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Abstract—Seven sedimentary bentonite deposits were investigated in the Miocene series of the Pannonian
Basin. The following stratigraphic and genetic characteristics were significant: (1) all deposits were
formed within a transgressive series of a given Miocene sequence; and (2) it is possible that the source
material of the bentonites is rhyolitic, confirmed by radiometric data proving simultaneous rhyolite tuff
volcanism.

A detailed investigation on three lithologically different bentonite horizons within the same
transgressive series was made at Sajobabony to determine the source material and to determine the
causes of the differences. X-ray diffraction, differential thermal analysis and geochemical data of the
different lithological types show that they all have rhyolitic source material, although in the case of the
lowermost horizon the existence of reworked material from an underlying andesite tuff series is also
presumed. The main difference is the degree of weathering. Considering the ratio between the amorphous
phase and the montmorillonite, the amorphous volcanic glass can be regarded as the main source of the
montmorillonite formation. The differences in the degree of alteration can be related to the changing
characteristics of the tuff accumulation and the sedimentation. Transgression decreases the sedimentation
rate allowing the optimal alteration of the amorphous phase. The increasing intensity of the tuff
accumulation can also limit the bentonite formation because rapid deposition and burial present too little
time for the optimal alteration of the amorphous phase.

Summarizing the results from the stratigraphic interpretation of the bentonite deposits and from the
comparative analyses of the different bentonite horizons within the same transgressive systems tract, we
can state that the relationship of the tectonic-related tuff accumulation and the eustasy-related
sedimentation rate can affect both the possibility of bentonite formation in macro-scale and the degree
of bentonitization in micro-scale.
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INTRODUCTION

During the past decade the Department of Mineralogy
and Geology at the University of Debrecen has carried
out geological mapping of the East Borsod Basin in
North Hungary in the course of which a significant
sedimentary bentonite deposit (in Central European
terms) was discovered in the upper part (Sarmatian
stage) of the Miocene series. Due to its potential
economic importance a national research programme
provided funding for further investigation of the
bentonite deposit by deep drilling.

As a result of the stratigraphic and mineralogical
analysis a genetic model was outlined for the formation of
the bentonite deposit that emphasizes the role of
accompanying eustatic and tectonic events. Moreover,
considering different time scales, changes in the relation-
ship between eustasy and tectonic-related volcanic events
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determined not only the occurrence of sedimentary
bentonite deposits but even the quality of the sedimentary
bentonite formed.

We suggest that these phenomena might be important
not only from the bentonite exploration point of view but
also in the course of modeling medial and short-term
changes in eustatic curves. Therefore, to test the model,
we examined the most important sedimentary bentonite
deposits in the Pannonian Basin from the point of view
of their source material and stratigraphic position. In this
paper the results of data collection and experiences with
the NE Hungarian deposit demonstrate the kind of
eustatic, volcanic and tectonic events that lead to the
formation of sedimentary bentonites and show how they
can affect the facies type and the quality of the preserved
bentonites.

First we give a brief outline of the structural
background for the Miocene rhyolite tuff volcanic
activity and the eustatic development of the Pannonian
Basin. Then we demonstrate the stratigraphic position,
mineralogical and geochemical characteristics and
genetic interpretation of the economically important
bentonite deposits referred to here as ‘reference bento-
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nite deposits’ from the Pannonian Basin focusing on the
similarities with the recently explored deposit. After this
we will show some essential mineralogical and geo-
chemical data of this deposit to prove the common
genetic source and different lithological types and
varying quality of the bentonite layers within the same
deposit.

GEOLOGICAL BACKGROUND

Structural development and paleogeography of the
Pannonian Basin in the Miocene

The Cretaceous-Paleogene tectonic development of the
Pannonian basin is somewhat controversial. Some scien-
tists account for facies differences as due to major strike-
slip movements of the two micro-plates forming the
basement of the present Pannonian Basin (Kovacs, 1982).
Others explain the facies differences by rotation and
strike-slip movement (Balla, 1986; Schmidt et al., 1991).
There are also suggestions for very limited strike-slip
movements and considering the major faults as reverse
faults displaying an imbricated structure that is the result
of rapid shortening and rotation (Kozak et al., 2001).

However, about the structural development in the
Miocene, there is greater concensus that it involved the
extension of the inner Carpathians simultaneously with
the emergence and deformation of the outer Carpathians
(Horvath and Royden, 1981; Horvath, 1993). According
to Tari et al. (1992) and Fodor (1995) most of the sub-
basins of the Pannonian Basin are of transtensional
origin. The Neogene Pannonian Basin itself is consid-
ered to be a flexural basin superimposed on a previous
flexural Paleogene basin developed to the south of the
inner Western Carpathian units (Tari et al., 1993).
According to Marton and Fodor (1995), rotation of
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smaller lithospheric blocks took place in the course of
the extending of the inner Carpathian area.

The Neogene sediment formation of the Paratethys
nearly took place simultaneously with the Cenozoic
structural development of the Alpine-Carpathian oro-
genic system (Figure 1) (Brinkmann, 1966; Senes,
1967). The basins on both sides of the uplifting ranges
of the Carpathians comprise the so-called Central
Paratethys. The flexural basins of the Central
Paratethys in the inner Carpathians are called the
Pannonian Basin, which is strongly disturbed by
Miocene tectonic movements (Figure 2). Its Miocene
sediment series have enough continuity for the sequence
stratigraphic reconstruction; however, in the marginal
sub-basins like the Nograd, Borsod and Varpalota
Basins, due to the intensive Miocene tectonic events,
the magnitude of the unconformities is greater than
average in the Pannonian Basin.

