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Abstract. We study a non-commutative version of the Kadomtsev-Petviashvili
equations and construct a family of solutions generalizing naturally the soliton to the
non-commutative setting. From this we derive explicit solution formulas as well for
the scalar as for the matrix-Kadomtsev-Petviashvili equation which still depend on
operator parameters.
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1. Introduction and main results. The first aim of the present paper is to find a
general solution formula for the non-commutative Kadomtsev-Petviashvili equations
(ncKP)

(Ut − 6(Ux)2 + Uxxx)x + 3α2Uyy − 6α[Ux, Uy] = 0, (1)

with α = i for the KP-I, α = 1 for the KP-II. The unknown function U = U(x, y, t)
is supposed to take values in the space L(F) of continuous linear operators on
some Banach space F . This includes the matrix-KP equations for dim F < ∞. Non-
commutative integrable systems attracted much interest recently (cf. for example
[2, 8, 9, 13, 14]. Particularly close in spirit to the present paper are [5–7, 10]).

Our result on the general operator level is the following:

THEOREM 1.1. Let E and F be Banach spaces and A ∈ L(E), B ∈ L(F).
Assume that L = L(x, y, t) ∈ L(F, E), M = M(x, y, t) ∈ L(E, F) are operator-

functions which are C4-smooth and solve the base equations

Lx = AL, Ly = α−1A2L, Lt = −4A3L,

Mx = BM, My = −α−1B2M, Mt = −4B3M.

Then, on � = {(x, y, t) ∈ �3 | (I + ML) is invertible}, a solution of the ncKP (1) with
values in the algebra L(F) is given by

U = (I + ML)−1(B − MAL). (2)

In [3] the result was obtained under the additional assumption [A, B] = 0 (see
also [11]), which is very restrictive in applications. One of our motivations were similar
formulas as of Sakhnovich [10], which were only verified by means of computer algebra.
In fact our proof of Theorem 1.1 (improving the original argument in [12]) still requires
considerable calculations. It is given in Section 2.

Our second aim, crucial in view of applications, is to extract solution formulas
for the matrix-KPs (including the scalar case). The point is of course to obtain for
a given matrix equation a more powerful formula than the one already provided
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by Theorem 1.1. Actually we will find formulas depending effectively on three free
parameters each of which is an operator between Banach spaces. A fourth operator
has to be chosen appropriately in some quasi-Banach ideal to ensure existence of
certain determinants. Here, it is profitable to use the generality of Banach ideals: we
refer to [1] (see also [4]) where it is shown that for the Korteweg-de Vries equation
(KdV) all solutions of the standard Inverse Scattering Method (ISM) are accessible
via a comparable ncKdV theory.

Our second main result is the following:

THEOREM 1.2. Let E and F be Banach spaces and A ∈ L(E), B ∈ L(F).
Assume that there is an operator C ∈ A(F, E) belonging to a quasi-Banach ideal A

admitting a continuous determinant δ, which satisfies the n-dimensionality condition

AC + CB =
n∑

j=1

aj ⊗ cj (3)

with linearly independent functionals aj ∈ F ′ and vectors cj ∈ E for j = 1, . . . , n.
Moreover, let D ∈ L(E, F) arbitrarily.
Then, provided the denominator does not vanish, a solution of the matrix-KP (1)

with values in the n × n-matrices is given by

u =
(

1 − δ(I + ML + ai ⊗ (M�j))
δ(I + ML)

)n

i,j=1

with the operator-functions L = L̂C, M = M̂D, the vector-functions �j = L̂cj for
j = 1, . . . , n, where L̂(x, y, t) = exp(Ax + α−1A2y − 4A3t) and M̂(x, y, t) = exp(Bx −
α−1B2y − 4B3t).

The above solution formula depends effectively on the parameters A, B and D.
Note that the condition (3) can be satisfied under a mild spectral condition on A
and B (cf. [12]). Furthermore it is interesting that Theorem 1.2 also establishes links
between matrix equations of different dimensions. Theorem 1.2 is proved in Section 3.
A noteworthy simplification for the scalar case is explained in Section 4.

For lack of space we did not include examples. The interested reader finds some
material related to Miles structures in the author’s habilitation thesis [12]. Applications
are planned to be the topic of a forthcoming publication.

