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Abstract

We give sharp point-wise bounds in the weight-aspect on fourth moments of modu-
lar forms on arithmetic hyperbolic surfaces associated to Eichler orders. Thereby, we
strengthen a result of Xia and extend it to co-compact lattices. We realize this fourth
moment by constructing a holomorphic theta kernel on G×G× SL2, for G an indefi-
nite inner form of SL2 over Q, based on the Bergman kernel, and considering its L2-norm
in the Weil variable. The constructed theta kernel further gives rise to new elementary
theta series for integral quadratic forms of signature (2, 2).
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1. Introduction

The study of distributional aspects of automorphic forms has enjoyed ample consideration in
the past couple of decades, in particular questions related to the quantum unique ergodicity
conjecture, various bounds for Lp-norms, and restriction problems. In this paper, we are mainly
concerned with the L∞-norm of holomorphic Hecke eigenforms on arithmetic hyperbolic surfaces
in the large weight limit, though our method also gives essentially sharp results for moments of
L4-norms.

The sup-norm problem asks for the best possible bound on the sup-norm of a Hecke eigenform
in terms of the analytic conductor. Specifically, one often seeks a non-trivial bound on the sup-
norm separately with respect to the weight, Laplace eigenvalue, or level aspect. It is analogous
and closely related to the Lindelöf Hypothesis for automorphic L-functions. The go-to method
for the majority of previous work on this problem is amplification. It was first used in this context
by Iwaniec and Sarnak in the pioneering paper [IS95], though the idea of an amplifier goes back
to Selberg [Sel42]. Iwaniec and Sarnak showed the bound

‖ϕ‖∞ �Γ,ε (1 + |λϕ|)5/24+ε‖ϕ‖2 (1)

for a Hecke–Maass form ϕ : Γ\H → C, where the lattice Γ < SL2(R) is the unit norm elements
of an Eichler order in a quadratic division algebra. Here and henceforth, we have adopted
Vinogradov’s notation. Their result marked the first time a power of 1 + |λϕ| was saved over
what holds for a general Riemannian surface. Indeed, (1) has been known to hold with exponent
1
4 for a general compact Riemannian surface, without any further assumptions of arithmetic
nature (cf. [Sog88]). The amplifying technique has been used heavily due to its versatility. In the
context of automorphic forms on arithmetic hyperbolic surfaces, Blomer and Holowinsky [BH10],
Templier [Tem10, Tem15], Harcos and Templier [HT12, HT13], Saha [Sah17a, Sah17b, Sah20],
Hu and Saha [HS20], and Kıral [Kır14] have used it to show subconvex bounds in various level
aspects; Das and Sengupta [DS15] and Steiner [Ste17] have used it to show subconvex bounds
in the weight aspect. Blomer, Harcos, and Milićević [BHM16] and Blomer, Harcos, Maga, and
Milićević [BHMM20] applied it to a more general setting over number fields, which corresponds
to products of hyperbolic 2- and 3-spaces. The most general PGL2 result is due to Assing
[Ass17]. Moreover, the technique has also been adopted to arithmetic 2-spheres by Vanderkam
[Van97] and products of 2- and 3-spheres by Blomer and Michel [BM11, BM13], and generalized
to higher rank, e.g., by Blomer and Pohl [BP16] for Sp4, Blomer and Maga [BM15, BM16] for
PGLn (n ≥ 4), and Marshall [Mar14] for semisimple split Lie groups over totally real fields and
their totally imaginary quadratic extensions, to name a few examples.

In this paper, we employ a different tool, namely the theta correspondence. The theta
correspondence was first used by the second named author [Ste20] to tackle sup-norm problems.
It has been used previously by Nelson to answer questions regarding quantum unique ergodicity
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and quantum variance [Nel16, Nel17, Nel19, Nel20], and give Fourier-like expansions for forms
living on compact spaces [Nel15]. The main advantage of this approach is that instead of looking
at an amplified second moment, we are able to bound a fourth moment sharply. Another advan-
tage is that it works for co-compact lattices equally well as it does for non-co-compact lattices.
Our main theorem and its corollary read as follows.

