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Abstract

We give bounds on the error in the asymptotic approximation of the log-Gamma function ln Γ(z) for
complex z in the right half-plane. These improve on earlier bounds by Behnke and Sommer [Theorie
der analytischen Funktionen einer komplexen Veränderlichen, 2nd edn (Springer, Berlin, 1962)], Spira
[‘Calculation of the Gamma function by Stirling’s formula’, Math. Comp. 25 (1971), 317–322], and Hare
[‘Computing the principal branch of log-Gamma’, J. Algorithms 25 (1997), 221–236]. We show that
|Rk+1(z)/Tk(z)| <

√
πk for nonzero z in the right half-plane, where Tk(z) is the kth term in the asymptotic

series, and Rk+1(z) is the error incurred in truncating the series after k terms. We deduce similar bounds
for asymptotic approximation of the Riemann–Siegel theta function ϑ(t). We show that the accuracy of
a well-known approximation to ϑ(t) can be improved by including an exponentially small term in the
approximation. This improves the attainable accuracy for real t > 0 from O(exp(−πt)) to O(exp(−2πt)).
We discuss a similar example due to Olver [‘Error bounds for asymptotic expansions, with an application
to cylinder functions of large argument’, in: Asymptotic Solutions of Differential Equations and Their
Applications (ed. C. H. Wilcox) (Wiley, New York, 1964), 16–18], and a connection with the Stokes
phenomenon.

2010 Mathematics subject classification: primary 11M06; secondary 33B15, 33B99, 65D20.

Keywords and phrases: asymptotics, Gamma function, log-Gamma function, Riemann zeta function,
Riemann–Siegel theta function.

1. Introduction

The Riemann–Siegel theta function ϑ(t), which occurs in the theory of the Riemann
zeta function [11, Section 6.5], is defined for real t by

ϑ(t) := arg Γ

( it
2

+
1
4

)
−

t
2

log π. (1.1)

c© 2018 Australian Mathematical Publishing Association Inc.

319

https://doi.org/10.1017/S1446788718000393 Published online by Cambridge University Press

https://orcid.org/0000-0002-8495-7437
https://doi.org/10.1017/S1446788718000393
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The argument is defined so that ϑ(t) is continuous on R, and ϑ(0) = 0. Clearly ϑ(t)
is an odd function, that is, ϑ(−t) = −ϑ(t) for all real t, so there is no essential loss of
generality in assuming that t is positive.

The significance of ϑ(t) is the fact that Z(t) := exp(iϑ(t)) ζ( 1
2 + it) is a real-valued

function. Thus, zeros of ζ(s) on the critical line Re(s) = 1
2 can be detected by sign

changes of Z(t). In a sense, ϑ(t) encodes half the information contained in ζ( 1
2 + it)

(albeit the less interesting half), while Z(t) encodes the other half.
The motivation for this paper was an attempt to give a straightforward proof for the

well-known asymptotic expansion

ϑ(t) ∼
t
2

log
( t
2πe

)
−
π

8
+

∞∑
j=1

(1 − 21−2 j) |B2 j|

4 j(2 j − 1) t2 j−1 , (1.2)

and to obtain a rigorous bound on the error incurred in truncating the sum after k terms.
A bound

(2k)!
(2π)2k+2 t2k+1 + exp(−πt) (1.3)

was stated in [7, following Equation (2.3)], but no proof was given, and in fact the
bound is incorrect1. For example, with k = 3 and t = 9.5, the error exceeds the bound
by a factor of 1.011.

To obtain a satisfactory error bound to replace (1.3) we needed an error bound
for Stirling’s asymptotic approximation [1, (6.1.40)] to ln Γ(z) on the imaginary axis
Re(z) = 0. We found several such bounds in the literature, but they were not entirely
satisfactory for our purposes (see Remarks 2.4–2.8). Hence, Theorems 2.1 and 2.10
and Corollary 2.2 give new error bounds on Stirling’s approximation. These bounds
are valid in the right half-plane (Re(z) ≥ 0, z , 0), and improve on previous bounds
when z is on or sufficiently close to the imaginary axis.

Stirling’s approximation leads, via the duplication formula for the Gamma function,
to an asymptotic expansion

ln Γ

(
z +

1
2

)
∼ z log z − z +

1
2

log(2π) +

∞∑
j=1

B2 j( 1
2 )

2 j(2 j − 1) z2 j−1

that is mentioned by Gauss [13, Equation [59] of Art. 29], and in some sense is due
to Stirling; see [25]. It is the special case a = 1

2 of an expansion for ln Γ(z + a) that
was considered, for a ∈ [0, 1] and real positive z, by Hermite [16]. See also Askey and
Roy [2, 5.11.8], and Nemes [19, (1.6)]. Using our bounds on the error in Stirling’s
approximation to ln Γ(z), we deduce bounds on the error in Gauss’s approximation to
ln Γ(z + 1

2 ). The bounds are almost the same as those for Stirling’s approximation, the
only difference being that a factor ηk = 1/(1 − 21−2k) multiplies some of the bounds
(see Theorems 3.2 and 3.5 and Corollary 3.3 in Section 3).

1We have taken into account a typographical error in Equation (2.3), where B2k should be replaced by
|B2k |, as previously noted in [9, footnote on page 682].
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These bounds, in the case where z = it (t ∈ R), are what is needed to give bounds on
the approximation of ϑ(t). See Theorem 4.5 and Corollaries 4.7 and 4.9 in Section 4
for these bounds. One such result (see (4.9) below) is a bound

ηk (πk)1/2 T̃k(t) + 1
2 e−πt (1.4)

on the error if the sum in (1.2) is truncated after the kth term T̃k(t).
Perhaps surprisingly, we obtain a smaller bound if an exponentially small term

1
2 arctan(exp(−πt)) is included in the approximation of ϑ(t). The term 1

2 exp(−πt)
in (1.4) can then be omitted (see Theorem 4.5 and Corollary 4.7). This is discussed
in Sections 4–5. In Section 5 we show that the attainable error, if the terms in the
asymptotic series are summed until the smallest term is reached, is of order exp(−πt)
if (as usual) the arctan term is omitted from the approximation, but is reduced to
O(exp(−2πt)) if the arctan term is included. This observation is perhaps implicit in
the work of Berry [4, Section 4] and Gabcke [12, Satz 4.2.3], but our presentation
makes it explicit1.