2. The soliton solution of the ncKP equations. In this section we prove
Theorem 1.1. To this end, we consider the following situation: Let G be a
Banach space and J ∈ L(G) an involution (i.e. J2 = I). For an operator-valued
function S = S(x1, x2, x3) ∈ L(G) we consider the non-commutative operator equation

(Sx1x1x1 − 6(Sx1 )2 − 4Sx3 )x1 = 6J[Sx2 , Sx1 ] − 3Sx2x2 , (4)

a non-commutative version of the KP depending on the involution J.
We will obtain Theorem 1.1 as a consequence of Theorem 2.1.

THEOREM 2.1. Let C ∈ L(G) where [C, J] = 0. Assume that N = N(x, t) ∈ L(G)
is an operator-valued function anti-commuting with J and solving the base equations
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Nx1 = CN, Nx2 = JC2N and Nx1 = C3N. Then

S = (I − N2)−1(C + NCN)

solves the operator equation (4) wherever (I − N2) is invertible.

For the proof we introduce for i ∈ � the operators Ci = J(JC)i (The base equations
now read Nxi = CiN for i = 1, 2, 3) and the operator-functions

Si = (I − N2)−1(Ci + NCiN), (5)

Ti = (I − N2)−1(CiN + NCi). (6)

The next two lemmas furnish the recursive identities which allow to cut down the proof
of Theorem 2.1 to a reasonable size.

LEMMA 2.2. The derivative of the operator-functions Si = Si(x1, x2, x3), Ti =
Ti(x1, x2, x3) given in (5) and (6) with respect to xj, j = 1, 2, 3, is

Si,xj = TjTi, Ti,xj = SjTi.

Proof. Recall that for a differentiable function R = R(ξ ) with values in the invertible
operators we have (R−1)ξ = −R−1Rξ R−1. Using the base equations and [Ci, Cj] = 0
for all i, j, we infer

Ti,xj = −(I−N2)−1(−N2)xj (I−N2)−1(CiN+NCi)+(I−N2)−1(CiN+NCi)xj

= (I−N2)−1((CjN+NCj)N)(I−N2)−1(CiN+NCi)+(I−N2)−1Cj(CiN+NCi)

= (I − N2)−1((CjN+NCj)N+Cj(I − N2))Ti

= (I − N2)−1(Cj+NCjN)Ti = SjTi,

Si,xj = −(I−N2)−1(−N2)xj (I−N2)−1(Ci+NCiN)+(I−N2)−1(Ci+NCiN)xj

= (I−N2)−1((CjN+NCj)N)(I−N2)−1(Ci+NCiN)+(I−N2)−1(CjN+NCj)CiN

= Tj(I−N2)−1(N(Ci+NCiN)+(I−N2)CiN)

= Tj(I−N2)−1(CiN+NCi) = TjTi. �

LEMMA 2.3. For the operator-functions Si and Ti given in (5) and (6), the following
identities hold:

SiTj − TiSj = JTi+j, SiSj − TiTj = JSi+j.

Proof. We need the following auxiliary identity:

N(I − N2)−1N = (I − N2)−1N2 = (I − N2)−1(I − (I − N2)) = (I − N2)−1 − I,

which is applied in the third step of the succeeding calculation to replace the terms in
the first and in the last large brackets.

(I − N2)SiTj = (Ci + NCiN)(I − N2)−1(CjN + NCj)

= Ci((I − N2)−1)CjN + Ci((I − N2)−1N)Cj

+ NCi(N(I − N2)−1)CjN + NCi(N(I − N2)−1N)Cj
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= Ci(I + N(I − N2)−1N)CjN + Ci(N(I − N2)−1)Cj

+ NCi((I − N2)−1N)CjN + NCi((I − N2)−1 − I)Cj

= (CiCjN − NCiCj) + (CiN + NCi)(I − N2)−1(Cj + NCjN)

= J(Ci+jN + NCi+j) + (I − N2)TiSj,

where for the last step we have used [J, C] = 0 to have CiCj = J(JC)i J(JC)j =
(JC)i+j = JCi+j, and also {J, N} = 0. Similarly,

(I − N2)SiSj = (Ci + NCiN)(I − N2)−1(Cj + NCjN)

= Ci((I − N2)−1)Cj + Ci((I − N2)−1N)CjN

+ NCi(N(I − N2)−1)Cj + NCi(N(I − N2)−1N)CjN

= Ci(I + N(I − N2)−1N)Cj + Ci(N(I − N2)−1)CjN

+ NCi((I − N2)−1N)Cj + NCi((I − N2)−1 − I)CjN

= (CiCj − NCiCjN) + (CiN + NCi)(I − N2)−1(CjN + NCj)

