reduced to yield the analytical
flow rule model (2.46). By comparing the flow rule with the literature experimental data
on sand, the control function r(μ) and the model parameters l, B and α0 are determined.
These results establish the local μ(I) rheological law for sand, showing consistently higher
μ than the magnitudes of glass beads due presumably to the angularity effect. It is worth
noting that the obtained μ(I) relation can also be employed to develop other types of
non-local models based on the inertial-number rheology (Bouzid et al. 2013; Kamrin &
Henann 2015). Hence, the proposed flow rule (2.46) provides an effective approach for
determining granular rheology with significant non-local effects, which cannot be achieved
using the classical Pouliquen flow rule limited to the locality-dominated regime.

The current analysis can be extended to the case of glass beads by considering a more
sophisticated bottom flow condition beyond the solid-phase assumption. As mentioned in
the introduction, glass bead flows revert to the Pouliquen flow rule once the flow height
slightly exceeds the stopping height (Pouliquen 1999; Silbert et al. 2003; Deboeuf et al.
2006). This indicates that the non-locality-dominated regime for glass beads is rather
narrow, implying that the bottom flow drastically transitions from a solid jammed state
to a Bagnold shearing state. To capture this phenomenon and the resulting inclined flow
dynamics, further investigation is warranted to develop an effective bottom boundary
condition describing the jammed-to-shearing transition.
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