Theorem 1.1. Let the arithmetic lattice Γ < SL2(R) be the unit norm elements of an Eichler
order in an indefinite quaternion algebra over Q and {fj}j ⊂ Snew

m (Γ) be an orthonormal1 basis
of Hecke newforms of weight m > 4. Then, there is a constant A ≥ 1, such that for any ε > 0,
there is a constant Cε for which we have∑

j

y2m|fj(z)|4 ≤ Cε covol(Γ)Am1+ε
(
1 +m−1/2htΓ(z)2

)
, (2)

where htΓ(z) = 1 if Γ is co-compact and

htΓ(z) = max
γ∈SL2(Z)

�(γz)

if Γ < SL2(Z). Furthermore, we have∑
j

‖fj‖44 ≤ Cε covol(Γ)Am1+ε. (3)

Corollary 1.2. Let Γ < SL2(R) be as above with the additional assumption of being co-
compact (⇔ B(Q) is non-split) and f ∈ Snew

m (Γ) a Hecke newform of weight m > 4. Then, there
is a constant A ≥ 1, such that for any ε > 0, there is a constant Cε for which we have

sup
z∈H

ym/2|f(z)| ≤ Cε covol(Γ)Am1/4+ε‖f‖2. (4)

The first half of Theorem 1.1 marks a significant improvement over what has been known
previously. It shows that the L∞-norm of the fourth moment of holomorphic newforms of weight
m is, essentially, as small as it can be, meaning that they enjoy a stronger ‘orthogonality’ relation
than what was known previously. Remarkably, our proof does not rely on any deep results from
arithmetic geometry such as Deligne’s bound for the Hecke eigenvalues, but rather a sharp bound
for a second-moment matrix count as we shall explain in further detail in § 2. The second half of
Theorem 1.1 is a simple consequence of the first half if Γ is co-compact and otherwise it follows
in conjunction with [BKY13, Theorem 1.8], which says that the mass of the fourth norm is
concentrated in the domain {z ∈ Γ\H : htΓ(z) ≤ m1/4}. Following Sarnak and Watson [Sar03],
Inequality (3), through the use of Watson’s formula [WaT08, Theorem 3] or, more generally,
Ichino’s formula [Ich08] (cf. [Nel11, § 4]), may be reformulated as a Lindelöf on average state-
ment about degree-eight L-functions. In particular, assuming that the product of the reduced
discriminant DB of B and the level q of Γ is square-free, one deduces

1
m

∑
f

1
2m

∑
g

L

(
f × f × g, 1

2

)
≤ Cε covol(Γ)Amε, (5)

where f ∈ Snew
m (Γ) runs through a basis of newforms of weight m for Γ and g ∈ S2m(Γ) runs

through an orthonormal set of newforms of weight 2m for Γ with Hecke eigenvalues equal to 1
for all primes p | DB and Atkin–Lehner eigenvalues equal to −1 for all primes p | q. This should
be compared with the result of Sun and Ye [SY19] who considered the double average of the
degree-six L-function L(Sym2 f × g, 1

2), where f, g are Hecke eigenforms of weightm, respectively

1 With respect to the invariant probability measure.
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2m, for SL2(Z). Note that L(f × f × g, 1
2) = L(Sym2 f × g, 1

2)L(g, 1
2). One should also mention

a result of Khan [Kha14], who managed to show an asymptotic formula for the left-hand side of
(3) for Γ = SL2(Z) with an extra (smooth) average over the weight m. Khan’s result matches
up with conjectures concerning the asymptotics of the L4-norm in the large weight aspect. We
refer to [BKY13] for details regarding these conjectures. In the future, we plan to address the
question whether one can upgrade the second half of Theorem 1.1 to an asymptotic without
any extra average over the weight. We shall also mention the strongest individual bound for the
L4-norm of a Hecke eigenform f of weight m on SL2(Z) which is due to Blomer, Khan, and
Young [BKY13]. They managed to show ‖f‖4 �ε m

1/12+ε‖f‖2.
The convex or trivial bound in the context of Corollary 1.2 is � covol(Γ)1/2m1/2 and the

first non-trivial bound in the weight aspect �ε m
1/2−δ+ε for a small δ > 0 was achieved by

Das–Sengupta2 [DS15] through the use of an amplifier. The previous best bound in the weight
aspect is due to Ramacher and Wakatsuki [RW21] who established a subconvex bound for the
sup-norm in significant generality.