2. Asymptotic approximation of ln Γ(z)

Regarding notation: variables s, z ∈ C; c, r, t, u, x, y, ε, η, θ, ψ ∈ R; and j, k,m, n ∈ N∗

(the positive integers). ‘log’ denotes the principal branch of the natural logarithm on
the cut plane C\(−∞, 0]. The (closed) right half-plane isH := {z ∈ C : Re(z) ≥ 0}, and
H∗ :=H\{0}. We define constants ηk for k ∈ N∗ by ηk := 1/(1 − 21−2k).

The proper domain for the log-Gamma function ln Γ is a Riemann surface.
However, for our purposes it is sufficient to take the (principal branch of the) log-
Gamma function to be an analytic function on the cut-plane C\(−∞, 0], such that
ln Γ(x) = log(Γ(x)) is real for positive real x. In a software implementation of the
function ln Γ(z), care has to be taken because ln Γ(z) and ln(Γ(z)) may differ by a
multiple of 2πi; see Hare [15].

In this section we consider approximation of ln Γ(z) for z ∈ C\(−∞, 0]. When
computing Γ(z) or ln Γ(z), we can use the reflection formula

Γ(z)Γ(−z) = −
π

z sin(πz)

if Re(z) < 0, z < Z. Thus, in the following we assume that Re(z) ≥ 0.
We recall Stirling’s approximation, taking k − 1 terms in the asymptotic expansion

with a remainder Rk:

ln Γ(z) =

(
z −

1
2

)
log z − z +

1
2

log(2π) +

k−1∑
j=1

T j(z) + Rk(z), (2.1)

1The fact that the error in the Riemann–Siegel approximation to Z(t) is of order exp(−πt) was observed
empirically by the author in 1977, when writing the review [6]. A detailed theoretical explanation was
later given by Berry [4].
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where

T j(z) =
B2 j

2 j(2 j − 1)z2 j−1 (2.2)

and Rk(z) is a ‘remainder’ or ‘error’ term that may be written as

Rk(z) =

∫ ∞

0

B2k − B2k({u})
2k (u + z)2k du. (2.3)

Here {u} := u − buc denotes the fractional part of u, B2k(u) is a Bernoulli polynomial,
and B2k = B2k(0) is a Bernoulli number, so B2 = 1

6 , B4 = − 1
30 , etc. See Olver [22,

Sections 8.1, 8.4] for the definitions and a proof of (2.3).
A different representation of the remainder is often convenient. Using (2.3) and

Rk(z) = Tk(z) + Rk+1(z), we see that the error after taking k terms (instead of k − 1) in
the sum is1

Rk+1(z) = −

∫ ∞

0

B2k({u})
2k (u + z)2k du. (2.4)

If z is real and positive, then the asymptotic series (2.1) is strictly enveloping in
the sense of Pólya and Szegö [23, Ch. 4], so Rk(z) has the same sign as the first term
omitted, which is Tk(z). Also, Rk(z) is smaller in magnitude than this term, that is,
|Rk(z)| < |Tk(z)| (in fact this inequality holds whenever |arg(z)| ≤ π/4; see Remark 2.7).

In the case of complex z in the right half-plane, the error Rk(z) may be larger in
absolute value than the first omitted term. This case is covered by Theorem 2.1
and Corollary 2.2, which improve on earlier results by Spira [24] and Hare
[15, Proposition 4.1].

Theorem 2.1. If z ∈ H∗, Rk(z) is defined by Equation (2.1), and T j(z) by (2.2), then

|Rk+1(z)| ≤
π1/2 Γ(k + 1

2 )
Γ(k)

|Tk(z)| (2.5)

and

|Rk(z)| ≤
(π1/2 Γ(k + 1

2 )
Γ(k)

+ 1
)
|Tk(z)|. (2.6)

Proof. Let x = Re(z) and y = Im(z). From (2.4),

|Rk+1(z)| =
∣∣∣∣∣∫ ∞

0

B2k({u})
2k(u + z)2k du

∣∣∣∣∣ ≤ |B2k|

2k

∫ ∞

0
|u + z|−2k du. (2.7)

Since x ≥ 0, inside the integral we have that

|u + z|2 = (u + x)2 + y2 ≥ u2 + x2 + y2 = u2 + |z|2.

1We have followed Olver’s convention. Other authors may include k terms in the sum in (2.1). Thus,
their Rk may correspond to our Rk+1, and care has to be taken when comparing bounds in the literature.
See, for example, Abramowitz and Stegun [1, (6.1.42)].
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Making a change of variables u 7→ |z| tanψ gives∫ ∞

0
|u + z|−2k du ≤

∫ ∞

0
(u2 + |z|2)−k du

= |z|1−2k
∫ π/2

0
cos2k−2 ψ dψ

=
π1/2

2
Γ(k − 1

2 )
Γ(k)

|z|1−2k,

where the closed form for the integral is known as ‘Wallis’s formula’; see, for example,
[1, (6.1.49)]. Thus, inequality (2.5) follows from (2.7).

Inequality (2.6) follows easily from (2.5) and the triangle inequality

|Rk(z)| = |Tk(z) + Rk+1(z)| ≤ |Tk(z)| + |Rk+1(z)|. (2.8)
�

During a computation, we may wish to bound the error term as a multiple of either
the last term included in the approximating sum, or the first term omitted. Hence, the
following corollary of Theorem 2.1 is useful.

