
/ . Austral. Math. Soc. (Series A) 28 (1979), 269-282

A LAMBDA CALCULUS WITH NAIVE SUBSTITUTION

JOHN STAPLES

(Received 14 August 1978; revised 9 April 1979)

Communicated by J. N. Crossley

Abstract

An alternative approach is proposed to the basic definitions of the classical lambda calculus. A
proof is sketched of the equivalence of the approach with the classical case. The new formulation
simplifies some aspects of the syntactic theory of the lambda calculus. In particular it provides a
justification for omitting in syntactic theory discussion of changes of bound variable.

1980 Mathematics subject classification (Amer. Math. Soc): 03 B 40.

Introduction

This paper proposes an alternative approach to the basic definitions of the lambda
calculus, and describes a natural sense in which it is equivalent to the classical
calculus.

There are two ways in which our alternative approach can be used. It could be
regarded as the basic definition of the lambda calculus, the classical notation
being regarded simply as a convenient informal notation. Alternatively, it could
be regarded as a justification for the growing tendency to ignore changes of bound
variables, in the syntactic theory of the classical lambda calculus. The author
favours the former rather than the latter view, on the grounds of simplicity, but
the work has value from both points of view.

The well-known difficulty with the classical definition of the lambda calculus, see,
for example, Hindley et al. (1972), is that the use of bound variables requires a
non-naive definition of substitution, which in turn requires a careful consideration
of changes of bound variable throughout the syntactic theory of the lambda
calculus. The situation is similar to that which arises in linear algebra when co-
ordinate-dependent arguments introduce spurious difficulties which do not occur
in a coordinate-free approach. In the case of the lambda calculus a particular
choice of bound variables for a term is like a particular choice of coordinate

269

https://doi.org/10.1017/S1446788700012210 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700012210

270 John Staples [2]

system in linear algebra. In each case the particular choice may introduce irrelevant
complications into further discussion. In each case it is desirable to have an alter-
native mode of discussion which can focus on essentials. In the case of linear
algebra the alternative is the axiomatic or geometric theory of vector spaces. In
the case of the lambda calculus alternatives have been rather neglected; it is the
purpose of this paper to give one of them.

In view of the recent growth of the model theory of the lambda calculus it is
natural to question the purpose of different, equivalent formulations of lambda
calculus syntax. Why should not freer model-thoeretic arguments replace the
syntactic approach? The answer is that for systems such as the lambda calculus
there are intrinsically syntactic questions which are of prime importance. For
example, the efficiency problem, to show how to evaluate a term with normal
form in a minimum number of steps, is a purely syntactic question because the
model theory of the lambda calculus does not distinguish between a term with
normal form and its normal form. The efficiency problem is important as a model
of a significant problem in the compilation of computer programs. One of the
motivations for the development of the current work was to simplify the arguments
about efficient evaluation which are given in Staples (1979).

There have been other attacks on the irrelevant complications caused by bound
variables. O'Donnell (1976) modified the conventional definition of the lambda
calculus in a minimal way, by introducing separate sets of free and bound variables
and by insisting that the choice of bound variable for a particular binding in a
term should be determined by the position in that term of the binding. Although
O'DonneU's approach is adequate for his purposes, it complicates the definitions
of substitution and ^-contraction.

On the other hand, de Bruijn (1972) has eliminated both free and bound > ariables
in his approach to the lambda calculus. The substitution properties of a position
in a term are determined by storing in that position the relative address .:.-f what
is essentially a binding operator. The approach of de Bruijn is more radical than
is necessary to deal with the problem of bound variables.

In the present approach free variables remain; only bound variables are removed.
Binding is accomplished by operators which incorporate a list of relative addresses
of the positions which they bind. This approach is shown to be practicable by a
sketch of a proof of its equivalence with the classical approach.

Of course, combinatory logic is a formalism which does not have variables at
all, and within which the lambda calculus can, in a weak sense, be defined. How-
ever, that does not help the study of efficient evaluation (for example) since the
correspondence between the two syntaxes is not close enough. In particular, a
contraction in the lambda calculus is not generally modelled by a contraction in
combinatory logic.

