Bull. Aust. Math. Soc. 107 (2023), 95–101 doi[:10.1017/S0004972722000697](http://dx.doi.org/10.1017/S0004972722000697)

A CHARACTERISATION OF MATRIX RING[S](#page-0-0)

$\bm{\text{DIMPLE}}$ $\bm{\text{DIMPLE}}$ $\bm{\text{DIMPLE}}$ RANI GOYAL and DINESH KHURANA $\bm{\mathbb{G}}^{\boxtimes}$

(Received 19 March 2022; accepted 9 June 2022; first published online 8 August 2022)

Abstract

We prove that a ring *R* is an $n \times n$ matrix ring (that is, $R \cong M_n(S)$ for some ring *S*) if and only if there exists a (von Neumann) regular element *x* in *R* such that $l_R(x) = Rx^{n-1}$. As applications, we prove some new results, strengthen some known results and provide easier proofs of other results. For instance, we prove that if a ring *R* has elements *x* and *y* such that $x^n = 0$, $Rx + Ry = R$ and $Ry \cap l_R(x^{n-1}) = 0$, then *R* is an $n \times n$ matrix ring. This improves a result of Fuchs [A characterisation result for matrix rings', *Bull. Aust. Math. Soc.* 43 (1991), 265–267] where it is proved assuming further that the element *y* is nilpotent of index two and $x + y$ is a unit. For an ideal *I* of a ring *R*, we prove that the ring $\binom{R}{R}$ is a 2×2 matrix ring if and only if *^R*/*^I* is so.

2020 *Mathematics subject classification*: primary 16U99; secondary 16S50. *Keywords and phrases*: matrix ring, nilpotent element, unit, idempotent, annihilator.

1. Introduction

Throughout, rings will contain an identity but may not be commutative. For any element *x* of a ring, we assume $x^0 = 1$.

Conditions on elements of a ring so that it is a matrix ring have a long history. For instance, Robson [\[11,](#page-6-0) Theorem 2.2] proved that a ring *R* is an $n \times n$ matrix ring if and only if there exist elements *x*, $a_1, a_2, \ldots, a_n \in R$ satisfying the conditions $x^n = 0$ and $a_1x^{n-1} + xa_2x^{n-2} + \cdots + x^{n-1}a_n = 1$. Later, Lam and Leroy [\[10,](#page-6-1) Theorem 4.1] gave a number of conditions similar to Robson's condition. Fuchs [\[4,](#page-6-2) Theorem 1] proved that for $n \ge 2$, R is an $n \times n$ matrix ring if and only if there exist elements $x, y \in R$ such that $x^n = 0$, $y^2 = 0$, $x + y$ is a unit and $Ry \cap l_R(x^{n-1}) = 0$. In [\[1,](#page-6-3) Theorem 1.7] Agnarsson *et al.* proved that *R* is an $(m + n) \times (m + n)$ matrix ring, for some positive integers *m* and *n*, if and only if there exist *a*, *b*, $x \in R$ such that $x^{m+n} = 0$ and $ax^m + x^n b = 1$. They called this a three-element relation and showed in [\[1,](#page-6-3) Theorem 2.1] that it does not work if we take $a = b$. There is a nice exposition of such results in [\[9,](#page-6-4) Ch. 7].

In the main result of this paper, we prove that *R* is an $n \times n$ matrix ring if and only if there exists a (von Neumann) regular element *x* such that $l_R(x) = Rx^{n-1}$, where

The work of the first author is supported by a UGC grant and will form a part of her Ph.D. dissertation under the supervision of the second author.

[©] The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

 $l_R(x) = {a \in R : ax = 0}$. Our condition is easier to verify as, unlike most of the conditions in the literature, it involves only one element *x*. This is also evidenced by the various applications of our main result in Section [3.](#page-3-0) In addition to proving some new results, we also provide easier proofs of some of the known results. For instance, we prove that the condition $y^2 = 0$ in Fuchs' theorem cited above is extraneous and the condition $x + y$ is a unit can be replaced with the weaker condition $Rx + Ry = R$. We also prove that if *I* is an ideal of ring *R*, then $\binom{R}{R}$ is a 2 × 2 matrix ring if and only if *R*/*I* is. This explains why for $H = \mathbb{Z}\langle i, j, k \rangle$, the integer quaternion ring, and *n* an odd integer, the ring $\left(\frac{H}{H} \frac{nH}{H}\right)$ is a 2 × 2 matrix ring as proved by Robson [\[11,](#page-6-0) Theorem 1.5] and Chatters [\[3,](#page-6-5) Theorem 2.4]. We also give easier proofs of the results of Agnarsson *et al.* [\[1\]](#page-6-3) and Robson [\[11\]](#page-6-0) (see Theorems [3.4](#page-5-0) and [3.6\)](#page-5-1).