Corollary 2.2. If z ∈ H∗ and Rk(z) is defined by Equation (2.1), then∣∣∣∣∣Rk+1(z)
Tk(z)

∣∣∣∣∣ < √πk (2.9)

and ∣∣∣∣∣Rk(z)
Tk(z)

∣∣∣∣∣ < 1 +
√
πk. (2.10)

Proof. From [8, Equation (21)],

ln Γ

(
x +

1
2

)
− ln Γ(x) −

1
2

log(x) ∼ −
1
8x

+ · · · ,

where the asymptotic series on the right is strictly enveloping for positive real x.
Thus, we have log(Γ(x + 1

2 )/Γ(x)) < 1
2 log x, which implies that Γ(k + 1

2 )/Γ(k) <
√

k. Inequality (2.9) now follows from (2.5) of Theorem 2.1 and the definition of
Tk(z). Inequality (2.10) follows similarly, from (2.6) of Theorem 2.1, or directly
from (2.8). �

Remark 2.3. The device of converting a bound on Rk+1(z) into a bound on Rk(z), of
the same order in |z|, via the triangle inequality (2.8), also applies to the bounds given
in Sections 3–4 below. For the sake of brevity we do not always give such bounds
explicitly.

In Remarks 2.4–2.8 we comment briefly on some related bounds that may be found
in the literature, allowing for different notations. Here and elsewhere, we define
θ = θ(z) := arg z (not to be confused with ϑ(t) of (1.1)).
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Remark 2.4. Spira [24, Equation (4)] obtains a bound of the same form as our (2.5),
but larger by a factor of approximately 4

√
k/π. This is primarily because he uses a

rather crude upper bound on the relevant integral instead of using Wallis’s formula1.

Remark 2.5. Hare [15, Proposition 4.1] obtains a bound of the form c(k)/|Im(z)|2k−1,
assuming that Im(z) , 0, but without the assumption that Re(z) ≥ 0. Here c(k) =

4π1/2Γ(k + 1
2 )/Γ(k) ∼ 4

√
πk. When both bounds are applicable, our bound (2.6) is

better by a factor of about 4/|sinθ|2k−1 (for large k). A problem with a bound such
as Hare’s, involving |Im(z)| rather than |z|, is that the bound can not be reduced by
applying the recurrence Γ(z + 1) = zΓ(z).

Remark 2.6. In Behnke and Sommer [3, (18) page 304] we find a bound that (in our
notation) is ∣∣∣∣∣Rk+1(z)

Tk+1(z)

∣∣∣∣∣ < 1 +
2k + 1

2

√
π

k
, (2.11)

valid for k ≥ 1 and Re(z) ≥ 0, z , 0. It is interesting to note that this pre-dates the
bounds of Spira [24] and Hare [15]. To compare with our bounds, make a change of
variables k 7→ k + 1 in (2.10) to obtain∣∣∣∣∣Rk+1(z)

Tk+1(z)

∣∣∣∣∣ < 1 +
√
π(k + 1). (2.12)

Since k + 1 < (k + 1
2 )2/k, our bound (2.12) is always smaller than Behnke and

Sommer’s bound (2.11), although the ratio tends to 1 as k → ∞. Note that our
bound (2.10) gives a valid bound 1 +

√
π on |R1(z)/T1(z)|, whereas (2.11) requires

k ≥ 1 as the right-hand side is undefined if k = 0.

Remark 2.7. A bound due to Whittaker and Watson [27, page 252] (see also [1,
(6.1.42)]), valid for Re(z) > 0, is

|Rk(z)| ≤ K(z) |Tk(z)|, (2.13)

where K(z) = supu≥0 |z
2/(u2 + z2)|. It is easy to see that K(z) depends only on θ(z). A

geometric argument shows that

K(z) =


1 if |θ| ≤ π/4,

1
|sin(2θ)|

if |θ| ∈ (π/4, π/2).

Thus, the bound (2.13) is preferable to those mentioned in Remarks 2.4–2.6 (and to
our bound (2.10)) if |θ| ≤ π/4, but it becomes poor as |θ| approaches π/2.

Remark 2.8. A bound due to Stieltjes (see Olver [22, (8.4.06)]) is

|Rk(z)| ≤ |Tk(z)| sec2k(θ/2), (2.14)

1We note that the proof given by Spira [24, top of page 319] is incomplete: he only proves a bound of
the form c(k)/|Im(z)|2k−1, not the claimed c(k)/|z|2k−1.
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where |θ| < π. This differs from our bound (2.6) by a factor of approximately
sec2k(θ/2)/

√
πk. If θ ≈ π/2 this factor is approximately 2k/

√
πk, which is greater

than 1 for all k ≥ 1. Thus, (2.14) is better than our bound only if |θ| is sufficiently
small. However, if |θ| ≤ π/4 we should prefer the bound (2.13).

It is natural to ask if an upper bound of order k1/2 for |Rk+1(z)/Tk(z)|, as in
Corollary 2.2, is the best possible. Certainly, when |arg(z)| ≤ π/4, or when |Tk(z)|
is much larger than |Tk+1(z)|, the bound is not optimal. However, without imposing
conditions on k and/or z, the bounds of Corollary 2.2 are the best possible, up to
constant factors. We sketch a proof of this. Let n be a sufficiently large positive integer,
and z = iy, where y = n/π. Thus, n is close to the index of the minimal term |T j(z)|.
Also, there is no cancellation in the sum T1(z) + T2(z) + · · · + Tn(z), since, using (2.2),

i T j(iy) =
i (−1) j−1|B2 j|

2 j(2 j − 1) (iy)2 j−1 =
|B2 j|

2 j(2 j − 1) y2 j−1

is real and positive. Using Stirling’s approximation to estimate T j(z) and Tn(z), if
j = n − δ and δ2 ≤ y then ∣∣∣∣∣T j(z)

Tn(z)

∣∣∣∣∣ = 1 + O
(
δ2

y

)
.