The modified calculus discussed here is not intended to be a system of graph-like

https://doi.org/10.1017/S1446788700012210 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700012210

[3] A lambda calculus 271

expressions; it can be regarded as a subtree replacement system in the sense of
Rosen (1973). Neither is it intended primarily for computer implementation of
lambda calculus calculations. Its primary purpose is to expose the underlying
simplicity of substitution, /^-contraction and //-contraction, free of the irrelevant
complications of a-conversion, in order to facilitate the syntactical theory of the
lambda calculus. In the author's experience it is very suitable for that purpose.

1. Definition of the calculus N

1.1. Throughout this paper we shall need to compare our new lambda calculus
with the classical one. For definiteness we take the set L of terms of the classical
lambda calculus to be as denned in Hindley et al. (1972); the definition of L is also
sketched in 2.2 below.

1.2. In order to define the set N of terms of the new lambda calculus we first
state the symbols with which the terms will be defined. They are left and right
parentheses (and), comma , , lower case Greek lambda X, numerals 0 and 1 and
an infinite sequence co,c1,c2,... of other symbols which we shall call variables.
In what follows the symbol c0 will play the role of a blank symbol, and
CQ,CI,C2,... will play roles similar to those played by free variables in the classical
lambda calculus.

The key to the definition of the terms of N is that we shall specify the positions
to be associated with a given occurrence of A, that is we specify the scope of X,
by a list of names for these positions, rather than by a bound variable.

1.3. We simultaneously recursively define the terms of N, the positions of sub-
terms of a term and the free positions of variables in a term as follows. For the
sake of readability the notion of the subterm is not defined as precisely as the
other concepts, but the usual notion of subterm is intended. Positions will be
(named by) strings of binary digits; we write e for the empty string, not for the
blank symbol. Thus 11 and lei denote the same two-symbol string.

Case 1. Each variable c, is a term; it is its own unique subterm, which is defined
to be in position e, and e is a free position.

Case 2. If P, Q are terms then so is (PQ). A subterm of P in position b is a sub-
term of (PQ) in position Ob, which is a free position if and only if b is a free
position of P. A subterm of Q in position b is a subterm of {PQ) in position 16,
which is a free position if and only if b is a free position of Q. Finally, (PQ) is a
subterm of (PQ) in position e.

https://doi.org/10.1017/S1446788700012210 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700012210

272 John Staples [4]

Case 3. If T is a term and if a is a list (pu . .-,pn), n > 0, of some free positions
of distinct occurrences of c0 in T, in increasing lexicographic order, then XccT is a
term. A subterm of T in position b is a subterm of X<xT in position \b, which is a
free position if and only if b is a free position in T which is not one of the entries
in the list. Finally, X<xT is a subterm of XuT in position e.

REMARK. In the classical lambda calculus L one can lambda-abstract with
respect to any variable. Here is an example to show how that is modelled in N.

In the classical calculus T = x2(x1 x2) is a term, and its lambda-abstraction with
respect to xt is hc1(x2(x1 x0)). The term corresponding to T in N is c2{cl c0), and
its lambda-abstraction with respect to ct is obtained as follows.

(i) Write a for the hst of free positions of ct; in this case a contains just one
entry, 10.

(ii) The required lambda-abstraction is then

M[c o /a] (c2(ct c0))) = X<x(c2(c0 co» = A(10) (c2(c0 co»;

in which c0 has both a free and a bound occurrence.

Notice also that the lambda abstraction of the resulting term with respect to
(free occurrences of) c0 is

in which the two occurrences of c0 are within the scopes of different lambdas.

1.4. Positions of variables in a term which are not free positions are called
bound positions. Notice that from the above definition only the variable c0 can
occur in bound positions, and that c0 may also occur in free positions. If an occur-
rence of c0 in a term T is in a bound position p, and if 7" is the largest subterm of
T in which this occurrence is in a free position, then from the above definition T
has a subterm XocT' in position q such that some position r in the list a is such that
p=q\r.