2. Main result

In this section, we prove the main result of the paper (Theorem [2.4\)](#page-2-0). We first list some well-known facts. Recall that an element $x \in R$ is called regular if $x \in xRx$.

LEMMA 2.1. *For a regular element* $x \in R$ *, the following conditions are equivalent:*

- (i) $x \in R$ *is unit-regular*;
- (ii) *as left R-modules,* $R/Rx \cong l_R(x)$ *;*
(iii) *if* $Rx + Ry = R$ *for some* $y \in R$ *, th*
- (iii) *if* $Rx + Ry = R$ *for some* $y \in R$ *, then there exists an* $r \in R$ *such that* $x + ry$ *is a unit (that is, the stable range of x is one).*

PROOF. Proof of the equivalence of conditions (i) and (iii) can be found in [\[7,](#page-6-6) Theorem 3.5] and that of (i) and (ii) in [\[6,](#page-6-7) Theorem 4.1] (although the result is proved globally, the same proof works elementwise).

LEMMA 2.2 (See [\[8,](#page-6-8) Proposition 21.20]). *For two idempotents e and f of a ring R the following conditions are equivalent:*

- (1) $eR \cong fR$ as right R-modules;
- (2) *Re* \cong *Rf as left R-modules;*
- (3) *there exist elements a,* $b \in R$ *such that* $ab = e$ *and* $ba = f$ *.*

In this case, we will call the idempotents e and f isomorphic.

LEMMA 2.3. Let $x \in R$, m , n be positive integers and i, *j* be nonnegative integers such *that* $i + j = n + m$ *. Then the following hold:*

- (1) $l_R(x^m) = Rx^n$ *implies that* $l_R(x^i) = Rx^j$;
- (2) 1 ∈ $Rx^m + x^nR$ implies that $1 ∈ Rx^i + x^jR$.

PROOF. (1) Suppose $l_R(x^m) = Rx^n$. It is enough to show that $l_R(x^{m-1}) \subseteq Rx^{n+1}$ if $m > 1$ and $l_R(x^{m+1}) \subseteq Rx^{n-1}$ if $n > 1$.

Suppose $m > 1$ and $k \in l_R(x^{m-1}) \subseteq l_R(x^m) = Rx^n$. Then $k = rx^n$ for some $r \in R$. Now $0 = kx^{m-1} = rx^{n}x^{m-1} = rx^{n-1}x^{m}$, so $rx^{n-1} \in l_{R}(x^{m}) = Rx^{n}$. If $rx^{n-1} = sx^{n}$ for some $s \in R$, then $k = rx^n = sx^{n+1}$.

Now suppose $n > 1$ and $t \in l_R(x^{m+1})$. Then $tx \in l_R(x^m) = Rx^n$ implies that $tx = bx^n$ for some $b \in R$. Then $t - bx^{n-1} \in l_R(x) \subseteq l_R(x^m) = Rx^n$. Thus, $t \in Rx^{n-1}$.

(2) Suppose $1 \in Rx^m + x^nR$. It is enough to show that $1 \in Rx^{m+1} + x^{n-1}R$ assuming $n > 1$. If $1 = rx^m + x^n s$, for some $r, s \in R$, then

$$
1 = rx^{m-1}(rx^{m} + x^{n}s)x + x^{n}s = rx^{m-1}rx^{m+1} + rx^{m}x^{n-1}sx + x^{n}s
$$

= $rx^{m-1}rx^{m+1} + (1 - x^{n}s)x^{n-1}sx + x^{n}s \in Rx^{m+1} + x^{n-1}R.$

THEOREM 2.4. A ring R is an $n \times n$ matrix ring if and only if there exists a regular *element x in R such that* $l_R(x) = Rx^{n-1}$. *Moreover, if a regular element x with* $l_R(x) =$ Rx^{n-1} *exists, then* $R \cong \mathbb{M}_n(\text{End}_R(Rx^{n-1}))$ *.*

PROOF. Suppose $R \cong M_n(S)$ for some ring *S*. Let $x = E_{21} + E_{32} + \cdots + E_{n,n-1}$. It is easy to see that *x* is regular and $l_R(x) = Rx^{n-1}$.