AGE AND ORIGIN OF THE SYNTECTONIC
RHYOLITE TUFF ACCUMULATIONS IN THE
MIOCENE

Age of the rhyolite tuff volcanism

The Miocene structural development of the
Pannonian Basin was accompanied by a more-or-less
continuous rhyolite tuff volcanism. The exploded
materials of the most intensive periods of this volcanism
are commonly referred to as ‘horizons’ of the rhyolite
tuff complexes. The ages determined for these horizons
are 19.6+1.4 Ma for the Gyulakeszi Rhyolite Tuff
(GRF), 16.4+0.8 Ma for the Tar Dacite Tuff Formation
(TDF), 13.7+0.8 Ma for the Satoraljatijhely Rhyolite
Tuff (SRF) and 12.5+0.5 Ma for the Szerencs Rhyolite
Tuff (SZRF) (Hamor et al., 1980; Gyalog, 2001).
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Figure 1. Position and paleogeographic sketch of the Paratethys during the Miocene (Senes, 1967).
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Figure 2. Paleogeographic map of the Pannonian Basin in the Miocene (Hamor, 2001).

However, the SRF and SZRF ‘horizons’ are, in fact, part
of a continuous sequence of volcanogenic accumulation. To
confirm the relatively continuous development of the tuff
accumulation we collected, the previously published K/Ar
radiometric data of rhyolite tuff samples taken from the
northern part of Hungary within a region not wider than
150 km (Figure 3) were used. The data were measured at
the Institute of Nuclear Research of the Hungarian Academy
of Sciences (ATOMKI) in Debrecen and published in
several papers over recent decades (e.g. Hamor et al., 1980;
Széky-Fux et al., 1987; Marton and Pécskay, 1998).

The sampling areas (Figure 2) were the Tokaj
Mountains, the foreland of the Biikk Mountains, the
covered volcanics of the Great Hungarian Plain and
some samples from the associated sub-basins of the
Pannonian Basin like the No6grad Basin. Data with
uncertainty up to 1 m.y. were ignored and the maximum
and minimum age of the samples are also demonstrated
in the diagram. The radiometric data can also be found
between the age intervals of the previously defined
rhyolite tuff horizons and the accumulation can be
regarded as continuous especially since 16.3 Ma.

Origin of the rhyolite tuffs

As demonstrated by petrological and geochemical
investigations (Poka et al., 1998) the tuff complexes
were derived from the melting of granite or metasedi-
mentary formations of the upper crust. However, in the
case of the TDF, the mixing of a rhyolitic and a mantle
derived andesitic magma can be assumed.
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The tectonically related uprising and eruption of the
rhyolite tuffs are proven convincingly by paleomagnetic
investigations (Szakacs et al., 1998). The paleomagnetic
data of the GRF indicate 80° counterclockwise rotation
since the accumulation of the tuff complex, those of the
TDF indicate 30° counterclockwise rotation, while in
case of the SRF no rotation is indicated by the
paleomagnetic records. The gradual decrease in paleo-
magnetic differences is interpreted as due to strong
rotation of the basement accompanied by the rhyolite
tuff volcanism.

Problem of the reworked tuffs

There is a long controversy on the appearance of
reworked tuff horizons within the Miocene sediments. A
sedimentological interpretation of the repeated occur-
rence of the tuff ‘horizons’ may be that they originated
from the re-sedimentation of older tuff horizons.
However, based on comparative mineralogical investi-
gations there is evidence for repeated explosions (e.g.
Kubovics et al., 1971). The radiometric data given in
Figure 3 prove repeated volcanic eruptions.

EUSTASY AND SEDIMENTOLOGY OF THE
PANNONIAN BASIN DURING THE MIOCENE

Vakarcs et al. (1998) reinterpreted the sedimentary
formations of the Pannonian Basin from the aspect of
sequence stratigraphy and correlated them with the
sequences of the Central Paratethys and with those
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Figure 3. K/Ar radiometric data of the rhyolite tuffs in the
Pannonian Basin and their relationship with the defined tuff
horizons in the Pannonian Basin and in the Biikk Foreland.

defined by Haq et al. (1988). We applied their
stratigraphic dissection (Figure 4) to the Central
Paratethys correlating it with the Lithostratigraphic
Units of the bentonite-bearing Borsod, Nograd and
Varpalota Basins demonstrated in Figure 2.

The Oligocene and Miocene sequences can barely be
separated in the Pannonian Basin. The offshore condi-
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tions of the uppermost Oligocene and lowermost
Miocene sequences are represented by the Szécsény
Schlier Formation interfingering with the littoral, sub-
littoral, occasionally brackish-lagoonal shoreline sandy
facies of the Torokbalint Sandstone Formation (Baldi,
1997). The opening event of the Eggenburgian stage is
the lower sequence boundary of the Bur-1 transgression.
It is represented by the unconformity between the
Szécsény Schlier Formation and the overlying
Pétervasara Sandstone Formation (Sztano, 1994).

The Bur-2 transgression is represented by the
occurrence of a transgressive surface within the
Pétervasara Sandstone Formation (Sztané and Tari,
1993) in the NN2 nanoplankton zone (Nagymarosy,
1988). Terrestrial facies interfingering with the
Pétervasara Sandstone are represented by the Darnd
Conglomerate while the overlying terrestrial series is the
Zagyvapalfalva Variegated Clay Formation.

The Bur-3 transgression is represented at the base by
the variegated fluvial and marsh sediments of the
Nogradmegyer Member and by formerly limnic, then
paralic coal-bearing series of the Kisterenye Member of
the Salgoétarjan Lignite Formation (Hamor, 1985). The
latter is interfingered with the shallow marine silts of the
Matranovak Member. The sequence is closed by the
regressive, burrowed, carbonaceous silty series of the
Vizslas Sand Beds.

The Bur-4 transgression starts as a shoreline facies
beginning with basal conglomerates represented by the
Egyhazasgerge Formation and continued by the thick
offshore facies of the Garab Schlier Formation within
the NN4 nanoplankton zone (Horvath and Nagymarosy,
1979). The sequence is closed by the shallow-marine
reef facies of the Fot Formation (Hamor, 1985).