We may call XaT' the binding subterm of this occurrence of c0. The positions
in the hst a may be called the scope of the occurrence of X which immediately
precedes a; we may also say that this occurrence of c0 is within the scope of X.
We may call such an occurrence of a list a in a term a A-list.

We adopt throughout this paper the convention that when lists of positions are
referred to, they are always implied to be listed in increasing lexicographic order.
The empty position is the first in that order.

1.5. We adopt the notation conventions that outermost parentheses may be
omitted, and that parentheses may be omitted by association to the left. Thus
for example, XaXYdenotes ((XtxX)Y), not Xa(XY).

https://doi.org/10.1017/S1446788700012210 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700012210

[5] A lambda calculus 273

It will also be convenient to introduce an informal composition notation, as in
the following example:

AoB°C°DX abbreviates A(B(C(DX))).

1.6. As is usual, we write X = Y to denote that the two strings X and Y of
symbols are identical.

1.7. In any lambda calculus a fundamental role is played by the notion of
substitution for free occurrences of a variable. For N substitution is defined
recursively as follows, where in all cases a is a list of some, not necessarily all,
positions of occurrences of a variable in a term Y. We do not insist that all the
positions in a be free, though it is only the free positions which are acted upon;
it would make no essential difference however, to insist that all positions in a
be free.

Case 1. For all terms X and Y, if a includes no free positions of Tthen ([A7a] Y)
is denned to be Y.

Case 2. Otherwise; if Y is a variable then a = (e) and ([A7(e)] Y) is defined to
be A\

Case 3. Otherwise; if Y=(Yt Y2) then each position/> in a has one of the forms
Oq or \r; write Po a for the list of such <jr's, write Px a for the list of such r's, and
define ([Z/a] Y) to be

Case 4. Otherwise, Y = XyZ and every position p in a has the form \r; we
write P t a for the list of such r's and define ([Z/a] Y) to be Xy{iXIP1a.-y]Z),
where Pt a—y denotes the list of positions which are in Pt a but not hi y.

Now the key result is:

1.8. SUBSTITUTION IS NAIVE. That is, if a is a list of some of the positions of a
variable ct in a term Y, then [Z/a] Y is obtained from Y by substituting X for
each of the free occurrences of ct in the positions listed in a.

The proof is by induction following the definition of substitution and is evident
in each of the four cases.

1.9. NOTATIONS FOR LISTS OF POSITIONS. It is already evident from the definition
of substitution that some notations for manipulating lists of positions would be
helpful; we use these:

https://doi.org/10.1017/S1446788700012210 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700012210

274 John Staples [6]

(i) The empty list may be denoted ().
(ii) As already indicated, for every list a of positions the list of positions p such

that Op (respectively \p) is in a may be denoted Po a (respectively Px a).
(iii) When a list a is transformed by left concatenation of all its positions p

with a fixed position q to give positions qp, we may denote the resulting list qa.
For example, if a = (01,100) and q = 1 then qx = (101,1100).

(iv) When a list y is formed from a list a and a fixed position q by including in y
a position p whenever qp is in a, then y may be denoted qa. For example,
0 a = P 0 a ; more particularly if a = (01,100) then Da = (l).

(v) For a list a of positions in a term T such that the subterm of T in position p
has the form XyXY, we denote by ap the list which is obtained from a by replacing
each entry of the form pOlx by px, and by replacing each entry of the form ply
by entries pqy, one for each q in y. For example, if T is (co(l(l)(coco)co)) and/?
is 1 and a is (0,1010,11), then ctp is (0,10,11) and will be the list of free positions
corresponding to a in the /?-contractum of T, (co(co c0)).

(vi) When a list e is obtained from a list a by deleting all entries which are in a
list y, we may write a—y for e.

(vii) When a list s is obtained from a list a by replacing, for some fixed position/?,
each entry of a of the form plOx by px, then e may be denoted <xj. For example,
a term T of the form A(l)(Mc0) will have an f/-contractum M; if a is a list of
free positions in the subterm M of T, then aj| is the corresponding list of free
positions in M.