We can choose a positive integer δ = O(y1/2) so that 1/2 ≤ |T j(z)/Tn(z)| ≤ 2 for n − δ ≤
j ≤ n. Hence |Tn−δ(z) + · · · + Tn−1(z)| ≥ δ |Tn(z)|/2. For some k in the interval [n − δ, n],
we must have |Rk+1(z)/Tn(z)| ≥ δ/4, so |Rk+1(z)/Tk(z)| ≥ δ/8 is of order y1/2.

Numerical evidence confirms this conclusion. Taking n = 100, y = n/π, and
k = 90, we find that |Rk+1(iy)/Tk(iy)| ≈ 4.62. If n = 400, y = n/π, k = 383, then
|Rk+1(iy)/Tk(iy)| ≈ 10.15. Thus, it appears that the constant

√
π appearing in

Corollary 2.2 cannot be reduced by a factor greater than 4 when z lies on, or sufficiently
close to1, the imaginary axis.

In Theorem 2.10, we obtain bounds that are better than the bounds given in
Theorem 2.1 and Corollary 2.2, provided the condition k ≤ |z| is satisfied. If |z| is too
small, we can apply the recurrence ln Γ(z) = ln Γ(z + 1) − log z as often as necessary
and then apply Theorem 2.10.

Before stating Theorem 2.10, we define some constants ck which enter into the
proof of the theorem. Assuming that Tk(z) is defined by (2.2), let

ck :=
2k∑
j=1

∣∣∣∣∣Tk+ j(k)
Tk(k)

∣∣∣∣∣ +
√

3kπ
∣∣∣∣∣T3k(k)

Tk(k)

∣∣∣∣∣.
The following lemma is the reason for introducing the constants ck.

1The proof that we have outlined can be modified to cover a region of the form Re(z) ≥ 0, |Im(z)| ≥
cRe(z)2, where c is a sufficiently large positive constant. On the other hand, by Whittaker and Watson’s
bound (2.13), it cannot be extended into the sector |θ| < π/2 − ε (|z| sufficiently large), since in that region
|Rk(z)/Tk(z)| and |Rk+1(z)/Tk(z)| are O(1/ε).
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Table 1. The constants ck (rounded up to 6 decimal places).

k ck k ck k ck

1 0.072 096 6 0.107 384 15 0.110 498
2 0.103 961 7 0.108 089 20 0.111 050
3 0.104 294 8 0.108 634 25 0.111 384
4 0.105 304 9 0.109 067 30 0.111 609
5 0.106 460 10 0.109 419 50 0.112 060

Lemma 2.9. If z ∈ H∗, Rk(z) is defined by Equation (2.1), and k ≤ |z|, then∣∣∣∣∣Rk+1(z)
Tk(z)

∣∣∣∣∣ ≤ ck (k/|z|)2. (2.15)

Proof. For all m ∈ N,

Rk+1(z) =

m∑
j=1

Tk+ j(z) + Rk+m+1(z). (2.16)

Now
|Rk+m+1(z)| ≤

√
(k + m)π |Tk+m(z)|,

by Corollary 2.2 with k replaced by k + m. Taking norms in (2.16), choosing m = 2k,
and dividing both sides by |Tk+1(z)|,∣∣∣∣∣Rk+1(z)

Tk+1(z)

∣∣∣∣∣ ≤ 1
|Tk+1(z)|

( 2k∑
j=1

|Tk+ j(z)| +
√

3kπ |T3k(z)|
)
.

Since |Tk+ j(z)/Tk+1(z)| has the form c/|z|2 j−2, it is a nonincreasing function of |z|
(assuming j ≥ 1), so its maximum occurs when |z| is minimal, that is, when |z| = k.
Thus ∣∣∣∣∣Rk+1(z)

Tk+1(z)

∣∣∣∣∣ ≤ 1
|Tk+1(k)|

( 2k∑
j=1

|Tk+ j(k)| +
√

3kπ |T3k(k)|
)

= ck

∣∣∣∣∣ Tk(k)
Tk+1(k)

∣∣∣∣∣.
Since Tk+1(z)/Tk(z) has the form c/z2,∣∣∣∣∣Tk+1(z)

Tk(z)

∣∣∣∣∣ = (k/|z|)2
∣∣∣∣∣Tk+1(k)

Tk(k)

∣∣∣∣∣,
and (2.15) follows. �

Numerical values of ck for various k ≤ 50 are given in Table 1. The ck appear
to increase monotonically to the limit 1/(π2 − 1) ≈ 0.112 745. We have verified
monotonicity, and that ck < 1/(π2 − 1), for k ≤ 100.
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Theorem 2.10. If z ∈ H∗, Rk(z) is defined by Equation (2.1), and k ≤ |z|, then∣∣∣∣∣Rk+1(z)
Tk(z)

∣∣∣∣∣ < (k/|z|)2

π2 − 1
≤

1
π2 − 1

< 0.113 (2.17)

and ∣∣∣∣∣Rk(z)
Tk(z)

∣∣∣∣∣ < 1 +
(k/|z|)2

π2 − 1
≤

π2

π2 − 1
< 1.113. (2.18)

Proof. Let

µ :=
( k
π|z|

)2
≤

1
π2

and m := bk1/2c. For brevity, we write Rk for Rk(z) and Tk for Tk(z). Since Rk+1 =

Tk+1 + Tk+2 + · · · + Tk+m + Rk+m+1, we have |Rk+1/Tk| ≤ S + E, where

S :=
m∑

j=1

∣∣∣∣∣Tk+ j

Tk

∣∣∣∣∣ and E :=
∣∣∣∣∣Rk+m+1

Tk

∣∣∣∣∣.
Since |B2k| = 2(2k)! ζ(2k)/(2π)2k,∣∣∣∣∣Tk+ j

Tk

∣∣∣∣∣ ≤ (2k + 2 j − 2)!
(2k − 2)!

|2πz|−2 j.