The analogue of Corollary 1.2 for non-uniform lattices is much easier to establish, because
one can use the Fourier expansion at a cusp and then apply Deligne’s bound for the Fourier
coefficients. This was observed by Xia [Xia07], who worked out the case Γ = SL2(Z). In the
same fashion, a sharp hybrid bound for holomorphic forms of minimal type was derived by
Hu, Nelson, and Saha [HNS19]. We would also like to thank Paul Nelson for pointing out to
us the relation between our technique and [Nel15, Theorem 3.1]. Nelson uses an explicit (non-
holomorphic) version of Shimizu’s theta kernel [Shi72] to construct an expansion of ym|f(z)|2,
where f is an arithmetically normalized newform on a compact arithmetic surface, that resembles
a Fourier expansion.

Finally, we shall mention that we did not attempt to optimize the dependence on the co-
volume or level in Theorem 1.1 in this first paper. Due to our method requiring sharp bounds
for a second-moment matrix count of length comparable to the conductor, any such undertaking
must necessarily address the inability of pre-existing matrix counting techniques in the non-split
case, such as [Tem10], to deal with large determinants. Furthermore, a strategy needs to be
devised to incorporate the dependence on the reduced discriminant of the indefinite quaternion
algebra. All of this shall be addressed in a sequel joint with Nelson [KNS22].

As far as the structure of this paper goes, in the following section, we shall briefly explain
the main concept of the proof as well as mentioning an alternative approach using L-functions
instead of a theta kernel. Sections 3 and 4 deal with local and global properties of the Weil
representation and their consequences to the associated theta series. The action of the Hecke
algebra on the theta kernel is computed in § 5. In §§ 6 and 7, we show that the Bergman kernel
satisfies the required assumptions in the construction of the theta kernel and compute its spectral
expansion. In § 8, we reduce a bound on the L2-norm of the theta kernel to matrix counts. In
§ 9, we prove the essentially sharp second-moment matrix count. The main theorem is then
established in § 10.

2. General method

In this section, we shall briefly explain two essentially equivalent strategies that lead to
Theorem 1.1. We shall first lay out the approach which is conceptually closer to that of

2 In the published version δ = 1/32 appears, though this has been corrected to δ = 1/64 in a recent revision on
the arXiv [DS20, Remark 4.1].
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an amplifier. For simplicity, we shall assume everything is unramified, i.e. Γ = SL2(Z), which is
the set of determinant one elements of the maximal order R = Mat2x2(Z) inside the quaternion
algebra Mat2x2(Q). Let Rn denote the elements of R of norm n, such that Γ = R1. We begin
with a Bergman kernel (also known as a reproducing kernel) on Sm(Γ), the space of weight m
holomorphic cusp forms on Γ,

B(z, w) =
∑
j

�(z)m/2fj(z)�(w)m/2fj(w), (6)

where {fj}j is an orthonormal basis of Hecke eigenforms of the space Sm(Γ). The amplified
counterparts to the Bergman kernel are

Bn(z, w) =
∑
j

λj(n)�(z)m/2fj(z)�(w)m/2fj(w), (7)

where λj(n) is the n-th Hecke eigenvalue of the newform fj . We normalize the Hecke operators
so that Deligne’s bound reads |λj(n)| ≤ d(n), d(n) is the divisor function. The kernels Bn are
roughly of the shape

Bn(z, w) ≈ m√
n

∑
α∈Rn

u(αz,w)≤1/m

1, (8)

where u(z, w) = |z − w|2/(4�(z)�(w)). Instead of taking a suitable linear combination of (7) as
one would do for an amplifier, we consider∫ 1

0

∣∣∣∣ ∑
n≤m

Bn(z, z)e(nt)
∣∣∣∣2 dt =

∑
i,j

�(z)2m|fj(z)|2|fi(z)|2
∑
n≤m

λj(n)λi(n). (9)

To the latter, or more precisely a smooth version thereof, one may apply Voronöı summation.
If we set aside any intricacies stemming from Riemann zeta factors and smoothing, we pick up
main terms for i = j corresponding to the poles of L(fi × fj , s) at s = 1 for i = j and a dual sum
of length m2/m. Thus, we find that (9) is approximately

m
∑
j

�(z)2m|fj(z)|4 +
∑
i,j
i�=j

�(z)2m|fj(z)|2|fi(z)|2
∑

n≤m2/m

λj(n)λi(n). (10)

We see that the new dual sum is once again of the shape (9) and we may replace it with its
geometric counterpart. Through rearranging and the use of the approximation of the Bergman
kernel (8), one arrives at∑

j

�(z)2m|fj(z)|4 � m
∑
n≤m

1
n

∑
α1,α2∈Rn

u(αiz,z)≤1/m, i=1,2

1. (11)

We see that we end up with a second-moment matrix count. Before we discuss the latter further,
we shall describe how to arrive at the same inequality in an alternate fashion by using a theta
kernel.