1.10. In the following recursive definition, ^-contraction of a term, and the
position of a ^-contraction, are defined.

Case 1. For every term of the form XcuXY, hxXY'-* [7/a] X is a /^-contraction
with position e.

Case 2. If X-*X' is a /^-contraction with position p then XY-*X'Y and
FA" are ^-contractions with positions Op, \p respectively.

Case 3. If X-* X' is a ^-contraction with position /> then AaX-> Aap X' is a
^-contraction with position \p.

Beta-contraction of terms will be denoted in future by -». Beta-reduction of
terms, to be denoted ^ , is then defined in the usual way as follows. For all terms
X, Y, Z:

Case 1.

Case 2. If X-> Y and Y^Z then

https://doi.org/10.1017/S1446788700012210 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700012210

[7] A lambda calculus 275

We may also write X ^ Z to denote loosely a particular sequence of /? -
contractions of X to Z, and may also call such a sequence a ^-reduction.

1.11. Eta-construction of terms is denoted ->, and is defined as follows.

Case 1. X(l)(Xc0) -*nX, and has position e.

Case 2. If X-*n X' with position p, then XOLX ->,/la* Z ' , and has position \p.

Case 3. If X-*nX' has position p then .XT-*,, A"y has position Op, and
y ^ - * , YX' has position 1/?.

Eta-reduction > , is then defined in the obvious way.

1.12. Strong reduction if terms of N is then defined to be a sequence of con-
tractions, each of which is either a ^-contraction or an ^-contraction.

2. The correspondence between N and L; definitions and basic properties

2.1. In order to make precise the obviously close correspondence between N and
L we define maps V: N'-*L and U: L -* N as follows, and then derive some of
their basic properties.

2.2. First, however, we recall briefly for the classical calculus L that its symbols
are I, (,), and an infinite sequence xQ,x1,x2,... of variables. Each variable is a
term, if 7\ and T2 are terms then so is (r t T2), and if T is a term and x is a variable
then focT is a term.

2.3. The map V: N -* L is defined recursively as follows.

Case 1. For every variable ct, Vct s ^f.

Case 2. If T = 7\ T2 then rr==

Case 5. If T= Xa.X then P T = Ax^Xy/a] (KAf)> where x ; is the first variable of
L other than x0 which is neither free nor bound in F([co/a] X), and where [x^/a]
denotes the naive substitution of Xj for the occurrences of x0 which are in the
positions listed in a.

REMARK. Whenever in this paper substitution for a list of free positions in a
term of JV is indicated, it is always naive substitution which is intended. For L

https://doi.org/10.1017/S1446788700012210 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700012210

276 John Staples [8]

however, substitution for a list of free positions must as usual change bound
variables to avoid clashes of bound variables with substituted free variables.

2.4. The map U: L -»N is defined recursively as follows.

Case 1. For every variable xh Uxt = ct.

Case 2.UT= Tx T2 then UT =

Case 3. If T= XxtX then UT = IO.[C0IOL]{UX), where a is the list of positions
of all free occurrences of x, in X.

EXAMPLE. Consider the classical term T = Xx1(Xx2(.x1 x2)). Then

from the definition of U, and

V(UT)mXx2(Xxl(x2xl)),

from the definition of V. Thus T and V(UT) are not identical, but are equal in
the sense that they differ only by changes of bound variable.

Now we begin the study of the basic properties of U and V. At first some parts
of proofs are given in detail so as to illustrate the method, but later proofs will
be brief.

2.5. For all TeL, all xk, and all lists a of some of the free positions of xk in T;
in the notation of 1.5,

U o [xjld] T = Icjld] ° UT for all).

PROOF. By induction following the construction of T. The nontrivial case is
when T = Xxt X, i # k. Write y for the list of free positions of xt in X. Provided

Uo [*,/«] T = Ay([co/y] ° !7° [^./P1 a] X)
= >ty([co/y] ° \-cjlPi a] ° UX), by inductive hypothesis,
= [cj7a] ̂ y([co/y] ° UX), since Pl a, y have no positions in common.