Using the assumption k ≤ |z|, it follows that∣∣∣∣∣Tk+ j

Tk

∣∣∣∣∣ ≤ µ j
2 j∏

n=1

(
1 +

n − 2
2k

)
. (2.19)

Now 1 + x ≤ exp(x) for all x ∈ R, so∣∣∣∣∣Tk+ j

Tk

∣∣∣∣∣ ≤ µ j
2 j∏

n=1

exp
(n − 2

2k

)
= µ j exp

( (2 j − 3) j
2k

)
.

By convexity, 1 ≤ exp(x) ≤ 1 + (e − 1)x for all x ∈ [0, 1]. It follows that, for 2 ≤ j ≤ m,∣∣∣∣∣Tk+ j

Tk

∣∣∣∣∣ ≤ µ j
(
1 + (e − 1)

(2 j − 3) j
2k

)
. (2.20)

Also, for the special case j = 1, inequality (2.19) gives∣∣∣∣∣Tk+1

Tk

∣∣∣∣∣ ≤ µ(1 − 1
2k

)
. (2.21)

From (2.20) to (2.21),

S ≤ −
µ

2k
+

m∑
j=1

µ j +
e − 1

2k

m∑
j=2

(2 j − 3) j µ j

< −
µ

2k
+

∞∑
j=1

µ j +
e − 1

2k

∞∑
j=2

(2 j − 3) j µ j

= −
µ

2k
+

µ

1 − µ
+

(e − 1
2k

)
µ2(2 + 3µ − µ2)

(1 − µ)3 .
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Thus
µ

1 − µ
− S >

µ

2k

[
1 −

(e − 1)µ(2 + 3µ − µ2)
(1 − µ)3

]
.

Since µ(2 + 3µ − µ2)/(1 − µ)3 =
∑∞

j=2(2 j − 3) jµ j−1 is monotonic increasing on
[0, 1/π2], the factor in square brackets attains its minimum on [0, 1/π2] at µ = 1/π2,
and a numerical computation shows that the minimum is greater than π2/22. Thus,

µ

1 − µ
− S >

π2µ

44k
.

Now consider E. We have

E =

∣∣∣∣∣Rk+m+1

Tk

∣∣∣∣∣ =

∣∣∣∣∣Tk+m

Tk

∣∣∣∣∣ · ∣∣∣∣∣Rk+m+1

Tk+m

∣∣∣∣∣.
The first factor on the right is at most µme, by (2.20) with j = m; the second factor is
at most

√
π(k + m), by an application of Corollary 2.2 with k replaced by k + m. This

gives
E ≤ µme

√
π(k + m) ≤ µ

√
k−1e
√

2πk.

Thus kE/µ ≤ µ
√

k−2e
√

2πk3 � 1/k, so there exists k0 such that, for all k ≥ k0, kE/µ <
π2/44, so E < π2µ/(44k) and µ/(1 − µ) > S + E. A computation shows that we can
take k0 = 34. Thus, for all k ≥ k0,∣∣∣∣∣Rk+1

Tk

∣∣∣∣∣ < µ

1 − µ
=

k2

π2|z|2 − k2 ≤
(k/|z|)2

π2 − 1
.

This proves the desired inequality (2.17) for k ≥ k0.
By a straightforward numerical computation, we can verify that (2.17) also holds for

1 ≤ k ≤ 33 (see Lemma 2.9 and Table 1). This concludes the proof of (2.17). Finally,
(2.18) follows from (2.17) and the triangle inequality. �

Remark 2.11. It is reasonable to conjecture the slightly stronger inequalities∣∣∣∣∣Rk+1(z)
Tk(z)

∣∣∣∣∣ < k2

π2|z|2 − k2 ,

∣∣∣∣∣Rk(z)
Tk(z)

∣∣∣∣∣ < π2|z|2

π2|z|2 − k2 , (2.22)

for all (k, z) such that |z| ≥ k ≥ 1. This has been verified numerically, and the proof of
Theorem 2.10 shows that (2.22) holds for k ≥ 34. However, our proof of (2.17) for
k ≤ 33, using Lemma 2.9 and the constants ck, is insufficient to prove (2.22). Hence,
we leave (2.22) as a conjecture.

3. Asymptotic approximation of ln Γ(z + 1
2 )

In this section we deduce, from the results of Section 2, an asymptotic series for
ln Γ(z + 1

2 ) in descending odd powers of z. The series was given by Gauss [13, Art.
29]; by using the results of Section 2 we obtain new error bounds for z ∈ H∗.
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Replacing z by 2z in (2.1) and then subtracting (2.1) gives

ln Γ(2z) − ln Γ(z) = z log z + (2 log 2 − 1)z −
1
2

log 2 +

k−1∑
j=1

T̂ j(z) + R̂k(z), (3.1)

where T̂ j(z) = T j(2z) − T j(z) and R̂k(z) = Rk(2z) − Rk(z). More explicitly, using [22,
(8.1.12)] for B2 j( 1

2 ),

T̂ j(z) = −(1 − 21−2 j)T j(z) = −
(1 − 21−2 j)B2 j

2 j(2 j − 1)z2 j−1 =
B2 j( 1

2 )
2 j(2 j − 1)z2 j−1 . (3.2)

Also, R̂k(z) = T̂k(z) + R̂k+1(z), where

R̂k+1(z) = −

∫ ∞

0

21−2kB2k({2u}) − B2k({u})
2k(u + z)2k du. (3.3)

Using the duplication formula Γ(z + 1
2 ) = 21−2zπ1/2Γ(2z)/Γ(z), Equation (3.1)

immediately gives Gauss’s asymptotic expansion of ln Γ(z + 1
2 ):

ln Γ

(
z +

1
2

)
= z log z − z +

1
2

log(2π) +

k−1∑
j=1

T̂ j(z) + R̂k(z). (3.4)

The following lemma enables us to simplify the ‘kernel’ function appearing in the
integral (3.3).

Lemma 3.1. For k ≥ 1 and all real u,

21−2kB2k({2u}) − B2k({u}) = B2k({u + 1
2 }).

