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Abstract

For a positive integer n, let T (n) denote the set of all integers greater than or equal to n. A sum of
generalised m-gonal numbers g is called tight T (n)-universal if the set of all nonzero integers represented
by g is equal to T (n). We prove the existence of a minimal tight T (n)-universality criterion set for a sum
of generalised m-gonal numbers for any pair (m, n). To achieve this, we introduce an algorithm giving all
candidates for tight T (n)-universal sums of generalised m-gonal numbers. Furthermore, we provide some
experimental results on the classification of tight T (n)-universal sums of generalised m-gonal numbers.
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1. Introduction

A positive definite integral quadratic form

f = f (x1, x2, . . . , xk) =
∑

1≤i,j≤k

aijxixj (aij = aji ∈ Z)

is called universal if it represents all positive integers. Lagrange’s four-square theorem
states that the quaternary quadratic form x2 + y2 + z2 + w2 is universal. Ramanujan
[15] found all diagonal quaternary universal quadratic forms. In 1993, Conway
and Schneeberger announced the ‘15-Theorem’ which says that a (positive definite
integral) quadratic form representing all positive integers up to 15 actually represents
every positive integer. Bhargava [1] introduced an algorithm, called the escalation
method, which yields the classification of universal quadratic forms (see also [4]).
The escalation method shows that if an integral quadratic form f represents nine
integers 1, 2, 3, 5, 6, 7, 10, 14 and 15, then f is universal. Kim et al. [10] generalised
this result and proved that for any infinite set S of quadratic forms of bounded rank,
there is a finite subset S0 of S such that any (positive definite integral) quadratic form

The research of the first author was supported by the National Research Foundation of Korea (NRF)
grant funded by the Korea government (MSIT) (NRF-2019R1F1A1064037). The research of the second
author was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea
government (MSIT) (NRF-2021R1C1C2010133).
© The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical
Publishing Association Inc.

40

https://doi.org/10.1017/S0004972722000624 Published online by Cambridge University Press

http://dx.doi.org/10.1017/S0004972722000624
https://orcid.org/0000-0002-9315-3174
https://orcid.org/0000-0002-9094-3007
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0004972722000624&domain=pdf
https://doi.org/10.1017/S0004972722000624


[2] Tight universal sums 41

representing every form in S0 represents all of S. Following [11], we call such a set S0
an S-universality criterion set. An S-universality criterion set S0 is called minimal if
no proper subset S′0 of S0 is an S-universality criterion set.

For an integer m ≥ 3, we define a polynomial Pm(x) by

Pm(x) =
(m − 2)x2 − (m − 4)x

2
.

An integer of the form Pm(u) for some integer u is called a generalised m-gonal number.
A polynomial of the form

a1Pm(x1) + a2Pm(x2) + · · · + akPm(xk)

with positive integers a1, a2, . . . , ak is called a sum of generalised m-gonal numbers
or an m-gonal form. In [9], Kane and Liu proved that there is a constant γm such that
if a sum of generalised m-gonal numbers represents all positive integers up to γm,
then it represents all positive integers. By applying the escalation method to sums of
generalised m-gonal numbers, they showed the existence of such a γm and found an
asymptotic upper bound of γm in terms of m.

For each positive integer n, we define T (n) to be the set of all integers greater
than or equal to n. An m-gonal form g is called tight T (n)-universal if the set of
all nonzero integers represented by g is equal to T (n). We introduce an algorithm
giving all tight T (n)-universal m-gonal forms and provide some experimental results
from the algorithm. In Section 2, some basic notation and terminology will be
given. In Section 3, we introduce an algorithm which gives the classification of tight
T (n)-universal m-gonal forms for each given pair (m, n). This algorithm is analogous
to the escalation algorithm described by Bhargava and, when n = 1, it coincides with
the algorithm for universal m-gonal forms in [9]. In Section 4, we provide some
experimental results from the algorithm described in Section 3, including candidates
for tight T (n)-universal m-gonal forms for m = 7, 9, 10 and 11.

2. Preliminaries

For k = 1, 2, 3, . . . , we define a set N(k) to be the set of all vectors of positive
integers with length k and coefficients in ascending order, that is,

N(k) = {a = (a1, a2, . . . , ak) ∈ Nk : a1 ≤ a2 ≤ · · · ≤ ak}.