From 2.4 the latter term is just [c,-/a] (UT).
The case i =j is then a corollary:

£/o [Xj/a] Xxj X = U°(Xxm[^xJIP1 a] _xjxj] X) by definition of substitution in L;

xm/xJ Z similarly,
= [cy/a] ° ^(^mE^m/^j] -SO by inductive hypothesis,
= [cy/a] ° U(kxj X) from the definition of U, as required.

https://doi.org/10.1017/S1446788700012210 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700012210

[9] A lambda calculus 277

2.6. For all TsN, all variables ck and all lists a of free positions of ck in T,

PROOF. By induction following the construction of T. The only interesting case

is when T = XyX, when by definition of a, Pt a and y have no positions in common.

Thus

V° [co /a] T = kcjQLxjIy] ° Vo \co\Px a] X)

= Xxj(£xjly'} o [XQ//*! a] ° VX) by inductive hypothesis,

Now by definition of V, Xj is the least variable other than x0 which is not free or
bound in K([co/y] X). Thus XxjtXxjIy] o VX) = VT and we have the stated result.

2.7. For all TeN,U°VT=T.

PROOF. By induction following the construction of T. The interesting case is

when T= ka.X. Then VT= Ax,-([jc,-/a] o VX), where Xj is as described in 2.3. Thus,

writing y for the list of free positions of x} in [Xj/a] ° VX, we have by definition

of Xj that a = y, so

s Aa([co/a] ° U° VX)

= Aa([co/a] X) by inductive hypothesis,

2.8. To derive for F<= U the result corresponding to 2.7 is not so easy, because
of problems arising from changes of bound variables inZ.. We sketch the argument
as follows.

2.9. / / TeN has just k distinct variables occurring in free positions and I distinct
occurrences of X, if'ca is a variable such that a> k+l+l which occurs in T in just
the free positions comprising the list a, and ifR {respectively S) is the set of variables
Xj such that 0 <j < a and Xj is not free or bound in VT (respectively V° [co/a] T)
then R, S are nonempty and R = S.

PROOF. That R and 5 are nonempty is clear; R = S is proved by induction
following the construction of T.

2.10. COROLLARY. In the notation of 2.9, the first variable other than x0 which is
not free or bound in VT is the same as the first variable other than x0 which is not
free or bound in Vo [co/a] T.

https://doi.org/10.1017/S1446788700012210 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700012210

278 John Staples [10]

It is well known that

2.11. If X, YeL, if no variables free in X are bound in Y, if y is a variable ofL
which is not bound in Y and if a. is the list of all free positions of y in Y, then
_Xjy] Y results from Y by naive substitution: that is, [X/y] Y= [X/oi] Y.

2.12. In the next result and thereafter we write X = Y to denote that terms
X, Y differ only by changes of bound variable, as defined by Hindley et al. (1972),
p. 6.

IfS, TeLandS = T then US = UT.

PROOF. It is enough to assume that T results from S by a single change of bound
variable. The proof is then by induction following the definition of change of
bound variable.

2.13. COROLLARY. IfS = T then V° US = Vo UT.

2.14. For all TeL, K° UT = T.

PROOF. By induction following the construction of T. The only interesting case
is when T = kxa X, say. Suppose that T has k distinct free variables and / distinct
occurrences of A; we assume, as we can in view of 2.13, that T has all its bound
variables, including xa chosen from the list

We also assume that no bound variable of T occurs free in T or within the scope
of two distinct occurrences of k. Then, writing a for the list of free occurrences
of xa in X, a is the list of all occurrences of xa in X and, from 2.6, 2.9 and 2.11,

Vo UT = kxj[xjlXa] (Vo UX).
Thus

and by inductive hypothesis F» UX = X, so Vo UT = T as asserted.