= J(Ci+j + NCi+jN) + (I − N2)TiTj, �

Proof of Theorem 2.1. To simplify notation, we write S = S1, T = T1. Observe
also that the operator-functions Si commute with the involution J whereas the Ti

anti-commute with J.
We start by deriving two auxiliary identities. By Lemmas 2.2 and 2.3 applied to

the respective products in the brackets, we infer

(TjT)xk = Tj,xk T + TjTxk = (SkTj)T + TjSkT

= JTj+kT + (TkSj + TjSk)T, (7)

(TiSjT)x1 = Ti,x1 SjT + TiSj,x1 T + TiSjTx1

= (STi)SjT + TiTTjT + Ti(SjS)T

= (JTi+1 + TSi)SjT + TiTTjT + Ti(JSj+1 + TjT)T

= J(Ti+1Sj − TiSj+1)T + (T(SiSj) + TiTTj + TiTjT)T

= J(Ti+1Sj − TiSj+1 − TSi+j)T + (TTiTj + TiTTj + TiTjT)T, (8)

for all i, j ∈ � and k = 1, 2, 3. Now,

Sx1 = T2 and Sx2 = T2T, Sx3 = T3T, (9)

by Lemma 2.2. From (7) with j = k = 1 we get Sx1x1 = JT2T + 2TST . Applying (7)
with j = 2, k = 1 and (8) with i = j = 1 then yields

Sx1x1x1 = J(T2T)x1 + 2(TST)x1

= J(JT3T + (TS2 + T2S)T) + 2(J(T2S − 2TS2)T + 3T4)

= T3T + 3J(T2ST − TS2T) + 6T4.

Together with (9) this results in

Sx1x1x1 − 6(Sx1 )2 − 4Sx3 = −3T3T + 3J(T2ST − TS2T).
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Before taking the derivative with respect to x1 once more, we need another auxiliary
identity. First we remark that, by (7) and (9) with j = k = 2,

[Sx2 , Sx1 ] = [T2, T2]T, Sx2x2 = (T2T)x2 = JT4T + 2T2S2T.

Thus, using (8) both with i = 2, j = 1 and i = 1, j = 2, we find

(T2ST − TS2T)x1 = J(TS3 + T3S)T − 2JT2S2T + 2(T2T2 − T2T2)T

= J(TS3 + T3S)T + T4T − JSx2x2 + 2[Sx2 , Sx1 ].

Now we use (7) and the latter identity to finally verify

(Sx1x1x1 − 6(Sx1 )2 − 4Sx3 )x1 = −3(T3T)x1 + 3J(T2ST − TS2T)x1

= −3(JT4T + (TS3 + T3S)T) + 3J(J(TS3 + T3S)T

+ T4T − JSx2x2 + 2[Sx2 , Sx1 ])

= −3Sx2x2 + 6J[Sx2 , Sx1 ]. �

Proof of Theorem 1.1. Introducing the coordinate transformation x1 = x, x2 =
α−1y and x3 = −4t, the base equations become Lxj = AjL and Mxj = −(−B)jM for
j = 1, 2, 3.

Now it is immediate that the requirements of Theorem 2.1 are met with the
following choices:

G := E ⊕ F, J :=
(

I 0
0 −I

)
, C :=

(
A 0
0 B

)
, N :=

(
0 −L

M 0

)
.

Hence,

S = (I − N2)−1(C + NCN)

=
(

I + LM 0

0 I + ML

)−1 (
A − LBM 0

0 B − MAL

)

=
(

(I + LM)−1(A − LBM) 0

0 (I + ML)−1(B − MAL)

)

solves (4). Since (4) in turn splits up in its diagonal parts, from the part in the lower
left corner reading

(Ux1x1x1 − 6(Ux1 )2 − 4Ux3 )x1 = 6[Ux1 , Ux2 ] − 3Ux2x2 (10)

we can conclude that U = (I + ML)−1(B − MAL), the lower left corner of the above
operator-function S, solves (10). It remains to observe that (10) transforms to (1) under
the coordinate change x1 = x, x2 = α−1y and x3 =−4t. �

REMARK 2.4. Focusing on the upper right corner, we again get a solution of (10)
but with a minus sign in front of the commutator. Transforming y into −y, again a
solution for (1) is obtained. The latter corresponds to Theorem 1.1 with the roles of A
and B interchanged.
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3. Solution formulas for the matrix-KP equations. In this section the soliton
solution (2) of the ncKP is used to construct an explicit solution formula for the
matrix-KP. The idea is to descend via a continuous, linear map σ from L(F) to the
space of n × n-matrices. To guarantee that a solution U = U(x, y, t) ∈ L(F) transforms
to a matrix solution u = σ (U), we will require σ to be multiplicative in a suitable sense.