Put N = ⋃∞k=1N(k). For two vectors a ∈ N(k) and b ∈ N(s) with k ≤ s, we write

a � b (a ≺ b)

if the sequence (ai)1≤i≤k is a (proper) subsequence of (bj)1≤j≤s, where

a = (a1, a2, . . . , ak) and b = (b1, b2, . . . , bs).
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Given a vector a ∈ N(k) and a positive integer a, we define a vector a ∗ a by

a ∗ a = (a1, a2, . . . , ai, a, ai+1, ai+2, . . . , ak) ∈ N(k + 1),

where i is the maximum index satisfying ai ≤ a, that is, a ∗ a is the vector in N(k + 1)
with coefficients a1, a2, . . . , ak and a. For a ∈ N(k) and b = (b1, b2, . . . , bs) ∈ N(s), we
define a ∗ b to be the vector

a ∗ b1 ∗ b2 ∗ · · · ∗ bs ∈ N(k + s).

We identify N(1) with N, so that, for example, 3 ∗ 7 ∗ 2 ∗ 5 denotes the vector
(2, 3, 5, 7) ∈ N(4). Let S be a set of nonnegative integers containing 0 and 1 and let
n be a positive integer. For a vector a = (a1, a2, . . . , ak) ∈ N(k), we define

RS(a) = {a1s1 + a2s2 + · · · + aksk : si ∈ S} and R′S(a) = RS(a) − {0}.

Let GPm be the set of generalised m-gonal numbers, that is,

GPm = {Pm(u) : u ∈ Z}.

Then an m-gonal form

a1Pm(x1) + a2Pm(x2) + · · · + akPm(xk) (a1 ≤ a2 ≤ · · · ≤ ak)

corresponds to the pair (GPm, a), where a = (a1, a2, . . . , ak) ∈ N(k). A pair (GPm, a)
(a ∈ N(k)) will also be called a k-ary m-gonal form. Let n be a positive integer.
An m-gonal form (GPm, a) is called T (n)-universal if R′GPm

(a) ⊇ T (n) and tight
T (n)-universal if R′GPm

(a) = T (n). A tight T (n)-universal m-gonal form (GPm, a) is
called new if R′GPm

(b) � T (n) for every vector b ∈ N satisfying b ≺ a. When n = 1,
we use the expression ‘universal’ along with ‘tight T (1)-universal’ to follow the
convention.

LEMMA 2.1. Let m be an integer greater than or equal to 3 and n be a positive integer.
Then there exists a vector a such that R′GPm

(a) = T (n).

PROOF. Let b = (n, n, . . . , n) ∈ N(m) be the vector of length m with every coefficient
equal to n. By Fermat’s polygonal number theorem,

RGPm (b) = {nu : u ∈ Z≥0}.

From this, one may easily deduce that

R′GPm
(b ∗ (n + 1) ∗ (n + 2) ∗ · · · ∗ (2n − 1)) = T (n).

This completes the proof. �

3. An algorithm for tight T (n)-universal sums of m-gonal numbers

We introduce an algorithm which gives all new tight T (n)-universal m-gonal forms.
Let m be an integer ≥ 3 and n be a positive integer. For a ∈ N , we denote by Ψ(a)
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the set of integers in T (n) which are not represented by the m-gonal form (GPm, a),
that is,

Ψ(a) = Ψm,n(a) = T (n) − R′GPm
(a).

We define a function ψ = ψm,n : N → T (n) ∪ {∞} by

ψ(a) =

⎧⎪⎪⎨⎪⎪⎩
min(Ψ(a)) if Ψ(a) � ∅,
∞ otherwise.

For a vector a with ψ(a) < ∞, we define the set E(a) by

E(a) = {g ∈ Z : n ≤ g ≤ ψ(a) − n} ∪ {ψ(a)}.

Note that if ψ(a) < 2n, then E(a) = {ψ(a)}. For k = 1, 2, 3, . . . , we define subsets
E(k), U(k), NU(k) and A(k) of N(k) recursively as follows. Put E(1) = {(n)}. Define

U(k) = {a ∈ E(k) : ψ(a) = ∞}.