The Lan-1 transgression is represented by variegated
clay, silt and fine-grained sandstones of the Perbal
Formation with tuff intercalations (Jambor, 1997) and by
the yellowish gray mollusc-bearing sandstone and
lithothamnium mollusc-limestone of the Samsonhaza or
Pécsszabolcs Formations which are frequently referred
to as Leitha because of their former name ‘Lower
Leithkalk’ (Hamor, 1997a). It has reef-archipelago
facies and rich macrofauna. The sub-neritic facies is
represented by the gray mollusc-bearing clay marl of the
Baden Clay Formation rich in macro- and microfossils
and accumulated in the NNS5 nanoplankton zone
(Nagymarosy, 1980). The upper part of the sequence is
represented by the glauconitic sandstone and calcareous
siltsone of the Pusztamiske Formation (Selmeczi, 1997).

The Lan-2/Ser-1 transgression is represented by a
multiple seam lignite sequence and mollusc-bearing
marl of the Hidas Lignite Formation (Kokay, 1966,
1967; Hamor, 1998) and by the Lithothamnium lime-
stone of the Rakos Limestone Formation (Hamor, 1997b)
beginning with conglomerate in some places. Offshore
facies are represented by the foraminiferal clay marl of
the Szilagy Clay Marl Formation (Hamor, 2001).
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The Ser-2 transgression leads to the accumulation of
the gray, greenish gray mollusc-bearing clay and clay
marl series of the Kozard Formation (Hamor, 1997¢c). At
the brackish shoreline facies the mollusc-bearing calcar-
eous sandstone of the Tinnye Formation were deposited.
Fluvial and terrestrial sediments of this period are
collected in the Sajovolgy Formation (Hamor, 1985).

The existence and correlation of the Ser-3 transgres-
sion is indicated by the unconformity within the Kozard
Formation the age of which is well indicated by mollusc
fauna referring to the Upper Sarmatian or in the Eastern
Paratethys called Lower Bessarabian age of the upper
part of the Kozard Formation (Kokay, 1984; Piispoki et
al., 2003). The fluvial-terrestrial and shoreline—near-
shore facies of the sequence are represented by the
various appearance of the Sajovolgy Formation.

METHODS

To understand better the relationship between the
bentonite formation and the eustatic and tectonic events
we collected the stratigraphic, lithological, facies,
mineralogical and geochemical data of the industrially
most important Hungarian Miocene bentonite deposits
and interpreted the data from the point of view of
stratigraphic position and source material.

As the recently explored bentonite deposit at
Sajobabony may have significant industrial importance,
21 deep boreholes were planned, supported by a national
research program (see the Acknowledgments section
below) to evaluate the presence and the quality of the
raw material. Fifteen of the deep boreholes were drilled
taking core samples continuously. The total length of the
drillings was 450 m, with >2000 samples taken. Only six
of the boreholes produced geophysical data.

The facies characteristics of the deposit were
described by macro- and microscopic investigation of
210 samples. Sedimentological analyses for grain-size
distribution of 300 samples and micromineralogical
analysis with the help of an optical microscope in 15
samples were made at the University of Debrecen.

X-ray diffraction measurements of 469 bentonitic
samples from the core samples of the boreholes were
carried out at the Geological Institute of Hungary to
determine the mineralogy quantitatively. X-ray investi-
gations were carried out by a PC-controlled Philips PW
1730 powder diffractometer with the following measure-
ment conditions: Cu anticathode, 40 kV and 30 mA
current, graphite monochromator, goniometer velocity
2°/min. Mineral quantity was determined from the
relative rates of intensity of the characteristic reflections
using either literature data or empirical corundum
factors for each mineral (Klug and Alexander, 1954;
Naray-Szabo et al., 1965; Rischak and Viczian, 1974;
Rischak, 1989; Thorez, 1995).

The montmorillonite content was measured in two
different ways for better determination based on 001 and
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110 reflection intensities using different empirical
factors, 0.7 and 1.5 respectively. This was necessary
because most of the samples exhibited low-intensity
diffuse 001 base reflections but sharp high-intensity 110
reflections. The averages of the different data were also
calculated.

The thermal analyses were obtained by
Derivatograph-PC with simultaneous TG, DTG and
DTA set in a corundum crucible, with a heating speed
of 10°C/min up to 1000°C and with Al,O; as inert
material. The quantitative determination of the thermally
active minerals is based on the stoichiometric calcula-
tion of the heat-induced decomposition process of the
identified minerals. The calculation measures mass
deficit during the analysis. The thermal analyses were
controlled by simultaneous measurements at the
Department of Mineralogy and Geology of the
University of Debrecen (Sz60r and Balazs, 2003).

Geochemical components as major elements from 35
samples and trace elements from 14 samples were
investigated by inductively-coupled plasma-mass spec-
trometry (ICP-MS) at the Geological Institute of
Hungary.

In order to detect the biostratigraphic position of the
bentonite-bearing sedimentary series, we were able to
prepare and document macrofossils from the core
samples. The macrofauna was identified by I. Magyar
(of MOL — the Hungarian Oil Company) and J. Kokay
(of the Geological Institute of Hungary).

RESULTS

Bentonite deposits in the Miocene series of the North
Hungarian Basin series

In Figure 4 we indicated the stratigraphic and facies
position of the economically important sedimentary
bentonite deposits of North Hungary. These deposits
can be regarded as reference localities. Their main
characteristics are listed below; some geological profiles
can be seen in Figure 5 and their mineral and chemical
contents are shown in Table 1.

Istenmezeje

The underlying series is pebbly glauconitic sandstone
of the Pétervasdra Homokkd Formation. The lower bed
surface of the bentonite is the regional unconformity
appearing within the Pétervasara Sandstone and inter-
preted as a sequence boundary by Sztand (1994). The
lower layers of the bentonite deposit contain reworked
intraclasts of the underlying series. The overlying series
is the fine sandy facies of the Pétervasara Sandstone
Formation containing reworked clasts of the bentonite
deposit (O. Sztano, pers. comm.).