3.1. Algebraic tools. Let F be a Banach space. Recall that a one-dimensional
endomorphism on F can be written as a ⊗ y with appropriate a ∈ F ′, y ∈ F where the
map a ⊗ y is defined by (a ⊗ y)(v) = 〈v, a〉y (and 〈v, a〉 denotes the evaluation of the
functional a on v ∈ F).

For linearly independent functionals a1, . . . , an ∈ F ′, we define the vector space

Sa1,...,an (F) =
{ n∑

j=1

aj ⊗ yj

∣∣∣ y1, . . . , yn ∈ F
}
.

Equivalently this is the space of all endomorphisms T satisfying ker(T) ⊃ ⋂n
j=1 ker(aj).

Note that every such T has rank at most n and possesses a unique representation
T = ∑n

j=1 aj ⊗ yj with y1, . . . , yn ∈ F .

LEMMA 3.1. Sa1,...,an (F) is a Banach algebra and a left ideal in L(F).

For given a1, . . . , an, we define the (continuous, linear) map σ from Sa1,...,an (E) to the
space of n × n-matrices with complex entries by

σ

⎛⎝ n∑
j=1

aj ⊗ yj

⎞⎠ = (〈yj, ai〉
)n

i,j=1. (11)

Of course σ = σa1,...,an . In the sequel we do not mention the dependence on the
functionals a1, . . . , an if it is clear from the context.

PROPOSITION 3.2. On Sa1,...,an (F), the map σ given by (11) is an algebra
homomorphism.

Proof. First observe that one-dimensional operators are multiplied via (a ⊗ y)
(b ⊗ z) = 〈z, a〉b ⊗ y for a, b ∈ F ′ and y, z ∈ F . Now let T , S ∈ Sa1,...,an (F), say T =∑n

j=1 aj ⊗ yj, S = ∑n
j=1 aj ⊗ zj where yj, zj ∈ F for j = 1, . . . , n. Then,

σ (TS) = σ

( n∑
k=1

ak ⊗ yk ·
n∑

j=1

aj ⊗ zj

)
= σ

( n∑
j=1

aj ⊗
( n∑

k=1

〈zj, ak〉yk

))

=
(〈 n∑

k=1

〈zj, ak〉yk, ai

〉)n

i,j=1
=

( n∑
k=1

〈yk, ai〉〈zj, ak〉
)n

i,j=1

=
(
〈yj, ai〉

)n

i,j=1

(
〈zj, ai〉

)n

i,j=1
=σ

( n∑
j=1

aj ⊗ yj

)
σ

( n∑
j=1

aj ⊗ zj

)
=σ (T)σ (S). �

REMARK 3.3. One can show (see Section 3.4.1 in [12]) that, given two different
sets of linearly independent functionals a1, . . . , an ∈ F ′ and â1, . . . , ân ∈ F ′ with S :=
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Sa1,...,an (F) = Sâ1,...,̂an (F), the corresponding maps σ and σ̂ are gauge equivalent (i.e.
there is an invertible A ∈ Mn,n(�) such that σ (T) = A−1σ̂ (T)A for all T ∈ S).

3.2. Resulting solution formulas. The following result says that if U is a solution
of the ncKP (1) and we can arrange U ∈ Sa1,...,an (F), then applying σ to U yields a
solution of the matrix-KP (1) with values in the n × n-matrices.

PROPOSITION 3.4. Let F be a Banach space and a1, . . . , an ∈ F ′ constant, linearly
independent functionals. If U = U(x, y, t) ∈ Sa1,...,an (F) solves the ncKP, then u(x, y, t) =
σ (U(x, y, t)) solves the matrix-KP.

Proof. Since U ∈ Sa1,...,an (F), we can read the ncKP (1) as an operator equation in
the Banach algebra Sa1,...,an (F). But σ is an algebra homomorphism, so application of
σ to (1) immediately shows that u = σ (U), which is a function with values in n × n-
matrices, again solves (1). �

We are now in the position to prove Theorem 1.2.

Proof of Theorem 1.2.
Step 1: The operator-function U = (I + ML)−1(B − MAL) solves the ncKP (1) by
Theorem 1.1. Thus, this is also the case for

Ũ = U − B = (I + ML)−1((B − MAL) − (I + ML)B)

= −(I + ML)−1M(AL + LB).