Let NU(k) be the set of all vectors a in U(k) such that b �
⋃k−1

i=1 U(i) for every b ∈ N
satisfying b ≺ a. Let A(k) = E(k) − U(k) and

E(k + 1) =
⋃

a∈A(k)

{a ∗ g : g ∈ E(a)}.

The algorithm terminates once A(k) = ∅.

THEOREM 3.1. With the notation given above, for a vector a ∈ N(k), a k-ary m-gonal
form (GPm, a) is new tight T (n)-universal if and only if a ∈ NU(k).

PROOF. The ‘if’ part is clear by construction. To prove the ‘only if’ part, let a ∈ N(k)
be a vector such that (GPm, a) is tight T (n)-universal. Since R′GPm

(a) = T (n), it clearly
follows that ai1 = n, where we put i1 = 1. Note that the set RGPm (ai1 ) does not contain
any positive integer less than n and it does contain 0 and all integers from n to
ψ(ai1 ) − 1. From this and ψ(ai1 ) ∈ T (n) = R′GPm

(a), one may easily deduce that there
must be an index i2 different from i1 such that

ai2 ∈ E(ai1 ) = {n, n + 1, n + 2, . . . ,ψ(ai1 ) − n} ∪ {ψ(ai1 )}.

Thus ai1 ∗ ai2 � a, where ai1 ∗ ai2 ∈ E(2). Note that ψ(ai1 ) ∈ R′GPm
(ai1 ∗ ai2 ). Assume

R′GPm
(ai1 ∗ ai2 ) � T (n) so that ψ(ai1 ∗ ai2 ) < ∞. One may easily show that there should

be an index i3 different from both i1 and i2 such that

ai3 ∈ E(ai1 ∗ ai2 ) = {n, n + 1, n + 2, . . . ,ψ(ai1 ∗ ai2 ) − n} ∪ {ψ(ai1 ∗ ai2 )}
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in a similar manner. We have ai1 ∗ ai2 ∗ ai3 ∈ E(3) by construction. Note that

ψ(ai1 ∗ ai2 ∗ · · · ∗ aij ) < ∞

for every j = 1, 2, . . . , k − 1 since otherwise, (GPm, a) cannot be new. Repeating this,
we arrive at

a = ai1 ∗ ai2 ∗ · · · ∗ aik ∈ E(k).

Since (GPm, a) is new tight T (n)-universal, one may easily see that a ∈ NU(k). This
completes the proof. �

Although the proof of the following lemma appeared in the proof of [9, Lemma
2.1], we provide it for completeness. For two positive integers d and r, we define
a set

APd,r = {dg + r : g ∈ N ∪ {0}} (⊆ N).

LEMMA 3.2. With the notation given above, there is a positive integer l = l(m, n)
depending on m and n such that A(l) = ∅.

PROOF. Let t be a positive integer greater than 4 and let a = (a1, a2, . . . , at) be a vector
in A(t) = E(t) − U(t) so that ψ(a) < ∞. Note that, for any Z-lattice L of rank ≥ 4 with
Q(gen(L)) � N,

N − Q(gen(L)) =
ν′1⋃

i=1

APd′i ,r
′
i

for some positive integers ν′1, d′i and r′i with r′i < d′i by the results in [14]. From this and
[3, Theorem 4.9] (see also [5]), one may easily deduce that

T (n) − R′GPm
(a) =

ν1⋃

i=1

APdi,ri ∪ {e1, e2, . . . , eν2}

for some nonnegative integers ν1, ν2 not both 0 and some positive integers di, ri, ej
with ej �

⋃ν1
i=1APdi,ri for all j = 1, 2, . . . , ν2. Suppose that g1 is a positive integer with

n ≤ g1 ≤ ψ(a) − n or g1 = ψ(a) so that a ∗ g1 ∈ E(t + 1). If

Q(gen(〈a1, a2, . . . , at〉)) � Q(gen(〈a1, a2, . . . , at, g1〉)),

then

T (n) − R′GPm
(a ∗ g1) =

ν3⋃

w=1

APdiw ,riw
∪ {e′1, e′2, . . . , e′ν4

},

where ν3 is an integer with

0 ≤ ν3 < ν1, (i1, i2, . . . , iν3 ) ≺ (1, 2, . . . , ν1),
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and ν4 is a nonnegative integer. When