At its core, one wishes to find a kernel3 ϑ : Γ\SL2(R)× Γ\SL2(R)× Λ\SL2(R) → C, such
that 〈

ϑ(z, w; •), (�•)m/2f̃〉 = �(z)m/2f(z)�(w)m/2f(w) · ‖f̃‖22, (12)

3 Here, Γ < G(Q) is a congruence lattice in an indefinite inner form G of SL2 and Λ < SL2(Q) is a lattice in the
split form SL2 that arises in Shimizu’s explicit Jacquet–Langlands transfer of modular forms on Γ\G(R).
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for an L2-normalized newform f and f̃ an arithmetically normalized newform in the
Jacquet–Langlands transfer to GL2 of the automorphic representation generated by f . It
immediately follows that ∑

f

‖f̃‖22 · �(z)2m|f(z)|4 ≤ ‖ϑ(z, z; •)‖22 (13)

by Bessel’s inequality. For Γ = SL2(Z), such a kernel may be given by

ϑ(z, w; ζ) = �(ζ)m/2
∞∑
n=1

Bn(z, w)n(m−1)/2e(nζ). (14)

This may be used to recover (11) upon using the Hoffstein–Lockhart bound for ‖f̃‖2 (see [HL94])
and standard bounds for the incomplete Gamma function.

We prefer to employ the latter approach as it avoids translating spectral data back into
geometric terms. Specifically, in (10), we have been able to replace the dual sum by the integral of
the same amplified Bergman kernel on the left-hand side of (9). This step cannot be reproduced
verbatim in the ramified cases. Instead, one would need to express the dual sum in terms of
Fourier expansions of amplified Bergman kernels associated to various levels and different cusps.
The approach using the theta correspondence avoids these issues altogether.

Whilst the constructions of theta kernels in great generality have been known for a while, see
[Shi72] or [Nel15, § 5 & Appendix B] for an explicit example, they are unfortunately generally
not in L2. An attempt to rectify this, would be to project such a theta kernel to Sm(Γ). Formulae
for such projections are given by Gross and Zagier [GZ86, § IV.5]. However, we follow a different
path. Motivated by the simplicity of the kernel ϑ in the case Γ = SL2(Z) (14), we modify the
general construction of a theta kernel to mirror a classical Bergman kernel of weightm. In order to
show that the novel theta kernel behaves in the prescribed fashion, we use a method of Vignéras
[Vig77] at the infinite place and compute the Fourier–Whittaker expansion in the ζ-variable.
We compare the latter with Shimizu’s explicit form of the Jacquet–Langlands correspondence
[Shi72]. As a corollary, we derive a new elementary theta series for indefinite quadratic forms of
signature (2, 2).

Theorem 2.1. Let R be an Eichler order of level q in an indefinite division quaternion algebra
over Q of reduced discriminant DB. Denote by R+ the subset of elements of positive norm and
by Γ the subset of elements of norm equal to one. Furthermore, let f ∈ Sm(Γ) be a cusp form of
weight m > 2. Then, for each z ∈ H, the function Ff (z; •), given by

Ff (z; ζ) =
∑

α∈Γ\R+

Nr(α)m/2−1(f |mα)(z)e(Nr(α)ζ), (15)

is a cusp form of weight m for Γ0(qDB). Moreover, we have FTnf (z; •) = (TnFf )(z; •) for
(n, qDB) = 1.