Proof. This follows from the known identities [1, (23.1.8) and (23.1.10)]

B2k(u) = B2k(1 − u)

and
21−2kB2k(2u) − B2k(u) = B2k(u + 1

2 ). �

Using Lemma 3.1, we see from (3.3) that

R̂k+1(z) = −

∫ ∞

0

B2k({u + 1
2 })

2k(u + z)2k du. (3.5)

We can now prove an analogue of Theorem 2.1. The upper bound on |R̂k(z)| is the
same as the bound that we obtained for |Rk(z)|, but the bound on |R̂k(z)/T̂k(z)| is larger
than the bound on |Rk(z)/Tk(z)| by a factor ηk = 1/(1 − 21−2k) ≤ 2.

Theorem 3.2. If z ∈ H∗ and R̂k(z) is defined by Equation (3.4), then∣∣∣∣∣ R̂k+1(z)

T̂k(z)

∣∣∣∣∣ ≤ ηk
π1/2Γ(k + 1

2 )
Γ(k)

.
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Proof. This is almost identical to the proof of Theorem 2.1, the only difference being
that we use (3.5) to bound R̂k+1(z) instead of (2.4) to bound Rk+1(z). This increases the
bound by a factor ηk = |Tk(z)/T̂k(z)|. �

Corollary 3.3. Under the conditions of Theorem 3.2,∣∣∣∣∣ R̂k+1(z)

T̂k(z)

∣∣∣∣∣ < ηk
√
πk. (3.6)

Remark 3.4. The factor ηk in (3.6) can be omitted if k ≥ 3 or |z| ≥ 1. A proof is given
in an earlier version of this paper (arXiv:1609.03682v1, proof of Corollary 3).

Theorem 3.5. If z ∈ H∗, R̂k(z) is defined by Equation (3.4), and k ≤ |z|, then∣∣∣∣∣ R̂k+1(z)

T̂k(z)

∣∣∣∣∣ < ηk
(k/|z|)2

π2 − 1

and ∣∣∣∣∣ R̂k(z)

T̂k(z)

∣∣∣∣∣ < 1 + ηk
(k/|z|)2

π2 − 1
.

Proof. This is the same as the proof of Theorem 2.10, except that we have to allow for
the additional factor ηk that arises because the errors are normalised by T̂k(z) instead
of by Tk(z). �

Remark 3.6. By a small modification of Lemma 2.9, if k ≤ |z| then

|R̃k+1(z)/T̃k(z)| ≤ ηkck(k/|z|)2.

4. The Riemann–Siegel theta function

In this section we consider the Riemann–Siegel theta function ϑ(t) defined by (1.1).
Lemma 4.1 gives an equivalent expression for ϑ(t) that is better for our purposes than
the definition.

Lemma 4.1. For all t ∈ R,

ϑ(t) =
1
2

arg Γ

(
it +

1
2

)
−

1
2

t log(2π) −
π

8
+

1
2

arctan(e−πt).

Proof. The reflection formula Γ(s)Γ(1 − s) = π/ sin(πs) with s = (it/2) + 1
4 gives

Γ

( it
2

+
1
4

)
Γ

(
−

it
2

+
3
4

)
=

π

sin π( it
2 + 1

4 )
, (4.1)

and the duplication formula Γ(s)Γ(s + 1
2 ) = 21−2sπ1/2Γ(2s) gives

Γ

( it
2

+
1
4

)
Γ

( it
2

+
3
4

)
= 21/2−itπ1/2Γ

(
it +

1
2

)
. (4.2)
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Multiplying (4.1) and (4.2) gives

Γ

( it
2

+
1
4

)2 ∣∣∣∣∣Γ( it
2

+
3
4

)∣∣∣∣∣2 =
21/2−itπ3/2Γ(it + 1

2 )

sin π( it
2 + 1

4 )
.

Taking the argument of each side and simplifying, using the fact that

arctan
(1 − e−πt

1 + e−πt

)
=
π

4
− arctan(e−πt),

proves the lemma. �

Using the representation of ϑ(t) given in Lemma 4.1, and the results of Section 3,
we obtain an asymptotic approximation of ϑ(t) together with error bounds. This is
summarised in Theorems 4.2 and 4.5. As far as we are aware, this is the first time that
a rigorous error bound applicable for all k ≥ 1 and all real t > 0 has been given. Most
authors seem to restrict themselves to small k and sufficiently large t. For example,
Edwards [11, (2) in Section 6.5] takes k = 2 and t ‘large’; Gabcke [12, Satz 4.2.3(d)]
takes k = 4 and t ≥ 10.

Theorem 4.2. For all real t > 0,

ϑ(t) =
t
2

log
( t
2πe

)
−
π

8
+

arctan(e−πt)
2

+

k−1∑
j=1

T̃ j(t) + R̃k(t), (4.3)

where

T̃ j(t) :=
1
2
|T̂ j(t)| =

|B2 j( 1
2 )|

4 j(2 j − 1)t2 j−1

and
R̃k(t) := Im( 1

2 R̂k(it)). (4.4)

Proof. From Lemma 4.1,

2ϑ(t) = Im(ln Γ(it + 1
2 )) − t log(2π) − π/4 + arctan(e−πt).

Using (3.4) with z = it for the ln Γ(it + 1
2 ) term, we obtain

2ϑ(t) = Im
(
it log(it) − it +

k−1∑
j=1

T̂ j(it) + R̂k(it)
)
− t log(2π)

− π/4 + arctan(e−πt)

Since B2 j = (−1) j−1|B2 j| and B2 j( 1
2 ) = −(1 − 21−2 j)B2 j, we see from (3.2) that

Im(T̂ j(it)) = |T̂ j(t)|. Also, Im(it log i) = Im(it · iπ/2) = 0. Thus,

2ϑ(t) = t log t − t +

k−1∑
j=1

|T̂ j(t)| + Im(R̂k(it)) − t log(2π) − π/4 + arctan(e−πt)

= t log
( t
2πe

)
−
π

4
+ arctan(e−πt) + 2

k−1∑
j=1

T̃ j(t) + 2R̃k(t).