3. The main result

3.1. (a) For all X, YeL,

(i) X = Y if and only if UK=UY,

(ii) X-*Zfor some Z = Y if and only ifUX->U Y,

(iii) X^ nZfor some Z=Y if and only if UX^n UY.

https://doi.org/10.1017/S1446788700012210 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700012210

[11] A lambda calculus 279

(b) For all X, YeN,
(i) X= Y if and only if VX^VY,
(ii) X-> Y if and only if VX-*Zfor some Z=VY,
(iii) X-*nY if and only if VX -+nZfor some Z=VY.

In order to prove this result we show first that it is enough to prove the following
lemma.

3.2. (a) For all X, YeL,
(i) ifX^y Y then UX-+UY,

(ii) ifX-+nYthen UX-*VUY.
(b) For all X, YeN,

(i) ifX->Y then VX->Zfor some Z=VY,
(ii) ifX^nYthen VX->, VY.

3.3. PROOF OF 3.1 FROM 3.2.

PROOF OF (a)(i). One part is 2.12; the converse is immediate from 2.14.

PROOF OF (a)(ii). If X-+Z then UX-* UZ from 3.2(a)(i), and UZ=UY from
2.12.

If conversely UX-> VY then from 3.2(b)(i), K° UX^> W, for some W = V° UY.
Now from 2.14, V° UX = X, so from a well-known lemma of the classical lambda
calculus (see, for example, Hindley et al.\ X-+Z for some Z = W, as required.

PROOF OF (a)(iii). One part is immediate from 3.2(a)(ii) and 2.14. If conversely
, UY then from 3.2(b)(ii),

Now V°UX = X from 2.14, so it follows from a well-known lemma of the
classical lambda calculus that X-+nZ for some Z = V° UY, as required.

PROOF OF (b)(i). One part is trivial; the converse is immediate from 2.12.

PROOF OF (b)(ii). If X^> Y then from 2.7 £/° VX^ U° VY, so from 3.1(a)(i)
already proved, VX -»Z for some Z =VY. If conversely VX -»Z for some Z= VY
then from 2.7, 3.1(a)(ii) and 2.14,

X= UoVX-^UZ= UoVY= Y.

PROOF OF (b)(iii). One part is trivial from 3.2(b)(ii). If conversely VX^nZ for
some Z = VY, then from 2.7, 3.1(a)(iii) and 2.14,

X= U°VX^nUZ= U"VY= Y.

https://doi.org/10.1017/S1446788700012210 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700012210

280 John Staples [12]

In order to complete the proof of 3.1 by proving 3.2 we need the following
lemmas.

3.4. If X, ZeL and a is the list of all free positions of xt in Z then

3.5. If X, Y, S, TsL are such that no variable occurring bound in X or S occurs
free in Y or T, if X = S and Y = T, and if a is a list of positions of some of the free
occurrences of xi in X, then

PROOF. It is enough to assume that 5 is obtained from A' by a single change of
bound variable. The argument is then by induction following the construction
of X.

3.6. If P, QeN, if a is a list of some of the positions of free occurrences of a
variable c{ in P, and ifs0, ...,sk is a list of variables of L, then there is WeL such
that W = VP, no bound variables of Ware s0, ...,sk, and

PROOF. By induction following the construction of P.

3.7. PROOF OF 3.2.

PROOF OF (a)(i). By induction following the definition of X-* Y. The only
interesting case is when X = ?.XjPQ and Y= IQ/XJ]P. Then, writing a for the
list of positions of free occurrences of Xj in P,

UXsA<x(£c0/<x]oUP)UQ

= UY from 3.4.

PROOF OF (a)(ii). By induction following the definition of X-*n Y. All cases are
evident so details are omitted.

PROOF OF (b)(i). By induction following the definition of X-* Y. The only
interesting case is when X= XoiPQ and Y = lQlaC]P. Then from 3.6,

VY= Fo [g /a]P

= LVQ/oi] W for some W = VP

such that Xj (the first variable other than x0 which is not free or bound in

https://doi.org/10.1017/S1446788700012210 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700012210

[13] A lambda calculus 281

K([co/a] PJ) and all variables free in VQ are not bound in W. Thus

VX = foCj([Xjl<z] ° VP) VQ

loi] W) VQ from 3.5,

= VY.