Returning to the second-moment matrix count, we see that upon using partial summation
we need to bound the number of solutions to

α1, α2 ∈ R : 1 ≤ Nr(α1) = Nr(α2) ≤ N, u(αiz, z) ≤ 1
m
, i = 1, 2. (16)

Consider z fixed for the moment. Then, we are given a quadratic equation in eight variables all
of size N1/2 with four additional linear inequalities of density m−1/2. Heuristics suggest that we
should have on the order of (N1/2)8 ·N−1 · (m−1/2)4 = N3m−2 solutions for N large. We see
that for N ≤ m, N3m−2 ≤ N , which is the bound we are aiming for. Moreover, by considering
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the order Mat2×2(Z) and the special point z = i, we see that the matrices of the shape
(
a −b
b a

)
with 1 ≤ a2 + b2 ≤ N satisfy the conditions in (16) and give rise to a lower bound of size N .
Likewise, we should expect that such subvarieties with exceptionally many solutions exist also
for other special points and orders under consideration. Hence, the general estimate we seek
is at the edge of what is achievable. This is in stark contrast to the classical approach of an
amplifier, where one may consider matrices of reduced norm up to only a small power of m in
order to get a non-trivial result. However, the difficulty of the task at hand is rewarded with
a sharp fourth moment estimate. In order to achieve the required bound, we rely on geometry
of numbers arguments, which have been successful in the past for first moments (cf. [HT13]),
in particular with regards to uniformity in the varying point z. To account for the additional
quadratic equation, we decompose each matrix αi into two parts: a multiple of the identity
and a traceless part α0

i . To the traceless parts α0
i we apply the geometry of numbers arguments.

The quadratic equation now reads

Nrα1 =
Tr(α1)2

4
+ Nrα0

1 = Nrα2 =
Tr(α2)2

4
+ Nrα0

2

and we may use the divisor bound to bound the number of possibilities for the traces. This gives
the required bound if and only if the traces are not equal in absolute value. The latter case
needs to be dealt with separately. We do so by showing that there are essentially only a constant
number of matrices α ∈ R satisfying u(αz, z) ≤ 1/m of a given trace and reduced norm ≤ m.

As a final remark, we address the natural question, whether the method lends itself to
further amplification. Albeit it being straightforward to produce amplified versions of (11), the
problem lies within the matrix count, where there is no further space for savings as all of the
savings stemming from u(αz, z) ≤ 1/m are used up by the fact that we already have to consider
matrices of determinant ≤ m. Any additional increase in the size of the determinant will thus
automatically increase the bound on the matrix count and subsequently the geometric side of
(11) by a considerable amount.

3. The Weil representation and theta series

3.1 Inner forms of SL2
Let B be a quadratic central simple algebra over Q and for each place v denote Bv := B ⊗Qv.
We define the affine algebraic group G over Q as representing the group functor

G(L) =
{
x ∈ B ⊗ L | Nr(x) = 1

}
for all Q-algebras L. The group G is an inner form of SL2, and all inner forms of SL2 over Q
arise this way.

Fix a maximal order R ⊂ B and define Rv to be the completion of R in Bv. For each
finite place v the order Rv is maximal in Bv. For v <∞ set Kv := R1

v < G(Qv) to be the
group of norm 1 elements in Rv. If B splits over R we fix once and for all an isomorphism
B∞ � Mat2×2(R) and use it to identify the two spaces. We then set K∞ = SO2(R) if B splits
over R and K∞ = G(R) otherwise. For almost all v the group Kv is a hyperspecial maximal
compact subgroup of G(Qv). We define G(A) as the restricted direct product

G(A) :−
{

(gv)v ∈
∏
v≤∞

G(Qv) | gv ∈ Kv for almost all v
}
.
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3.2 Normalization of Haar measures
For a linear algebraic group L defined over Q we denote [L(A)] := L(Q)\L(A). Assume [L(A)] is of
finite volume. We shall always integrate with respect to the probability Haar measure on [L(A)].
Let U < L(Af ) be a compact open subgroup. Then, L(R) acts on [L(A))]U := L(Q)\L(A)/U with
finitely many orbits [Bor63], and [L(A)]U �

⊔
i Γi\L(R) with Γi < L(R) finitely many lattices.

On [L(A)]U we integrate with respect to the push-forward of the probability Haar measure on
[L(A)]. This measure is evidently an L(R)-invariant probability measure. If [L(A)]U � Γ\L(R)
is a single L(R)-orbit, then this measure is the probability Haar measure on Γ\L(R).