Thus, the result (4.3) follows. �
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Remark 4.3. The first few terms of the asymptotic expansion for ϑ(t) are derived in a
different manner by Edwards [11, Section 6.5]; his method does not easily lead to an
expression for the general term or to an error bound valid for all k.

Lemma 4.4. For all real t > 0,

R̃1(t) = Im
(∫ ∞

0

B2( 1
2 ) − B2({u + 1

2 })
4(u + it)2 du

)
(4.5)

and

R̃k+1(t) = Im
(
−

∫ ∞

0

B2k({u + 1
2 })

4k(u + it)2k du
)
. (4.6)

Proof. Equation (4.6) follows from (3.5) and the definition (4.4) of R̃k(t). For (4.5) we
use R̃1(t) = T̃1(t) + R̃2(t), where R̃2(t) is given by (4.6) with k = 1. �

Theorem 4.5. If t and R̃k(t) are as in Theorem 4.2, then

|R̃k+1(t)| ≤
π1/2 Γ(k − 1

2 ) |B2k|

8 k! t2k−1 . (4.7)

Proof. We use Theorem 3.2 and (3.2) to bound R̃k+1(t) = 1
2 Im(R̂k+1(it)). Note that the

ηk factor in Theorem 3.2 cancels a factor in (3.2). �

Remark 4.6. From (3.4), using the fact that Re(T̂ j(it)) = 0,

Re(R̂k(it)) = Re
(
ln Γ

(
it +

1
2

)
− it log(it) + it −

1
2

log(2π)
)

= log
∣∣∣∣∣Γ(

it +
1
2

)∣∣∣∣∣ +
πt
2
−

1
2

log(2π)

=
1
2

log
(

π

cosh πt

)
+
πt
2
−

1
2

log(2π) (using [1, (6.1.30)])

= −
1
2

log(1 + e−2πt) = −
1
2

e−2πt + O(e−4πt),

so Re(R̂k(it)) is exponentially small, but nonzero. Thus |R̃k(t)| < 1
2 |R̂k(it)|, and it follows

that inequality (4.7) is strict.

Corollary 4.7. If t > 0 then ∣∣∣∣∣ R̃k+1(t)

T̃k(t)

∣∣∣∣∣ < ηk
√
πk. (4.8)

Proof. This follows from Corollary 3.3 with z = it. �

Remark 4.8. The factor ηk in Corollary 4.7 can be omitted if k ≥ 3 or t ≥ 1 (see
Remark 3.4).

Corollary 4.9. If t ≥ k > 0, then∣∣∣∣∣ R̃k+1(t)

T̃k(t)

∣∣∣∣∣ < ηk
(k/t)2

π2 − 1
.
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Proof. This follows from Theorem 3.5 with z = it. �

Remark 4.10. The factor ηk in Corollary 4.9 can be omitted if k ≥ 3. This follows
for sufficiently large k from a slight modification of the proof of Theorem 3.5, and
for small k from the observation that ηkck < 1/(π2 − 1) for k ≥ 3 (see Remark 3.6 and
Table 1). If 1 ≤ k ≤ 2 we can use the bound ηkck(k/t)2 that follows from Remark 3.6.

In the literature, the asymptotic approximation (4.3) always seems to be stated
without the exponentially small arctan term. See, for example, Edwards [11, (1)
page 120], Gabcke [12, Satz 4.2.3(c)] and Lehmer [17, (5) page 104]. The arctan term
appears in some related formulas, such as Gram [14, (7) page 300] and Gabcke [12,
Satz 4.2.3(a)]. See also the discussion in Berry [4, Section 4].

It is valid to omit the arctan term if all we want is an asymptotic series in the sense
of Poincaré (see Olver [22, Section 1.7.3]). However, it is not desirable if we want to
minimise the error in the approximation. If we omit the arctan term, then the upper
bounds on |R̃k(t)| have to be increased accordingly. Since arctan(e−πt) < e−πt for t ≥ 0,
it is sufficient to add 1

2 e−πt to the bound on |R̃k+1(t)| in (4.7). The bound of Corollary 4.7
can be replaced by

|R̃k+1(t)| < ηk
√
πk T̃k(t) + 1

2 e−πt. (4.9)

Of course, 1
2 e−πt is negligible if t is large, for example when searching for high zeros

of ζ(s) on the critical line. When t is not so large, the arctan term may be significant.
We discuss this in the next section.

Remark 4.11. Other situations where an exponentially small contribution is significant
are mentioned by Watson [26, Sections 7.22–7.23], in connection with the Stokes
phenomenon [18, 20] and the asymptotic expansions of the Bessel functions Jν(z)
and Iν(z). An example that is similar to ours, but somewhat simpler, was given by
Olver [21] and is discussed by Meyer [18, Appendix].

5. Attainable accuracy

In this section we consider the accuracy of the asymptotic expansion of ϑ(t) if t is
fixed and we choose (close to) the optimal number of terms to sum.

Assume that t is fixed and positive. The terms T̃k(t) initially decrease (unless
t ≤
√

7/120 ≈ 0.2415), but eventually increase in value, so it is of interest to determine
the index of a minimal term. Define

kmin = kmin(t) := min{k ≥ 1 : T̃k(t) ≤ T̃k+1(t)}

and
T̃min(t) := T̃kmin (t).