Step 2: As a consequence of the n-dimensionality condition (3),

Ũ = −(I + ML)−1ML̂(AC + CB)

= −(I + ML)−1ML̂
n∑

j=1

aj ⊗ cj =
n∑

j=1

aj ⊗ fj ∈ Sa1,...,an (F),

where fj = −(I + ML)−1ML̂cj ∈ F . Thus the operator-solution has the right form to
apply Proposition 3.4, and we get a matrix-solution u of (1) by

u = (〈fj, ai〉)n
i,j=1. (12)

Step 3: It remains to verify the solution formula in terms of the determinant available
on the underlying quasi-Banach ideal. To this end we use the multiplicity property
of determinants and the fact that on the finite-dimensional operators the generalized
determinant δ coincides with the standard determinant det (in particular δ(I + a ⊗ c) =
det(I + a ⊗ c) = 1 + 〈c, a〉 for one-dimensional endomorphisms a ⊗ c). Thus,

〈fj, ai〉 = 1 − δ(I − ai ⊗ fj)

= 1 − δ(I + (I + ML)−1(ai ⊗ M�j))

= 1 − δ((I + ML)−1(I + ML + ai ⊗ M�j))

= 1 − δ(I + ML + ai ⊗ M�j)
δ(I + ML)

. �
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REMARK 3.5. If in addition D ∈ A(E, F), then the following reformulation of the
solution formula holds:

u =
(

1 − δ

(
I −(L + ai ⊗ �j)

M I

)/
δ

(
I −L

M I

))n

i,j=1

.

Indeed, we check

δ

(
I −L − ai ⊗ �j

M I

) /
δ

(
I −L

M I

)
= δ

⎛⎝(
I −L

M I

)−1 (
I −L − ai ⊗ �j

M I

)⎞⎠
= δ

(
I −(I + LM)−1(ai ⊗ �j)

0 I + (I + ML)−1M(ai ⊗ �j)

)

= δ(I − (0, ai) ⊗ ((I + LM)−1�j,−(I + ML)−1M�j))

= 1 + 〈(I + ML)−1M�j, ai〉 = 1 − 〈fj, ai〉.
Note that for the above calculation we have also used that (I + ML) is invertible if and
only if (I + LM) is invertible and that(

I −L
M I

)−1

=
(

(I + LM)−1 0
0 (I + ML)−1

)(
I L

−M I

)
.

4. Simplified formulas for the scalar KP equations. In the application of our
solution formulas, involved computations are mainly caused by large determinants.
The formula for the n × n matrix-KPs in Theorem 1.2 requires the calculation of n2 + 1
determinants. For n = 1 we may rewrite the formula so that only one determinant is
left, resulting in a formula for which it becomes obvious that it generalizes the scalar
one-soliton.

THEOREM 4.1. Let E and F be Banach spaces and A a quasi-Banach ideal equipped
with a continuous determinant δ. Let A ∈ L(E), B ∈ L(F), D ∈ L(E, F) and assume that
C ∈ A(F, E) satisfies the one-dimensionality condition AC + CB = a ⊗ c where a ∈ F ′,
c ∈ E.

Then
u = −∂x log δ(I + LM),

where L(x, y, t) = exp(Ax + α−1A2y − 4A3t)C and M(x, y, t) = exp(Bx − α−1B2y −
4B3t)D is a solution of the KP equation

(ut − 6(ux)2 + uxxx)x + 3α2uyy = 0

on {(x, y, t) ∈ � | δ(I + LM) �= 0}.
Proof. Starting from (12) in the scalar case n = 1 we use a different argument

to reformulate the solution formula in terms of determinants. Since on the one-
dimensional operators the (usual) trace tr coincides with evaluation on the involved
functional,

u = 〈 f, a〉 = tr(a ⊗ f ) = −tr
(
(I + ML)−1ML̂(a ⊗ c)

)
.
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Reinserting the one-dimensionality condition, we get

u = −tr ((I + ML)−1M(AL + LB))

= −tr (M(I + LM)−1(AL + LB)).

In the subsequent manipulations, we might deal with operators which not necessarily
have finite rank. Thus we cannot use the trace tr for these arguments. For this reason
we rewrite the formula in terms of the generalized trace τ associated to the determinant
δ on the underlying quasi-Banach ideal using the fact that on the finite-dimensional
operators both traces coincide.

u = −τ (M(I + LM)−1(AL + LB))

= −τ ((I + LM)−1(AL + LB)M)

= −τ ((I + LM)−1(LM)x)

= −∂x log δ(I + LM).

For details and references on the employed theory of traces and determinants on
quasi-Banach ideals we refer to [12]. �
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