Conversely, suppose that $x \in R$ is regular and $l_R(x) = Rx^{n-1}$. By Lemma [2.3\(](#page-1-0)1), $l_R(x^{n-1}) = Rx$. Thus,

$$
R/Rx = R/l_R(x^{n-1}) \cong Rx^{n-1} = l_R(x).
$$

It follows that *x* is unit-regular by Lemma [2.1.](#page-1-1) As *x* is regular, there exists $a \in R$ such that $x = xax$. As $Rx \oplus R(1 - ax) = R$, by Lemma [2.1,](#page-1-1) there exists $y \in R(1 - ax)$ and a unit *u* such that $x + y = u^{-1}$. Since $y \in R(1 - ax)$ and $Rx \cap R(1 - ax) = 0$, it follows that $Rx \cap Ry = 0$. Also, $l_R(x^{n-1}) = Rx$, so $Ry \cap l_R(x^{n-1}) = 0$. Now $ux + uy = 1$ implies that $\forall uv - v = -\forall ux \in Rv \cap Rx = 0$. So

$$
0 = yux^{n-1} = yu(ux+uy)x^{n-1} = yu^2yx^{n-1} \Rightarrow yu^2y \in Ry \cap l_R(x^{n-1}) = 0.
$$

This also implies that $0 = \gamma u^2 v = \gamma u \nu v = \gamma u (1 - u x)$. Since $\gamma u x = 0$,

$$
0 = yu(1 - ux)x = yu^2x^2.
$$

If $n - 1 \geq 2$, then

$$
0 = yu^{2}x^{n-1} = yu^{2}(ux+uy)x^{n-1} = yu^{3}yx^{n-1} \Rightarrow yu^{3}y \in Ry \cap l_{R}(x^{n-1}) = 0.
$$

This also implies that $0 = \nu u^3 v = \nu u^2 u v = \nu u^2 (1 - u x)$. As $\nu u^2 x^2 = 0$,

$$
0 = yu^2(1 - ux)x^2 = yu^3x^3.
$$

Proceeding similarly, for every $i \ge 1$ and $j \ge 2$,

$$
yu^ix^i = 0
$$
 and $yu^jy = 0$.

Now $1 = vu + xu = vu + x(vu + xu)u = vu + xvu^2 + x^2u^2 = vu + xvu^2 + x^2(vu + xu)u^2$ $=$ $\gamma u + x \gamma u^2 + x^2 \gamma u^3 + x^3 u^3$. As $x^n = 0$, proceeding similarly, we will finally have

$$
yu + xyu^{2} + x^{2}yu^{3} + \cdots + x^{n-1}yu^{n} = 1.
$$

As $yu^i x^i = 0$ and $yu^j y = 0$, for every $i \ge 1$ and $j \ge 2$, it is clear that

$$
\{yu, xyu^2, x^2yu^3, \ldots, x^{n-1}yu^n\}
$$

is a complete set of pairwise orthogonal idempotents. Finally, we show that all these idempotents are isomorphic and $Ryu \cong Rx^{n-1}$. As $yu^2y = 0$, by Lemma [2.2,](#page-1-2)

$$
xyu^2 \cong yu^2x = yuux = yu(ux + uy) = yu.
$$

As $yu^3y = 0$, by Lemma [2.2,](#page-1-2)

$$
x^2 y u^3 \cong xy u^3 x = xy u^2 (uy + ux) = xy u^2.
$$

Similarly, we see that all of these idempotents are isomorphic. Thus, $R \cong \mathbb{M}_n(S)$ for some ring $S \cong \text{End}_R(Ryu)$. We finally show that $Ryu \cong Rx^{n-1}$. Note that $x^{n-1}yu^nR =$ $x^{n-2}xyR = x^{n-2}xR = x^{n-1}R$ implies that $Rx^{n-1}yu^n \cong Rx^{n-1}$. And so $Ryu \cong Rx^{n-1}yu^n \cong$ *Rx^{n−1}*. □

REMARK 2.5. It is not difficult to write down matrix units of *R* in the previous result provided we know the elements *y* and *u*. If we put $e_i = x^{i-1} y u^i$, then, as seen above, ${e_1, e_2, \ldots, e_n}$ is a complete orthogonal set of pairwise isomorphic idempotents. If we take $E_{1i} = yu^i$ and $E_{i1} = x^{i-1}yu$, then $E_{1i}E_{i1} = e_1$ and $E_{i1}E_{1i} = e_i$. Now putting $E_{ii} = e_i$ and $E_{ii} = E_{i1}E_{1i}$, we have all the matrix units for *R* in the previous result.