Lemma 5.1 shows that, for all t > 0, the sequence of terms (T̃k(t))k≥1 is unimodal, and
that T̃min(t) is a minimal term.
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Lemma 5.1. Fix t > 0. Then

(1) for 1 ≤ k < kmin(t), T̃k(t) > T̃k+1(t) > 0;
(2) for k = kmin(t), 0 < T̃k(t) ≤ T̃k+1(t);
(3) for k > kmin(t), 0 < T̃k(t) < T̃k+1(t);
(4) T̃min(t) = mink≥1 T̃k(t).
Proof. We sketch the proof. Observe that, for all k ∈ N∗,

R(k) :=
T̃k+1(t)/T̃k+2(t)

T̃k(t)/T̃k+1(t)
is independent of t, and can be shown to lie in the interval (0, 1). (This is clear for large
k, since

R(k) =
k(2k − 1)

(k + 1)(2k + 1)
(1 + O(4−k)),

and can be verified by a numerical computation for small k.) Thus

T̃k+1(t)

T̃k+2(t)
<

T̃k(t)

T̃k+1(t)
.

Inequalities (1)–(3) of the lemma now follow easily, and equality (4) follows from
(1)–(3). �

Lemma 5.2. For large positive t ∈ R,
kmin(t) = πt + O(1)

and, if k = πt + O(1), then

T̃k(t) =
e−2πt

2π
√

t

(
1 + O

(1
t

))
.

Proof. We sketch the proof. Using |B2k| = 2(2k)! ζ(2k)/(2π)2k,

T̃k(t)

T̃k+1(t)
=

2k(2k − 1)
4π2t2 (1 + O(4−k)). (5.1)

Thus, kmin = πt + O(1), where the O(1) term covers the 1 + O(4−k) factor and the effect
of rounding to the nearest integer.

The estimate of T̃k(t) follows from Stirling’s approximation. Write k = πt/(1 + ε),
so ε = O(1/t). Then

T̃k(t) =
(1 − 21−2k) ζ(2k) (2k)!
2k(2k − 1) (2π)2k t2k−1

=
t

4k2

(2k
e

)2k
√

4kπ
(k(1 + ε))2k (1 + O(ε))

=
e−2k−2kε

2π
√

t
(1 + O(ε))

=
e−2πt

2π
√

t
(1 + O(ε))

which concludes the proof. �
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Remark 5.3. If we minimise (πk)1/2 T̃k(t) instead of T̃k(t), the minimum is still at
k = πt + O(1). The difference between the indices of the two minima can be subsumed
by the O(1) term.

Corollary 5.4. If k = πt + O(1), then |R̃k+1(t)| < 1
2 e−2πt(1 + O(1/t)).

Proof. This follows from (4.8) and the second half of Lemma 5.2. �

From Lemma 5.2 and Corollary 5.4, we can guarantee an error that does not exceed
1
2 e−2πt(1 + O(1/t)) by taking kmin(t) = πt + O(1) terms in the approximation

ϑ(t) ≈
t
2

log
( t
2πe

)
−
π

8
+

arctan(e−πt)
2

+

kmin(t)∑
j=1

T̃ j(t). (5.2)

On the other hand, if we use the ‘standard’ approximation

ϑ(t) ≈
t
2

log
( t
2πe

)
−
π

8
+

kmin(t)∑
j=1

T̃ j(t), (5.3)

we can only guarantee an error not exceeding 1
2 e−πt + O(e−2πt). Thus, the arctan term

is numerically significant, even though it is asymptotically smaller than any term T̃ j(t).
This is illustrated by Table 2, where we give, for various t ∈ [1, 100], kmin(t) and

A : the error in the standard approximation (5.3) after taking kmin(t) terms, normalised
by the smallest term T̃min(t) ≈ e−2πt/(2πt1/2);

B : the error bound (4.8) (this is already normalised);
C : the error in the approximation (5.2), normalised by the smallest term, that is,

R̃k+1(t)/T̃k(t) for k = kmin(t);
D : the error in the empirically improved approximation

ϑ(t) ≈
t
2

log
( t
2πe

)
−
π

8
+

arctan(e−πt)
2

+

kmin(t)∑
j=1

T̃ j(t) +

(
πt − kmin(t) +

1
12

)
T̃min(t), (5.4)

normalised by T̃min(t), as for columns A and C.

It can be seen that kmin(t) is usually bπt + 5/4c. This is as expected from (5.1).
The normalised value A is approximately πt1/2 exp(πt), which is large because T̃min(t),
given by Lemma 5.2, is much smaller than the error, which is about 1

2 exp(−πt).
Column B gives upper bounds on the absolute values of the entries in column C; it is

clear that the upper bounds are conservative (although necessarily so, by the discussion
near the end of Section 2).

It can be observed that the entries in column C are negative. This suggests that we
would be better off truncating the sum after kmin − 1 terms instead of kmin terms (which
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Table 2. Normalised errors—see text for A, B,C,D.

t kmin A B C D

1 4 7.2 × 101 3.57 −0.79 −1.1 × 10−2

2 7 2.4 × 103 4.69 −0.63 +2.4 × 10−4

5 16 4.6 × 107 7.09 −0.21 +2.8 × 10−3

10 32 4.4 × 1014 10.0 −0.50 +8.3 × 10−4

20 64 2.7 × 1028 14.2 −1.08 +8.3 × 10−5

50 158 3.7 × 1069 22.3 −0.84 −1.5 × 10−4

100 315 8.6 × 10137 31.5 −0.76 −5.2 × 10−5

would have the effect of adding 1 to the entries in column C). However, a much better
approximation is obtained by adding a ‘correction term’

(πt − kmin(t) + 1
12 )T̃min(t)

as in (5.4). The motivation for the correction term is to smooth out the sawtooth
nature of approximation C, which has jumps at the values of t where kmin(t) changes.
This explains the addition of (πt − kmin(t) + c) T̃min(t), where c is an arbitrary constant.
Column D gives numerical evidence for a constant close to 1

12 . We do not have a
theoretical explanation for the value of this constant, although it is clearly related to
the asymptotic location of the positive zero(s) of the function R̃k+1(t) given by (4.6). It
may be relevant that, for large k, B2k(u + 1

2 ) behaves like a scaled version of cos(2πu):
see Dilcher [10, Theorem 1].
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