The lower part of the bentonite is intraclastic. It is
overlain by a well-bedded yellowish bentonite, the base
of which has lens-like bedding. The thickness of the beds
is between 0.4 and 1.5 m. On the uppermost part of the
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Table 1. Quantities (wt.%) of some mineral phases and major elements of bentonite samples from the reference bentonite

deposits.
Mineral phases Major elements

Montmorillonite  Quartz  Cristobalite Plagioclase SiO, Al,O5 Fe, 05
Istenmezeje 50—80 1-25 10—40 1-5 60—65 13—-17 2—4
Pétervasara 50—60 3-5 32-35 3-5 68—69 15 2.6-2.8
Salgotarjan 42-56 no data no data no data 69.2 16.6 2.28
Band 40-56 no data no data no data 55-57 17-26 2.5-35
Odorogd 75 no data no data no data no data no data no data
Budatétény 70-75 20-25 55—60 10—-17 3—4

deposit, a gray sandy bentonite becomes dominant,
showing similarity with the overlying sandy series
(Radovits, 1991).

The source of the bentonite deposit is the GRF; the
eustatic event is the Bur-2.

Pétervasara

The age and stratigraphic position of the deposit are
very similar to those of the Istenmezeje bentonite
deposit (Sztand, 1994). The under- and overlying series
is the Pétervasara Sandstone Formation; however, in the
case of the Pétervasara bentonite deposit the overlying
series is a silty marl series of the Pétervasara Sandstone
Formation.

The depositional environments of the bentonite
deposit were less disturbed than for the Istenmezeje
bentonite, so the well-bedded yellowish bentonite type is
dominant, with the sandy form subordinate (Radovits,
1991). The source of the bentonite deposit is the GRF;
the eustatic event is the Bur-2.

Salgétarjan

The underlying formation of the deposit is the
variegated clay series of the Nogradmegyer Member,
its overlying series is the gray silt and silty clay or the
second coal seam of the lignite-bearing series of the
Salgotarjan Lignite Formation (Hamor, 1985). The
changing of the limnic character of the formation into
paralic indicating the effect of the transgression can be
correlated with the appearance of the bentonite deposit.

The material of the deposit is a white, yellowish
white sometimes gray bentonite (Barna, 1957). The
source of the bentonite deposit is the synchronously
accumulated and reworked material of the GRF; the
eustatic event is the Bur-3.

Band

The bentonite site lies unconformably on the eroded
surface of the Karpatian series. The overlying materials
are the mollusc-bearing clay-marls of the Baden Clay
Formation. The formation can thus be correlated with the
transgressive shoreline to nearshore series of the Perbal
Formation (Hamor, 2001).

The series contains several bentonite layers inter-
fingering with sandy coastal materials. The deposit
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contains three separate bentonite layers. The source of
the bentonite deposit is the TDF; the eustatic event is the
Lan-1.

Varpalota

The underlying formation is a basal conglomerate
lying on the eroded surface of the Lower Badenian
sequence. The overlying and partly enclosing series is
the lagoonal Hidas Lignite Formation (Kokay, 1967;
Hamor, 1998).

The deposit is composed of 7—8 bentonite layers with
thicknesses ranging from 0.6 to 1.4 m and separated
from each other by lignite seams on the top of the
bentonite deposit. The material of the bentonite is not
homogeneous; sandy and calcareous types can also be
seen.

The source of the bentonite deposit is the rhyolite tuff
erupted between the TDF and SRF or the oldest
explosions of the SRF; the eustatic event is the Lan-2/
Ser-1.

Odb’régd

The underlying series is the Triassic dolomite
covered by a thin Miocene sandy clayey series. The
covering series is the Lithothamnium limestone of the
Rakos Formation.

The thickness of the bentonite layer varies between
0.8 and 2 m. It comprises a gray, greenish gray bentonite
containing biotite; accessory minerals include kaolin and
some carbonate minerals. The source of the bentonite
deposit may be a rhyolite tuff eruption between TDF and
SRF; the eustatic event is the Lan-2/Ser-1.

Budatétény

The underlying series of the bentonite deposit is
Badenian yellowish and gray clay and sandy clay
together with pebbly tuffaceous sandstone. The non-
bentonitic intercalations and overlying strata of the
deposit are composed of Sarmatian limestone of the
Tinnye Formation.

The lower part of the Sarmatian series is a biogenic
limestone with reef facies and with rich fossil associa-
tion of coral and bryozoan species. The intercalations
between the bentonite layers have a fragmented char-
acter occasionally with intraclasts and mollusc remnants.
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The bentonite layers, <0.5 m thick, are situated in
the limestone series 2—3 and 15—20 m apart from each
other. The bentonite can be dark green and rigid, sandy
or yellowish gray with calcareous infiltrations. The
source of the bentonite deposit might be the SRF; the
eustatic event is the Ser-2.

Sajobabony

The base of the series is a widely occurring andesite
tuff horizon of the Dubicsany Andesite Formation; the
overlying series is the mollusc-bearing greenish gray
material of the Kozard Formation (Piispoki et al., 2003).

This deposit was explored recently so the strati-
graphic interpretation and research is the most detailed.
Based on the data of the deep drilling and natural
outcrops the sequence begins with a terrestrial conglom-
erate at the bottom lying unconformably on the surface
of the underlying andesite tuff horizon (Figure 6a). The
overlying strata are well sorted and comprise well-
bedded sandstone with cross stratification.

The first bentonite horizon (B0) has a thickness of
2—2.5 m. The montmorillonite content is 45—60%. This
bentonite layer is covered by sandy facies of the
shoreline called ‘Lower placer’ being 5—6 m thick.
The increasing energy of the shallow marine shoreline
unit is well demonstrated by reworked bentonitic clasts
from the BO horizon (Figure 6b) and by mostly oblique
to vertical trace fossils and incomplete bioturbation by
suspension feeding organisms (Figure 6¢) (Bromley and
David, per. comm.).

The second bentonite horizon (BI) has a thickness of
1.8—2 m and its montmorillonite content is 45—60%.
The bedding is laminar, though bioturbation can also be
detected (Figure 6d). It is covered by not more than 2 m
of thick sandy shoreline sediments. The sandy facies is
similar to the ‘Lower placer’, the material may be arkose
or placer in its character with the dominance of pyroxene
due to the short transportation (‘Upper placer’). Mainly
immature cross-bedded sandstones, with small-scale
ripple cross-lamination and frequently with exotic
fragments, e.g. fine pumice intercalations or dust tuff
fragments along the foreset beds can also be seen
representing the sandy shoreline.