COROLLARY 2.6. *A regular ring R is an n × n matrix ring if and only if* $l_R(x) = Rx^{n-1}$ *for some element* $x \in R$.

3. Applications

In this section, we give several applications of Theorem [2.4.](#page-2-0) The first part of the following result strengthens Fuchs' theorem [\[4,](#page-6-2) Theorem 1], where the result was proved assuming extra conditions $y^2 = 0$ and $x + y \in U(R)$.

THEOREM 3.1. Let R be a ring with elements x and y such that $x^n = 0$.

- (1) *If Rx* + R *y* = R and R *y* \cap $l_R(x^{n-1}) = 0$, then R is an $n \times n$ matrix ring.
- (2) *If* $Rx^{n-1} + Ry = R$ and $Ry \cap l_R(x) = 0$, then R is an $n \times n$ matrix ring.

PROOF. (1) Since $Rx \subseteq l_R(x^{n-1}), Ry + Rx = R$ and $R_y \cap l_R(x^{n-1}) = 0$,

$$
Ry \cap Rx \subseteq Ry \cap l_R(x^{n-1}) = 0
$$
 and $R = Ry + Rx \subseteq Ry + l_R(x^{n-1})$.

Thus,

$$
R = Ry \oplus Rx = Ry \oplus l_R(x^{n-1}).
$$

This implies $Rx = l_R(x^{n-1})$ and *x* is regular. So $l_R(x) = Rx^{n-1}$ by Lemma [2.3\(](#page-1-0)1) and the result follows from Theorem [2.4.](#page-2-0)

(2) As Rx^{n-1} ⊆ $l_R(x)$, so $R_y \cap Rx^{n-1}$ ⊆ $R_y \cap l_R(x) = 0$. Thus,

$$
R=Ry\oplus Rx^{n-1}.
$$

Also, as $R = Ry \oplus Rx^{n-1} \subseteq Ry + l_R(x)$ and $Rv \cap l_R(x) = 0$, so

$$
R = Ry \oplus l_R(x).
$$

Now since $R = Ry \oplus Rx^{n-1} = Ry \oplus l_R(x)$ and $Rx^{n-1} \subseteq l_R(x)$, it follows that $Rx^{n-1} = l_R(x)$ and x^{n-1} is regular. So $l_R(x^{n-1})$ is a summand of *RR*. As $Rx^{n-1} = l_R(x)$, by Lemma [2.3\(](#page-1-0)1), $l_R(x^{n-1}) = Rx$ is a summand of *RR*. So *x* is a regular element and the result follows from Theorem [2.4.](#page-2-0)

As another application, we provide a quick proof of the following result of Fuchs *et al.* [\[5,](#page-6-9) Theorem III.2].

THEOREM 3.2. If $x, y \in R$ are such that $x^2 = 0$, $y^2 = 0$ and $x + y$ is a unit, then R is a 2 × 2 *matrix ring.*

PROOF. Note that $Rx \oplus Ry = R$ implying that *x* is regular. Also, $Rx \subseteq l_R(x)$ implies that $l_R(x) + Ry = R$. If $ry \in Ry \cap l_R(x)$ and $x + y = u$, then $ryu = ry(x + y) = 0$. Thus, R *y* ∩ $l_R(x) = 0$. So $l_R(x) \oplus R$ *y* = *R* implying that $Rx = l_R(x)$. Thus the result follows from Theorem [2.4.](#page-2-0) \Box

Let $H = \mathbb{Z}\langle i, j, k \rangle$ be the integer quaternion ring and let *n* be an integer. Robson [\[11,](#page-6-0) Theorem 1.5] and Chatters [\[3,](#page-6-5) Theorem 2.4] proved that $\left(\begin{array}{cc} H & nH \\ H & H \end{array}\right)$ is a 2 × 2 matrix ring if and only if *n* is odd (see also [\[2,](#page-6-10) Question 2.9]). As another application of our main result, we prove the following general result.