Q(gen(〈a1, a2, . . . , at〉)) = Q(gen(〈a1, a2, . . . , at, g1〉)),

it follows that

T (n) − R′GPm
(a ∗ g1) =

ν1⋃

i=1

APdi,ri ∪ {ej1 , ej2 , . . . , ejν5
},

where ν5 is a nonnegative integer less than ν2 and (j1, j2, . . . , jν5 ) ≺ (1, 2, . . . , ν2).
Let b be a vector in A(5) = E(5) − U(5). From what we observed above, we

may define a positive integer w = w(b) to be the maximal positive integer w
satisfying

b ∗ g1 ∗ g2 ∗ · · · ∗ gi ∈ A(5 + i) − U(5 + i), gi ∈ E(b ∗ g1 ∗ g2 ∗ · · · ∗ gi−1),

for every i = 1, 2, . . . , w − 1. Since the set E(5) is finite by construction, we may
take l as

l = 5 +max{w(b) : b ∈ E(5) − U(5)}.

This completes the proof. �

We now introduce our main result which gives a natural generalisation of the
Conway–Schneeberger 15-Theorem to the case of tight T (n)-universal m-gonal
forms.

THEOREM 3.3. With the notation given above, there is a finite set CS(m, n) such that
R′GPm

(a) = T (n) if and only if R′GPm
(a) ∩ {1, 2, . . . , n − 1} = ∅ and CS(m, n) ⊂ R′GPm

(a)
for any vector a ∈ N .

PROOF. Using Lemma 3.2, we take the smallest positive integer l satisfying A(l) = ∅.
Define a finite set

CS(m, n) = {n} ∪
l−1⋃

k=1

{ψ(a) : a ∈ A(k)}.

Let a ∈ N be a vector with R′GPm
(a) ∩ {1, 2, . . . , n − 1} = ∅ such that R′GPm

(a) ⊃
CS(m, n). From the condition that R′GPm

(a) ⊃ CS(m, n), one may easily see that there
is a vector b ∈ N with b � a such that b ∈ U(k) for some k less than or equal to l. It
follows that

T (n) = R′GPm
(b) ⊆ R′GPm

(a).

This completes the proof. �

REMARK 3.4. In Theorem 3.3, the set CS(m, n) is minimal in the sense that for any
g ∈ CS(m, n), there is a vector b ∈ N such that R′GPm

(b) = T (n) − {g}. To see this,
we take b = c ∗ d, where ψ(c) = g and R′GPm

(d) = T (g + 1). The existence of such
vectors c and d follows from the definition of the set CS(m, n) and Lemma 2.1,
respectively.
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In the spirit of Remark 3.4 and [11], we may call the set CS(m, n) a minimal tight
T (n)-universality criterion set for m-gonal forms.

PROPOSITION 3.5. Let m be an integer greater than or equal to 3 and different from 5
and let n be an integer greater than 1. With the notation given above:

(i) {n, n + 1, n + 2, . . . , 2n} ⊆ CS(m, n);
(ii) E(k) = {(n, n + 1, n + 2, . . . , n + k − 1)} for k = 1, 2, . . . , n;
(iii) U(k) = ∅ (or equivalently, A(k) = E(k)) for k = 1, 2, . . . , n;
(iv) E(n + 1) = {(n, n, n + 1, n + 2, . . . , 2n − 1), (n, n + 1, n + 2, . . . , 2n − 1, 2n)}.

PROOF. Note that 2 � GPm since m � 5. For i = 1, 2, . . . , n − 1, one may easily show
that ψ(n) = n + 1 and

ψ(n, n + 1, n + 2, . . . , n + i) = n + i + 1.

The proposition follows directly from this. �

REMARK 3.6. Proposition 3.5(i), (ii) and (iii) also hold for the case of pentagonal
forms, that is, when m = 5. However, Proposition 3.5(iv) is no longer true when m = 5.
In fact, since 2 = P5(−1) ∈ GP5, we have

2n ∈ R′GP5
(n) ⊂ R′GP5

(n, n + 1, n + 2, . . . , 2n − 1),

and thus we would have ψ(n, n + 1, n + 2, . . . , 2n − 1) > 2n.