The third bentonite horizon (BIla) has a thickness of
>4 m. Its montmorillonite content is between 40 and
60%. The yellowish green material contains randomly
distributed pumice fragments (Figure 6e).

The fourth bentonite horizon is represented by a series
of strongly bentonitized rhyolite tuff beds (‘bentonitic
tuff” BIIb) with montmorillonite content from 30 to 60%.
The rhyolite tuff was deposited under submarine condi-
tions. In breaks in the tuff accumulation, the weathering
of the formerly deposited tuff was continuous, initiating
the formation of stratigraphically traceable changes in the
quality of bentonitic tuff (Figure 6f). Overlying the
‘bentonitic tuff’, a bentonite horizon (BIII) <1 m thick
appears, with a montmorillonite content of 60%.
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Following the formation of the BIII bentonite
horizon, open marine paleoconditions became dominant,
with increasing silt and carbonate content. The thickness
of the marine deposits reaches 10 m. In the lower part,
well preserved index fossils are present (Figure 6g).

The overlying series is characterized by cyclic
sedimentation of sandy silt and fine sandstone presum-
ably representing a lower shoreface paleoenvironment
with the dominance of sandy shorface facies gradually
increasing upwards.

The source of the bentonite deposit might be the
SZRF; the eustatic event is Ser-3.

Sima

Underlying the bentonite deposit is the fragmented
and strongly weathered surface of a lower Sarmatian
andesite complex (Baskd Andesite Formation). The
overlying materials are pumiceous rhyolite tuff. The
Upper Sarmatian age of the deposit can be determined
from the microfossils of the neighboring limnic series
deposited within a similar stratigraphic position. It has to
be mentioned that several Hungarian geologists regard
the series as liminic or limnic-paralic facies with
brackish character so the relationship of the series with
the flooding surface of the transgression is not entirely
clear. However, the stratigraphic analogy with the well
defined Sajobabony deposit may refer to an analogy in
the genetic aspect as well.

The bentonite is a greenish pelitic, subordinately
sandy material. The mineralogy is dominated by mont-
morillonite (61—-80%) with kaolinite (1—10%), cristo-
balite (11-26%) and opal (1—7%). K-feldspar can also
be detected. Within the main elements, the SiO, content
is 55.7%, Al,0O5 is 15.9%, and Fe,05 is 1.91% (Kovacs-
Palffy, 1998).

The source of the bentonite deposit is thought to be
the SZRF; the eustatic event is the Ser-3.

MINERALOGY AND CHEMISTRY OF THE
SAJOBABONY BENTONITE DEPOSIT

Based on the lithological characteristics of the
bentonite horizons we could determine three main
lithological types of bentonites in the whole bentonite-
bearing series of Sajobabony bentonite deposit:

(1) The bentonitic tuff is represented by samples from
the BIIb layer. This lithological type has a primarily
tuffaceous character, with bentonitic interbeddings and
bentonitic clasts (Figure 6f). Along the small fractured
zones of the reworked tuff small bentonitic veins can
also be seen. The bentonitic layers and veins indicate the
bentonitization of the tuff, but the tuffaceous matrix also
has relatively high (20—30%) montmorillonite content.

(2) The tuffaceous bentonite is represented by a Blla
layer. This well-bedded greenish brown lithological type
contains some reworked detrital minerals like muscovite
and undulating quartz crystals and encloses numerous
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Figure 6. Characteristic facies of the Sajobabony bentonite deposit. (a) Unconformity between the underlying andesite tuff horizon
and the basal conglomerate of the bentonite-bearing series. (b) Reworked bentonite clasts at the boundary of the lowermost
bentonite horizon (B0) and its overlying sandy faces (‘Lower placer’). (c) Bioturbation in the sandy shoreline facies of the ‘Lower
placer’. (d) Laminated structure and bioturbation of the sedimentary bentonite (BIb). (¢) Scattered pumice fragments in the texture
of the tuffaceous bentonite (BIla). (f) Bentonite intercalations in the bentonitic tuff (BIIb). (g) Lower Bessarabian index fossils in
the overlying sandy marl.
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1.71 1.27
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17.45
16.48

K-feldspar Plagioclase Calcite Cristobalite
6.93
5.40
4.06

7.94
14.03
10.45

0.89
1.63
0.99

smectite
0.03 0.14
0.17 0.34
0.01 0.14

0.30
1.17
3.65

Illite Muscovite Kaolinite- Kaolinite Chlorite Quartz
5.74
5.89
443

Illite-
mont.
3.95
4.06
3.66

Table 2. Mean values of the mineral components of the different lithological types.
mean
110*
33.74
33.51
3829 41.33

reflection
35.92

Montmorillonite
33.98

based on

31.56
33.04

44.37

001

n
133
120
175

* Multiplied by 1.5 (Ca-montmorillonite) empirical factor

Tuffaceous bentonite Blla
Sedimentary bentonite BIb

Bentonitic tuff BIIb

Facies type
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small pumice fragments. The enclosed pumice fragments
give the material a strong tuffaceous character
(Figure 6e).

(3) The sedimentary bentonite is represented by B0,
BI and BIII bentonite layers. This lithological type is a
yellowish white material with generally >50% mont-
morillonite and no carbonate. Bedding is laminar,
mainly graded, which may be due to the periodical
submarine resedimentation or due to a periodical dust
tuff accumulation with moderate intensity. Bioturbation
can also be seen frequently on the bed surfaces
(Figure 6d). These secondary deposits of smectite-rich
clays are usually termed sedimentary bentonites (Grim
and Giiven, 1978).

The three lithological types represent variations in
volcanic and sedimentary conditions. The first has
dominantly tuffaceous character where the effect of the
sedimentary processes is subdominant. The second has
tuffaceous character with more apparent signs of
sedimentary effects like the occurrence of detrital
materials. The third lithological type has dominantly
sedimentary character.