THEOREM 3.3. Let I be an ideal of a ring R. Then $\binom{R}{R}$ is a 2×2 matrix ring if and *only if R*/*I is so.*

PROOF. Let $S := \begin{pmatrix} R & I \\ R & R \end{pmatrix}$. As $J = \begin{pmatrix} R & I \\ R & I \end{pmatrix}$ is an ideal of *S* and $S/J \cong R/I$, it is clear that if *S* is a 2 × 2 matrix ring then so is R/I is a 2×2 matrix ring, then so is R/I .

Conversely, suppose that $R := R/I$ is a 2×2 matrix ring. If we denote the element $a + I$ of R/I by \overline{a} , then by Theorem [2.4](#page-2-0) there exist elements $x, y \in R$ such that

$$
\overline{xyx} = \overline{x}, \quad l_{\overline{R}}(\overline{x}) = \overline{R}\overline{x}.
$$

As $l_{\overline{R}}(\overline{x}) = \overline{R(1 - xy)} = \overline{R\overline{x}}$, there exists $z \in R$ such that

$$
1 - xy - zx \in I.
$$

Note that $X = \begin{pmatrix} -x & -x^2 \\ 1 & x \end{pmatrix} \in S$ and $X^2 = 0$. We show that *X* is regular in *S* and $l_S(X) \subseteq SX$. Then it will follow from Theorem [2.4](#page-2-0) that *S* is a 2×2 matrix ring. Note that $X E_1 X =$ *X*. As 1 − *xy* − *zx* ∈ *I*,

$$
Y = E_{12} + XyE_{12} - zE_{12}X = \begin{pmatrix} -z & 1 - xy - zx \\ 0 & y \end{pmatrix} \in S.
$$

Since $X^2 = 0$ and $X E_1 X = X$, it follows that $XYX = X$, implying that *X* is regular in *S*. Lastly, suppose that $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in l_S(X)$. Now $\begin{pmatrix} a & b \\ c & d \end{pmatrix} X = 0$ implies that

$$
ax = b \in I
$$
 and $d = cx$.

So $\overline{a} \in l_{\overline{R}}(\overline{x}) = R\overline{x}$ which implies that $a - rx \in I$ for some $r \in R$. Thus,

$$
\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & ax \\ c & cx \end{pmatrix} = \begin{pmatrix} -r & a - rx \\ 0 & c \end{pmatrix} X \in SX.
$$

Suppose *n* is an odd integer. It is well known that $-1 \in \mathbb{Z}_n$ is a sum of two squares, $\int \csc^{2} x \, dx = \csc^{2} x + b^{2} = -1$ (mod *n*). If $x = i + ai + bk$ and $y = i - aj - bk$, then in *H*/*nH*,

$$
\overline{x}^2 = \overline{0}
$$
, $\overline{y}^2 = \overline{0}$ and $\overline{x} + \overline{y} = 2\overline{i} \in U(H/nH)$.

So by Theorem [3.2,](#page-4-0) H/nH is a 2×2 matrix ring and thus by Theorem [3.3,](#page-4-1) $\left(\frac{H}{H}\frac{nH}{H}\right)$ is a 2×2 matrix ring thereby retrieving the results of Robson [11] Theorem 1.51 and is a 2×2 matrix ring thereby retrieving the results of Robson [\[11,](#page-6-0) Theorem 1.5] and Chatters [\[3,](#page-6-5) Theorem 2.4].

As another application of our main result, we give a quick proof of the main result of Agnarsson *et al.* [\[1,](#page-6-3) Theorem 1.7] (see also [\[9,](#page-6-4) Theorem 17.10]).

THEOREM 3.4. *Let R be a ring and m, n be fixed positive integers. Then R is an* $(m + n) \times (m + n)$ *matrix ring if and only if there exist a, b,* $x \in R$ *such that*

$$
x^{m+n} = 0 \quad and \, ax^m + x^n b = 1.
$$

PROOF. Suppose there exist *a*, *b*, $x \in R$ such that $x^{m+n} = 0$ and $ax^m + x^n b = 1$. Clearly $Rx^m \nsubseteq l_R(x^n)$. If $r \in l_R(x^n)$, then $r = r(ax^m + x^n b) = rax^m \in Rx^m$ implying that $l_R(x^n) =$ *Rx^m*. So $l_R(x) = Rx^{m+n-1}$ by Lemma [2.3\(](#page-1-0)1). Also by Lemma 2.3(2), there exist *c*, $d \in R$ such that $cx + x^{m+n-1}d = 1$ implying that $xcx = x$. So R is an $(m + n) \times (m + n)$ matrix ring by Theorem [2.4.](#page-2-0)

Conversely, suppose that *R* is an $(m + n) \times (m + n)$ matrix ring. By Theorem [2.4,](#page-2-0) there exists a regular element $x \in R$, such that $l_R(x) = Rx^{m+n-1}$. If $xyx = x$, for some *y* ∈ *R*, then $l_R(x) = R(1 - xy) = Rx^{m+n-1}$. So 1 ∈ $Rx^{m+n-1} + xR$ and by Lemma [2.3\(](#page-1-0)2), $1 \in Rx^m + x^nR$.