Thus by the lemma of Hindley et al. (1972), p. 141, FX-> W for some W= VY.

PROOF OF (b)(ii). By induction following the definition of X^n Y. All cases are
evident.

4. Discussion

4.1. It is clear from the main result that it would usually be possible to prove
a lambda calculus result in N, without the burden of changes of bound variable,
and then transfer the result to L. However, the transfer may be unnecessary, since
there seems to be no reason why N should not replace L entirely.

4.2. In the remainder of this section we discuss a technicality which, though
not a continuing difficulty comparable to a-conversion, does need to be dealt
with before the benefits of N can be enjoyed.

Consider, for example, a list a of some free positions of a variable ck in a term
T, and consider two reductions R and S of T to say V. We need to know, for
example when considering the corresponding reductions of Aa[co/ct] T, that the
hst of positions of T corresponding by the reduction R to the positions of T in a,
is the same as the list of positions in T' corresponding by the reduction S to the
positions of T in a. We prove that now.

4.3. First, we recursively define as follows the list DR a of descendants, after a
reduction R of a term T, of a list a of free positions of occurrences of ck in T.

Case 1. If R is the trivial reduction T Js T then DRct = <x.

Case 2. If R is the reduction T^T" -> T, where T" -> T is a ^-contraction with
position p, and where the reduction T> T" is denoted F, then DRa. = (DFa)p, in
the notation of 1.9(v). Similarly if T" -»,T' is an ^-contraction then DR<x = (DFa)J.

4.4. Given terms X, Y and a reduction R of X to Y, and writing (ck)x {respectively
(c*)y) for the list of all positions of free occurrences of ck in X {respectively Y),

PROOF. Clearly it is enough for an inductive proof to prove the result for con-

https://doi.org/10.1017/S1446788700012210 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700012210

282 John Staples [14]

tractions. However, in each of the cases of /^-contraction and ^-contraction the
result is evident from the definitions.

4.5. If R,S are two reductions of a term X to a term Y and if a. is a list of some
free positions of a variable ct in X, then

DR<x = Dsoc.

PROOF. Consider that R applies also to X' = [ct/a] X, where ck is a variable
which does not occur free or bound in X. Also, writing y for the list of all free
occurrences of ck in X', evidently j s a and DRoi = DR y. The result then follows
from 4.4, since

= DRy = (ck)Y = Dsy = Ds<x.

4.6. Hence the following notation can be used. When a is a list of free positions
of a variable in a term X, and when X ^ Y, denote the descendant of a in Y by
Doc. Notice that the notation Dec can denote different lists, depending on which
reductum Y of X is being referred to. Usually one need not distinguish between
these different meanings, since the intended meaning can be inferred from the
context.

Acknowledgements

I thank Roger Hindley, Martin Bunder, Mike O'Donnell, N. G. de Bruijn and
the referee for helpful criticisms of earlier versions of this paper.

References

N. G. de Bruijn (1972), 'Lambda calculus notation with nameless dummies', Indag. Math. 34,
381-392.

J. R. Hindley, B. Lercher and J. P. Seldin (1972), Introduction to combinatory logic (London Math.
Soc. Lecture Notes no. 7, C.U.P., London).

M. J. O'Donnell (1976), Reduction strategies in subtree replacement systems (Ph.D. Thesis, Cornell
University).

Barry K. Rosen (1973), 'Tree-manipulating systems and Church-Rosser theorems', J.A.C.M
20, 160-187.

John Staples (1979), 'A graph-like lambda calculus for which leftmost-outermost reduction is
optimal', Proceedings of 1978 International Graph Grammars Workshop, Bad Honnef, Germany
(Lecture Notes in Computer Science 73, Springer-Verlag, Berlin).

Department of Mathematics and Computer Science
Queensland Institute of Technology
G.P.O. Box 2434
Brisbane 4001
Australia

https://doi.org/10.1017/S1446788700012210 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700012210