Considering the amount and size of the pumice
fragments, the source material of the first and second
lithological types was much coarser, however, still fine
tuff, with crystals usually not larger than 0.1 mm
whereas that of the third lithological type was a fine
volcanic ash.

The mineralogical differences in the three lithologi-
cal types of bentonites are well demonstrated by the
stratigraphic distribution of the montmorillonite, and by
geochemical investigations (Kovacs-Palffy, 1998). Thus
the three main types were adequate for a detailed
comparison between different bentonite types formed
within the same transgressive systems tract.

X-ray powder diffraction analysis

Based on the investigation of 133 samples (Table 2),
in the bentonitic tuff, clay minerals comprise the main
mineral group (44%). Among the clay minerals, mont-
morillonite clearly dominates (77% of the clay)
(Figure 7). Other clay minerals are illite-montmorillon-
ite randomly mixed-layer minerals (9%) and illite (2M;
>> 1Md) (13%). The next dominant constituent is the
amorphous phase (23%) with 7% K-feldspars and 13%
plagioclase while the amount of quartz is no higher than
8% (Figure 8). Muscovite is present in six samples
(4—-9%).

Based on mean values from data of 120 samples in
tuffaceous bentonite, the dominant fraction is also the
clay mineral group, the content of which is similar to
that of the bentonitic tuff (47%). Among clay minerals,
montmorillonite is dominant — 72%). Other clay
minerals are illite-montmorillonite randomly mixed-
layer minerals (9%), illite (2M; >> 1Md) (13%). Small
amounts (1—5%) of kaolinite were also detected in 15
samples. The amount of the X-ray amorphous phase is
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Figure 7. Distribution of the lithological types in the montmorillonite/amorphous phase diagram.

much less than that in the rhyolite tuff (13%). The
quantities of feldspar are similar to those in the rhyolite
tuff — 17% plagioclase, and 5% K-feldspar. The quartz
content reaches 14%. Muscovite was detected in 19
samples (4—15%).

According to data from 175 samples, sedimentary
bentonites have the greater quantities of clay minerals
(54%) with montmorillonite dominant (76% within the
clay mineral group). Other clay minerals are illite-
montmorillonite randomly mixed-layer minerals (7%)
and illite (8%). Kaolinite was detected only in 13
samples (1—4%). The amount of X-ray amorphous phase
is the least significant (8%), the plagioclase content is
16% and that of K-feldspar is 4%. Quartz comprises 10%
and muscovite was detected in 71 samples (4—16%).

Identification of the facies types on the XRD and DTG
curves

The different facies of the bentonites are well
represented by XRD patterns (Figure 9). In the case of
the bentonitic rhyolite tuff, the 001 basal reflection of
montmorillonite is weak and broad. The tuffaceous
bentonite has a greater montmorillonite content and the
sedimentary bentonite contains the most montmorillonite.

[+ Tuffaceous bentonite
O Sedimentary bentonites
| & Bentonitic tuff

AF ) PF
Figure 8. Distribution of the lithological types in the quartz/
alkali feldspar/plagioclase system.
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The existence of an X-ray amorphous phase is
indicated by the thermal characteristics of the different
bentonite types in Figure 10. The independent reaction
of the X-ray amorphous phase can be seen as an
important reaction between 240 and 280°C in the
samples from the bentonitic tuff. This reaction is
overlapped with those indicating that the molecular
water content and the dehydroxylation of the clay
mineral (indicated by hatched pattern in Figure 10) are
superimposed on the dehydroxylation reaction of the
X-ray amorphous phase spreading over a wide interval.

In the case of the tuffaceous bentonite, the existence
of the X-ray amorphous phase is also characteristic. In
the DTG curves it is easily observed since the
dehydroxylation reaction of the montmorillonite does
not return to the base line between 220 and 265°C but
can extend even to 400°C as an elongated slope. For the
sedimentary bentonite, the dehydroxylation of the mont-
morillonite is clearly separated into two steps. However,
the fact that the curve does not return to the base line
indicates the presence of some X-ray amorphous phase.

Geochemical data

Geochemical data were used primarily to demonstrate
the degree of weathering in the various lithological
types, secondarily to prove the common origin, and
finally to indicate differences between the three different
lithological types. Therefore, major elements, together
with the X-ray amorphous phase indicate the degree of
alteration. To investigate their genetic relationship, the
trace element quantities of the bentonitic tuff and
tuffaceous bentonite are compared.

Major elements were analyzed for 33 samples
(Table 3) to investigate the geochemical changes
initiated by weathering. The distribution of the samples
in the Na,O+K,0-SiO, system (Le Bas et al., 1986)
reflects the strong decrease in alkaline elements and
silica content due to bentonitization (Figure 11). The
bentonitic tuff represents the least, the tuffogenic
bentonite reflects the intermediate, and the sedimentary
bentonite demonstrates the most intense degree of
chemical weathering. On the ternary diagram of
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Figure 9. XRD patterns of the different lithological types.
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Figure 10. DTG and TG curves of the different lithological
types.

Englund and Jorgensen (1973) (Figure 12) a decrease in
alkaline elements occurs simultaneously with an
increase in Fe and Mg during the weathering. The
correlation between the amorphous phase and the silica
content refers to the significant decrease of the X-ray
amorphous phase with that of SiO, (Figure 13).

Trace element analyses of 14 samples (Table 4) were
performed to evaluate the genetic connections between
the bentonitic tuff and tuffaceous bentonite. Previous
studies have shown that those elements which tend to be
unaffected by weathering like Nb and Y are reliable
indicators of the original character of parent rock (Teale
and Spears, 1986; Merriman and Roberts, 1990;
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Rollinson, 1993; Huff et al., 1997a, 1997b). Figure 14
shows the Nb/Y ratio of the samples which has an
important role in demonstrating the genetic origin of
igneous rocks (Winchester and Floyd, 1977) together
with some elements like Cr, Co, V, Cu which could be
transported into the sedimentary basin from the exhum-
ing andesite tuff series, and with some elements like Sr,
Ba reflecting submarine depositional conditions. The
Nb/Y ratio is proved to be constant between the different
facies types, whereas both the elements of andesite tuff
origin and the elements reflecting submarine conditions
separate the various facies conditions.