4. Some experimental results

We provide some experimental results based on the escalation algorithm for tight
T (n)-universal m-gonal forms introduced in Section 3. We first note that, in practice,
we use the set

Ψ(a) = Ψm,n(a) = {u ∈ T (n) : u ≤ 106} − R′GPm
(a)

instead of the original definition Ψ(a) = T (n) − R′GPm
(a) in the algorithm so that

{u ∈ N : n ≤ u ≤ 106} ⊂ R′GPm
(a) for all a ∈

∞⋃

k=1

U(k).

In Table 1, we give the sets CS(m, n) for some pairs (m, n). In the table, the pair
(m, n) is marked with † when the tight T (n)-universal m-gonal forms are already
completely classified so that the set CS(m, n) in the table has been proved to be equal
to the set CS(m, n) in the algorithm in Section 3.

For the classification of tight T (n)-universal m-gonal forms, we refer the reader
to [1] for (m, n) = (4, 1), [2] for (m, n) = (3, 1), [8] for (m, n) = (8, 1), [6] for (m, n) =
(5, 1), [13] for m = 4 and n ≥ 2, and [12] for the others. The tight universal m-gonal
forms are classified for m = 4, 3, and tight T (n)-universal octagonal forms for all n ≥ 2
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TABLE 1. CS(m, n) for some pairs (m, n).

m n CS(m, n)

3 1† {1, 2, 4, 5, 8}
2† {2, 3, 4, 8, 10, 16, 19}
3† {3, 4, 5, 6, 16}
≥ 4† {n, n + 1, n + 2, . . . , 2n}

4 1† {1, 2, 3, 5, 6, 7, 10, 14, 15}
2† {2, 3, 4, 6, 9, 10, 13, 15, 17, 23}
3† {3, 4, 5, 6, 13, 14, 18, 25, 35, 46}
≥ 4† {n, n + 1, n + 2, . . . , 2n}

5 1† {1, 3, 8, 9, 11, 18, 19, 25, 27, 43, 98, 109}
2 {2, 3, 9, 53, 77, 141}
3 {3, 4, 5, 22, 47, 52, 62}

4 ≤ n ≤ 6 {n, n + 1, n + 2, . . . , 2n − 1}
≥ 7† {n, n + 1, n + 2, . . . , 2n − 1}

7 1 {1, 2, 3, 5, 6, 9, 10, 15, 16, 19, 23, 31, 131}
2 {2, 3, 4, 6, 9, 10, 13, 15, 18, 27, 30, 32, 50}
3 {3, 4, 5, 6, 13, 14, 18}

4 ≤ n ≤ 10 {n, n + 1, n + 2, . . . , 2n}
≥ 11† {n, n + 1, n + 2, . . . , 2n}

8 1† {1, 2, 3, 4, 6, 7, 9, 12, 13, 14, 18, 60}
2 {2, 3, 4, 6, 8, 9, 11, 12, 14, 18}
3 {3, 4, 5, 6, 13, 14, 16, 17, 21, 22, 27, 36}
4 {4, 5, 6, 7, 8, 23, 28}

5 ≤ n ≤ 10 {n, n + 1, n + 2, . . . , 2n}
≥ 11† {n, n + 1, n + 2, . . . , 2n}

9 1 {1, 2, 3, 4, 5, 7, 8, 10, 11, 14, 16, 17, 20, 22, 23, 29, 32, 34, 69}
2 {2, 3, 4, 6, 8, 9, 10, 11, 13, 14, 16, 17, 19, 23, 25, 28, 34, 37, 58}
3 {3, 4, 5, 6, 13, 14, 16, 17, 19, 20, 21, 25, 26, 28, 38, 46, 53}
4 {4, 5, 6, 7, 8, 23, 25, 27, 28, 32, 33}

5 ≤ n ≤ 12 {n, n + 1, n + 2, . . . , 2n}
≥ 13† {n, n + 1, n + 2, . . . , 2n}

≥ 10 ≥ 2m − 5† {n, n + 1, n + 2, . . . , 2n}

are treated in [7]. In this spirit, we provide the candidates for tight T (n)-universal
pentagonal forms in the cases of n = 2, 3 in Tables 2 and 3, respectively. Note that there
is exactly one candidate for tight T (n)-universal pentagonal forms for each n = 4, 5, 6,
which is (GP5, (n, n + 1, n + 2, . . . , 2n − 1)).