REMARK 3.5. In the proof of the Theorem [3.4,](#page-5-0) we have proved that the necessary and sufficient condition of Agnarsson *et al.* [\[1,](#page-6-3) Theorem 1.7] is equivalent to that of our Theorem [2.4.](#page-2-0) In hindsight, this might be regarded as a quicker proof of Theorem [2.4.](#page-2-0) However, we have given precedence to our derivation because it is independent of the result of Agnarsson *et al.* [\[1,](#page-6-3) Theorem 1.7].

As another application of our main result, we give an easier proof of the sufficiency part of Robson [\[11,](#page-6-0) Theorem 2.2].

THEOREM 3.6. Let R be a ring and x, $a_1, a_2, \ldots, a_n \in R$ such that $x^n = 0$ and $a_1x^{n-1} + xa_2x^{n-2} + \cdots + x^{n-1}a_n = 1.$

Then R is an $n \times n$ *matrix ring.*

PROOF. On multiplying $1 = a_1x^{n-1} + xa_2x^{n-2} + \cdots + x^{n-1}a_n$ on the left by *x*, we have $x = xa_1x^{n-1} + x^2a_2x^{n-2} + \cdots + x^{n-1}a_{n-1}x \in xRx$ implying that *x* is regular. If

 $y \in l_R(x)$, then on multiplying $1 = a_1 x^{n-1} + x a_2 x^{n-2} + \cdots + x^{n-1} a_n$ on the left by *y*, we have $y = ya_1x^{n-1} \in Rx^{n-1}$. So $l_R(x) = Rx^{n-1}$ and, by Theorem [2.4,](#page-2-0) *R* is an $n \times n$ matrix ring. \Box

Acknowledgements

We are thankful to Pace P. Nielsen for two proofs of the result that −1 is a sum of two squares in \mathbb{Z}_n if *n* is odd, and for a lot of perceptive suggestions and corrections that improved the quality of the paper substantially. We are also thankful to the referee for several corrections.

References

- [1] G. Agnarsson, S. A. Amitsur and J. C. Robson, 'Recognition of matrix rings II', *Israel J. Math.* 96 (1996), 1–13.
- [2] A. W. Chatters, 'Representation of tiled matrix rings as full matrix rings', *Math. Proc. Cambridge Philos. Soc.* 105 (1989), 67–72.
- [3] A. W. Chatters, 'Matrices, idealisers, and integer quaternions', *J. Algebra* 150 (1992), 45–56.
- [4] P. R. Fuchs, 'A characterisation result for matrix rings', *Bull. Aust. Math. Soc.* 43 (1991), 265–267.
- [5] P. R. Fuchs, C. J. Maxson and G. Pilz, 'On rings for which homogeneous maps are linear', *Proc. Amer. Math. Soc.* 112 (1991), 1–7.
- [6] K. R. Goodearl, *Von Neumann Regular Rings* (Krieger, Malabar, FL, 1991).
- [7] D. Khurana and T. Y. Lam, 'Rings with internal cancellation', *J. Algebra* 284 (2005), 203–235.
- [8] T. Y. Lam, *A First Course in Noncommutative Rings*, Graduate Texts in Mathematics, 131 (Springer-Verlag, Berlin, 1991).
- [9] T. Y. Lam, *Lectures on Modules and Rings*, Graduate Texts in Mathematics, 189 (Springer-Verlag, New York, 1999).
- [10] T. Y. Lam and A. Leroy, 'Recognition and computations of matrix rings', *Israel J. Math.* 96 (1996), 379–397.
- [11] J. C. Robson, 'Recognition of matrix rings', *Comm. Algebra* 19 (1991), 2113–2124.

DIMPLE RANI GOYAL, Department of Mathematics, Panjab University, Chandigarh 160014, India e-mail: dimple4goyal@gmail.com

DINESH KHURANA, Department of Mathematics, Panjab University, Chandigarh 160014, India e-mail: dkhurana@pu.ac.in