DISCUSSION

Stratigraphic interpretation of the reference bentonite
deposits

Summarizing the data from the reference bentonite
deposits described from the Pannonian Miocene series,
some general characteristics can be stated. (1) All
deposits have been deposited within marine or lagoonal
series. (2) All were formed above regional discordances
and their base is usually a kind of transgressive facies
series like basal conglomerates. (3) The overlying series
is composed of nearshore or open marine sediments of
the subsequent sequence, so the bentonite-bearing series
can be regarded as a transgressive series. (4) The
appearance of the bentonite deposits is bedded and
extensively distributed. (5) Considering the geochemical
data, the source of the bentonites seems to be rhyolitic
while the possibility of simultaneous volcanic eruptions
cannot be excluded as the radiometric data regularly
prove continuous rhyolite tuff volcanism. (6) In several
cases the reworking of older tuffs and in some cases
(Sima, Sajobabony) the effect of underlying andesitic
materials cannot be entirely excluded. (7) Comparing
the stratigraphic position of the recently explored
bentonite deposit at Sajobabony, deductions can be
made about its origin; moreover in the case of
Sajobabony — because of the significant amount of
available data — further investigations could have been
made to separate different facies types within the same
transgressive systems tract.

MATERIALS OF THE SAJOBABONY BENTONITE
DEPOSIT

Source material

The tuffaceous character of the bentonite horizons is
reflected by their mineral association. Most of the
amorphous phase, the K-feldspar and plagioclase feld-
spar and some of the quartz may have originated from
rhyolite tuff. The common source of the different
lithological types is well represented by their distribu-
tions in the quartz/K-feldspar/plagioclase ternary dia-
gram (Figure 8). In these figures a general overlap of the
different facies types reflects the basically similar
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Figure 11. Position of the lithological types in the TAS diagram (Le Bas ef al., 1986).

quantities of the felsic minerals. Thus, quartz can also be
regarded as being of volcanic origin as its amount is very
similar in the different facies types.

The rhyolite tuff origin of the tuffaceous bentonite is
also demonstrated by the existence of pumice fragments
(Figure 6e). In the case of the sedimentary bentonite the
tuffaceous origin can be proved by the ratio between
quartz and feldspars. Notwithstanding the sedimentary
character of the material, the amount of plagioclase is
regularly three or five times as much as that of quartz
also questioning a significant detrital quartz input. At the
same time it must be noted that there may be significant
geochemical and mineralogical contamination of the
bentonite by reworked underlying andesite tuff. This is
indicated especially by the higher Fe content
(Figure 12), and confirmed by the fact that the under-
and overlying sandy facies have placer character with
the dominance of hypersthene which originated from the
andesite tuff.

The general presence of illite-montmorillonite ran-
domly ordered, mixed-layer phases (7—9%) also indi-
cates the existence of reworked detrital minerals in the
original rhyolite tuff layers.

The results from trace element analysis of the
bentonitic tuff and tuffaceous bentonite (Figure 14)

%
0.0,.05 *Q,

®  benlonitic wuff 0.1
+ tuffaceous bentonite
O sedimentary bentonite

AlOy

Figure 12. Distribution of the lithological types in the
Na,0+K,0+Ca0-Al,03-FeO+MgO system (after Englund
and Jorgensen, 1973).
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indicate a constant Nb/Y ratio simultaneous with
consequent increase of the concentration of the terrige-
nous elements from exhuming andesite tuffs (Cu, Cr, Co,
V) and of some other elements reflecting the submarine
depositional circumstances (Sr, Ba). The constant Nb/Y
ratio also indicates a common source (the same rhyolite
tuff series) for the bentonites while the consequent
changes in the concentration of the other elements refer
to the significant effect of the terrigenous contamination
and the submarine paleoconditions.

Different degree of weathering

As mentioned above, the three lithological types can
be regarded as three different cases from the point of
view of the volcanic and sedimentological processes.
These differences enabled the occurrence of three
different levels of weathering and so of bentonitization.

These different levels of alteration are also very
traceable by the connected interpretation of the XRD and
DTA curves. The first indicate the differences in the
intensity of the 001 reflections of the montmorillonite,
while the latter is overprinted by the quantity of the
amorphous phase. The main source of the bentonitic
clays must have been the volcanic glass of the rhyolite
tuff for which the degree of alteration should be well
represented by the ratio between the amorphous phase
and the montmorillonite (Figure 7). The bentonitic tuff
at a less intensive degree of bentonitization has a higher
volcanic glass content with the lower quantity of
montmorillonite whereas, the tuffaceous bentonite at
an intermediate level of alteration contains a much
smaller quantity of volcanic glass and the more altered
sedimentary bentonite contains a small amount of the
X-ray amorphous phase and the greatest quantity of
montmorillonite.

Major element data indicate a decreasing trend of Si,
K and Na in the course of the bentonitization
(Figure 11). From this aspect the assumed order in the
degree of weathering is the same as that concluded from
mineralogical data. The bentonitic tuff reflects a mainly
tuffaceous character, the tuffaceous bentonite shows an
intermediate level of alteration while the sedimentary
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Figure 13. Correlation between SiO, content and the amount of the X-ray amorphous phase.

bentonite seems to be the most altered. The associated Cenetic model of the bentonite formation at Sajobabony

decrease of the SiO, content and the X-ray amorphous Based on the facies development from the basal
phase also indicates the volcanic source of the alteration. conglomerates through the shoreline paleoenvironments
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Figure 14. The trace element distributions of the different lithological types (Winchester and Floyd, 1977).
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to the nearshore overlying strata, the series has
transgressive character and considering the macrofauna
data from the overlying sediments, it represents a
transgressive systems tract (Ser-3). The sedimentary
characteristics of the well-bedded, frequently laminated
bentonite horizons embedded into the usually cross-
laminated, frequently burrowed sandy series reflect the
deepening water conditions related to the flooding
surfaces of the transgressive system tract.