For any integer m ≥ 3 and a positive integer n, we define γm,n to be the maximum
element in the set CS(m, n), as in the proof of Theorem 3.3. By Theorem 3.3,
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TABLE 2. Candidates for new tight T (2)-universal pentagonal forms (GP5, (a1, a2, . . . , ak)).

a1 a2 a3 a4 Conditions on ak (3 ≤ k ≤ 4)

2 2 3
2 3 a3 6 ≤ a3 ≤ 9, a3 � 8
2 3 3 a4 3 ≤ a4 ≤ 77, a4 � 6, 7, 9, 76
2 3 4 a4 4 ≤ a4 ≤ 141, a4 � 6, 7, 9, 140
2 3 5 a4 5 ≤ a4 ≤ 53, a4 � 6, 7, 9, 52

TABLE 3. Candidates for new tight T (3)-universal pentagonal forms (GP5, (a1, a2, . . . , ak)).

a1 a2 a3 a4 a5 Conditions on ak (4 ≤ k ≤ 5)

3 3 4 5
3 4 4 5
3 4 5 a4 6 ≤ a4 ≤ 22, a4 � 10, 15, 20, 21
3 4 5 5 a5 a5 = 5, 10, 15, 20, 21, 62 or 23 ≤ a5 ≤ 59
3 4 5 10 a5 a5 = 10, 15, 20, 21, 47 or 23 ≤ a5 ≤ 44
3 4 5 15 a5 a5 = 15, 20, 21, 52 or 23 ≤ a5 ≤ 49

TABLE 4. γm for 3 ≤ m ≤ 11.

m 3† 4† 5† 7 8† 9 10 11

γm 8 15 109 131 60 69 46 45

TABLE 5. Candidates for new universal heptagonal forms (GP7, (a1, a2, . . . , ak)).

a1 a2 a3 a4 a5 Conditions on ak (4 ≤ k ≤ 5)

1 1 1 a4 1 ≤ a4 ≤ 10, a4 � 6
1 1 2 a4 2 ≤ a4 ≤ 23
1 1 3 a4 4 ≤ a4 ≤ 5
1 2 2 a4 2 ≤ a4 ≤ 19
1 2 3 a4 3 ≤ a4 ≤ 31
1 2 4 a4 4 ≤ a4 ≤ 131
1 2 5 a4 5 ≤ a4 ≤ 10, a4 � 6
1 1 1 6 a5 a5 = 6 or 11 ≤ a5 ≤ 16
1 1 3 3 a5 a5 = 3 or 6 ≤ a5 ≤ 9
1 1 3 6 a5 6 ≤ a5 ≤ 15
1 2 5 6 a5 a5 = 6 or 11 ≤ a5 ≤ 16
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TABLE 6. Candidates for new universal nonagonal forms (GP9, (a1, a2, . . . , ak)).

a1 a2 a3 a4 a5 a6 a7 Conditions on ak (4 ≤ k ≤ 7)

1 1 1 a4 a4 = 2, 4
1 1 2 a4 2 ≤ a4 ≤ 5
1 1 3 a4 a4 = 4, 7
1 2 2 a4 a4 = 3, 4, 7
1 2 3 a4 a4 = 4, 5
1 2 4 a4 4 ≤ a4 ≤ 12, a4 � 6, 9
1 1 1 1 a5 a5 = 1, 3, 5
1 1 1 3 a5 3 ≤ a5 ≤ 17, a5 � 4, 7
1 1 3 3 a5 5 ≤ a5 ≤ 11, a5 � 6, 7
1 1 3 5 a5 5 ≤ a5 ≤ 16, a5 � 7
1 1 3 6 a5 6 ≤ a5 ≤ 14, a5 � 7
1 1 3 8 a5 8 ≤ a5 ≤ 16
1 2 2 2 a5 2 ≤ a5 ≤ 34, a5 � 3, 4, 7
1 2 2 5 a5 5 ≤ a5 ≤ 22, a5 � 7
1 2 2 6 a5 6 ≤ a5 ≤ 22, a5 � 7
1 2 3 3 a5 a5 = 3 or 6 ≤ a5 ≤ 10
1 2 3 6 a5 6 ≤ a5 ≤ 23
1 2 3 7 a5 7 ≤ a5 ≤ 17, a5 � 15
1 2 4 6 a5 a5 = 6, 9 or 13 ≤ a5 ≤ 20
1 2 4 9 a5 a5 = 9 or 13 ≤ a5 ≤ 29
1 2 4 13 a5 13 ≤ a5 ≤ 69
1 2 4 14 a5 14 ≤ a5 ≤ 34
1 1 3 3 3 a6 a6 = 6 or 12 ≤ a6 ≤ 14
1 1 3 3 6 a6 15 ≤ a6 ≤ 17
1 2 3 7 15 a6 a6 = 15 or 18 ≤ a6 ≤ 32
1 1 3 3 3 3 a7 a7 = 3, 15, 16, 17

if an m-gonal form g does not represent any integer less than n and does repre-
sent all integers from n to γm,n, then g is tight T (n)-universal. For m = 3, 4, . . . ,
we define

γm = γm,1 = max(C(m, 1)).

Now we consider universal m-gonal forms. In Table 4, γm is given for 3 ≤ m ≤ 11
and the proved cases are marked †. We provide all candidates of new universal m-gonal
forms, for m = 7, 9, 10, 11, in Tables 5–8, since the universal m-gonal forms are of
particular interest.
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TABLE 7. Candidates for new universal decagonal forms (GP10, (a1, a2, . . . , ak)).

a1 a2 a3 a4 a5 a6 a7 a8 Conditions on ak (4 ≤ k ≤ 8)

1 1 1 4
1 1 2 a4 2 ≤ a4 ≤ 5
1 2 2 a4 3 ≤ a4 ≤ 4
1 2 3 a4 a4 = 4, 6
1 2 4 a4 a4 = 4, 5, 8
1 1 1 1 a5 a5 = 2, 3, 5
1 1 1 2 6
1 1 1 3 a5 5 ≤ a5 ≤ 16
1 1 3 3 a5 a5 = 5, 8
1 1 3 4 a5 4 ≤ a5 ≤ 16
1 1 3 5 a5 5 ≤ a5 ≤ 24
1 1 3 6 a5 7 ≤ a5 ≤ 11, a5 � 9
1 2 2 2 a5 a5 = 2 or 5 ≤ a5 ≤ 8
1 2 2 5 a5 6 ≤ a5 ≤ 13
1 2 2 6 a5 7 ≤ a5 ≤ 19, a5 � 14
1 2 3 3 a5 3 ≤ a5 ≤ 11, a5 � 4, 6, 8
1 2 3 5 a5 5 ≤ a5 ≤ 16, a5 � 6
1 2 3 7 a5 7 ≤ a5 ≤ 26
1 2 3 8 a5 8 ≤ a5 ≤ 16, a5 � 12, 15
1 2 4 6 a5 6 ≤ a5 ≤ 23, a5 � 8
1 2 4 7 a5 7 ≤ a5 ≤ 39, a5 � 8
1 1 1 1 1 a6 a6 = 1, 6
1 1 1 3 3 a6 a6 = 3, 17, 18, 19
1 1 3 3 3 a6 4 ≤ a6 ≤ 12, a6 � 5, 6, 8
1 1 3 3 4 a6 17 ≤ a6 ≤ 19
1 1 3 3 6 a6 a6 = 6, 9 or 12 ≤ a6 ≤ 15
1 1 3 3 7 a6 7 ≤ a6 ≤ 19, a6 � 8
1 1 3 3 9 a6 9 ≤ a6 ≤ 18
1 1 3 6 6 a6 a6 = 9 or 12 ≤ a6 ≤ 18
1 1 3 6 9 a6 a6 = 9 or 12 ≤ a6 ≤ 24
1 1 3 6 12 a6 12 ≤ a6 ≤ 24
1 2 2 5 5 a6 a6 = 5 or 14 ≤ a6 ≤ 18
1 2 2 6 6 a6 a6 = 6, 14 or 20 ≤ a6 ≤ 25
1 2 2 6 14 a6 a6 = 14 or 20 ≤ a6 ≤ 39
1 2 3 3 8 a6 12 ≤ a6 ≤ 19, a6 � 13, 14, 16
1 2 3 8 12 a6 12 ≤ a6 ≤ 46, a6 � 13, 14, 16
1 2 3 8 15 a6 15 ≤ a6 ≤ 34, a6 � 16
1 1 3 3 3 3 a7 a7 = 6, 13, 14, 15
1 1 3 3 3 6 a7 16 ≤ a7 ≤ 18
1 1 3 6 6 6 a7 a7 = 6 or 19 ≤ a7 ≤ 24
1 1 3 3 3 3 3 a8 a8 = 3, 16, 17, 18
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TABLE 8. Candidates for new universal hendecagonal forms (GP11, (a1, a2, . . . , ak)).