Based on the mineralogical and geochemical data, the
main source of the bentonite deposits was rhyolite tuff
which, according to the radiometric data of the rhyolite
volcanism in the Pannonian Basin, could have originated
from a synsedimentary tuff accumulation controlled by a
synchronous tectonic activity of the region. The
contamination effect of reworked material of the under-
lying andesitic tuff horizon cannot be excluded, but the
similarity of the mineral quantities, the ratio between
quartz and feldspar minerals and the data from trace
element analyses refer to similar synsediment tuff
accumulations.

The differences between the lithological types of the
bentonite were caused by the different degrees of
weathering of the X-ray amorphous phase. Presumably
the weathering has been determined by the tuff
accumulation rate and the simultaneous sedimentation
rate, in which case the three lithological types of the
explored bentonite deposit may represent different
relationships between the sedimentation and tuff accu-
mulation rates as follows:

(1) Low sedimentation rate due to the intensive
transgression simultaneous with a limited tuff accumula-
tion rate and with accumulation of extremely fine dust
tuffs of high specific surface area (B0, BI) accompanied
by sedimentary reworking could lead to the formation of
‘sedimentary bentonite’.

(2) Low sedimentation rate because of the intensive
transgression, however, with the occasional occurrence
of detrital input, synchronous with a more intensive
accumulation of coarser rhyolite tuff with pumices led to
the formation of the ‘tuffaceous bentonite’ (Blla).

(3) The low sedimentation rate due to the continuous
transgression connecting with a much more intensive,
although periodical, tuff accumulation could form
‘bentonitic tuff’ (BIIb). During breaks in the tuff
accumulation, the formation of thin bentonite intercala-
tions took place (Figure 6f).

CONCLUSIONS

Seven economically important ‘reference bentonite
deposits’ were investigated in the Miocene basin-filling
sediment series of the Pannonian Basin. Considering
their material characteristics and stratigraphic position
the following conclusions can be made:

(1) Each investigated bentonite deposit is related to a
transgressive series of a given sedimentary sequence.
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(2) Considering the available radiometric data, each
transgressive series containing a bentonite deposit can be
correlated with an important, continuous rhyolite tuff
explosion period of the Pannonian Miocene.

(3) Permanent rhyolite tuff explosion simultaneous
with a highstand systems tract can initiate bentonite
formation but presumably because of the significant
terrigenous siliciclastic contamination and because of
the fast infill of the sedimentary basin, the formation of
significant bentonite deposits is rare.

(4) Transgressive series without intensive and con-
tinuous tuff accumulation (e.g. Bur-3), because of the
lack of source material, cannot lead to the formation of
significant bentonite deposits, although small bentonite
interbeddings related to short, episodic explosions may
also be detected.

(5) Consequently, the role of the synergism of the tuff
accumulation and eustatic events can be assumed where
the source material of the bentonites is the rhyolite tuff,
while the paleoecological condition of the weathering is
the transgression development causing condensed sedi-
mentation, providing enough time for the optimal
alteration of the volcanic material.

(6) To clarify the role and importance of the
reworked older rhyolite tuffs as possible source material
for the ‘reference bentonite deposits’, further investiga-
tions are required, especially on the structure of the
montmorillonite and the quantities of the accessory
mineral assemblages. Some arguments related to this
question were investigated in the bentonite deposit at
Sajobabony.

Three lithologically and technologically different
bentonite horizons of the bentonite deposit at
Sajobabony — representing three different bentonitic
facies types within the same transgressive series — were
investigated from two aspects. The first was to clarify
the source material, the second was to determine the
causes of the differences. From the data from X-ray,
thermal and geochemical investigations the following
conclusions can be drawn.

(1) Considering the similar character of the felsic
minerals (quartz, K-feldspar, plagioclase), a common
rhyolitic source for the bentonite facies is suggested. For
the bentonitic tuff and tuffaceous bentonite, the constant
Nb/Y ratio also proves the common rhyolitic source.

(2) In the case of the lowermost horizon — sedimentary
bentonite — the existence of the reworked material from
the underlying andesite tuff series is presumed. This
contamination of terrestrial origin becomes less signifi-
cant for the intermediate horizon, presumably because of
the gradual covering of the surrounding terrains by the
material of the transgressive series.

(3) The main difference between the facies types is
the degree of weathering. The bentonitic tuff is the least
altered, the tuffaceous bentonite represents an inter-
mediate degree of alteration and the sedimentary
bentonite is the most weathered material. Considering
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the ratio between the X-ray amorphous phase and the
montmorillonite and the well correlated associated
decrease of the X-ray amorphous phase and the SiO,
content, the amorphous volcanic glass can be regarded as
the main source of the montmorillonite formation. The
different levels of the alteration can also be seen in the
TAS diagram proving the strong decrease of the alkaline
elements in the course of the bentonitization.

Our opinion is that the possibility, and the level, of
weathering within a transgression series are determined
by the changing of the tuff accumulation and the
sedimentation rate as follows. The transgression
decreases the sedimentation rate below a critical level
allowing the optimal alteration of the X-ray amorphous
phase of the rhyolite tuff depositing in submarine
conditions. Therefore the bentonite horizons represent
the time intervals with the lowermost sedimentation rate.
With increasing accumulation rate of the terrigenous
siliciclastic sediment, bentonite formation stops because
of the strong mixing of the authigenic and detrital
minerals. At the same time the increasing intensity of the
tuff accumulation itself can limit the bentonite formation
because rapid deposition and covering prevent optimal
alteration of the X-ray amorphous phase. This is well
represented by the lower degree of bentonitization in the
case of the bentonitic tuff.

Summarizing the results from the stratigraphic
interpretation of the ‘reference bentonite deposits’ and
comparative analyses of the different bentonite horizons
regarded as lithological types within the same transgres-
sive systems tract from Hungary, we can state that the
relationship of the tectonic-related tuff accumulation and
eustasy-related sedimentation rate can be regarded as an
important factor that determines the possible formation
of bentonite in the long term and the degree of the
bentonitization in the short term.
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