a1 a2 a3 a4 a5 a6 a7 a8 Conditions on ak (4 ≤ k ≤ 8)

1 1 2 a4 a4 = 3, 4
1 2 2 4
1 2 3 4
1 2 4 a4 4 ≤ a4 ≤ 8
1 1 1 1 a5 a5 = 3, 4, 5
1 1 1 2 a5 a5 = 2, 5, 6
1 1 1 3 a5 4 ≤ a5 ≤ 7
1 1 1 4 a5 4 ≤ a5 ≤ 18
1 1 2 2 a5 a5 = 2, 5, 6, 7
1 1 2 5 a5 5 ≤ a5 ≤ 20
1 1 3 3 a5 a5 = 4, 5, 6, 9
1 1 3 4 a5 a5 = 5, 8, 9
1 1 3 5 a5 6 ≤ a5 ≤ 18
1 1 3 6 a5 6 ≤ a5 ≤ 13, a5 � 10
1 2 2 2 a5 2 ≤ a5 ≤ 9, a5 � 4
1 2 2 3 a5 3 ≤ a5 ≤ 9, a5 � 4
1 2 2 5 a5 5 ≤ a5 ≤ 14
1 2 2 6 a5 6 ≤ a5 ≤ 20, a5 � 17
1 2 3 3 a5 5 ≤ a5 ≤ 12, a5 � 6, 9
1 2 3 5 a5 5 ≤ a5 ≤ 12
1 2 3 6 a5 7 ≤ a5 ≤ 15
1 2 3 7 a5 8 ≤ a5 ≤ 38
1 2 4 9 a5 9 ≤ a5 ≤ 18
1 1 1 1 1 a6 a6 = 2, 6
1 1 1 1 2 7
1 1 1 3 3 a6 a6 = 3, 8 or 10 ≤ a6 ≤ 21
1 1 3 3 3 a6 a6 = 3, 7, 8, 11, 12, 13
1 1 3 3 7 a6 7 ≤ a6 ≤ 20, a6 � 9
1 1 3 3 8 a6 8 ≤ a6 ≤ 21, a6 � 9
1 1 3 3 10 a6 10 ≤ a6 ≤ 20
1 1 3 4 4 a6 4 ≤ a6 ≤ 21, a6 � 5, 8, 9
1 1 3 4 6 a6 a6 = 10 or 14 ≤ a6 ≤ 27
1 1 3 4 7 a6 a6 = 7 or 10 ≤ a6 ≤ 17
1 1 3 4 10 a6 10 ≤ a6 ≤ 27
1 1 3 5 5 a6 a6 = 5 or 19 ≤ a6 ≤ 23
1 1 3 6 10 a6 a6 = 10 or 14 ≤ a6 ≤ 23
1 2 2 6 17 a6 a6 = 17 or 21 ≤ a6 ≤ 37
1 2 3 3 3 a6 a6 = 9, 13, 14, 15
1 2 3 3 6 a6 a6 = 6, 16, 17, 18
1 2 3 3 9 a6 a6 = 9 or 13 ≤ a6 ≤ 21
1 2 3 6 6 a6 a6 = 6 or 16 ≤ a6 ≤ 21
1 2 3 7 7 a6 a6 = 7 or 39 ≤ a6 ≤ 45
1 1 1 1 1 1 a7 a7 = 1, 7
1 1 3 3 3 10 a7 21 ≤ a7 ≤ 23
1 2 3 3 3 3 a7 a7 = 6, 16, 17, 18
1 2 3 3 3 6 a7 19 ≤ a7 ≤ 21
1 2 3 3 3 3 3 a8 a8 = 3, 19, 20, 21
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