On SL2(R)/SO2(R) and Spin3(R)/SO2(R) we fix the standard Haar measures correspond-
ing to the volume form of Gaussian curvature ±1 on the hyperbolic plane and the 2-sphere. We
fix the unique Haar measures on SL2(R) and Spin3(R) whose push-forward to the symmetric
space coincides with the measure above.

On SL2(Qp) and PGL2(Qp) we fix the Haar measure giving volume 1 to SL2(Zp) and
PGL2(Zp), respectively. Let Dp be the unique ramified quaternion algebra over Qp with ring of
integers O(Dp). Denote by D(1)

p the group of norm 1 element in Dp. We fix the Haar measures
on D(1)

p , Q×
p \D×

p that give volume 1 to the compact open subgroups O(Dp) ∩ D(1)
p , Z×

p \O(Dp)×

respectively. These choices fix a Haar measure mG(Qp) on G(Qp) for all primes p.
The product of the local Haar measures mG(Qp) at all primes p induce a Haar measure on

G(Af ) =
∏′
pG(Qp), which we call the unnormalized Haar measure on G(Af ). Similarly, we

call the product of the fixed Haar measure on G(R) with the unnormalized Haar measure on
G(Af ), the unnormalized Haar measure on G(A). The unnormalized Haar measure on G(A) is
necessarily proportional to the covolume 1 measure, but they are not equal. Our local measure
normalization forces mG(Qp)(Kp) = 1 for all primes p, hence the volume of [G(A)] with respect

to the unnormalized measure is not 1, but rather the sum of the volumes mG(R)(R
(1)
i \G(R)) for

orders Ri ⊂ B representing all the classes in the class set4 of R, where R is the maximal order
from above. Denote by 
G the volume of [G(A)] with respect to the unnormalized measure.
In the indefinite case, the class number is 1 and the volume is 
G = (π/3)ϕ(DB) (see [Voi21,
Theorem 39.1.2]). Exactly the same formula holds in the definite case, due to the Eichler mass
formula [Voi21, Theorem 25.1.1]. We henceforth fix the Haar measure mG(Af ) on G(Af ) to be
the measure induced by 
−1

G

∏
pmG(Qp). The product mG(R) ×mG(Af ) is the co-volume 1 Haar

measure. The same discussion applies mutatis mutandi to SL2.
Note that we have several normalizations of the Haar measure on G(R). When integrating

over a quotient by a lattice Γ\G(R) we always use the co-volume 1 Haar measure. When inte-
grating over G(R) we use the standard measure mG(R) which is not a co-volume 1 measure in
general. The discrepancy is accounted for by the factor 
−1

G in the Haar measure of G(Af ). The
same discussion applies to SL2.

3.3 Local Weil representation
In this section, the field F = Qv is a completion of Q at a place v, then Bv is a quadratic central
simple algebra over F , i.e. Bv = Mat2×2(F ) or Bv is the unique quadratic division algebra over F .
Denote by x �→ xι the canonical involution on Bv. In the split case, the involution sends a matrix
to its adjugate. Denote the reduced norm on Bv by Nr and the reduced trace by Tr. We shall
also fix a unitary additive character ψv : F → C×. In this section, we recall the construction and
elementary properties of the Weil representation.

4 That is, all orders everywhere locally conjugate to R by a norm 1 element, where two orders are equivalent if
they are globally conjugate by a rational norm 1 element.

2923

https://doi.org/10.1112/S0010437X24007437 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007437


I. Khayutin and R. S. Steiner

The vector space Bv is endowed with an additive Haar measure. For an integrable function
M : Bv → C, we define the Fourier transform by

FM(x) =
∫
M(y)ψv(〈x, y〉) dy,

where the bilinear form 〈 , 〉 is defined by

〈x, y〉 := Tr(x yι ).

Note that this is twice the polarization of the norm quadratic form, i.e. 〈x, x〉 = 2 Nrx. We
normalize the measure on Bv so that it is Fourier self-dual, i.e. F2M(x) = M(−x) for a Schwartz
function M .

If v is non-archimedean denote by Ωv the space of Schwartz–Bruhat functions on Bv,
i.e. locally constant functions of compact support. At the archimedean place, we need to consider
a space that differs from the space of Schwartz functions because the Bergman kernel does not
arise from a Schwartz function. To construct Ω∞, we will start first with a larger space L2(B∞)
and then restrict the Weil representation to a subspace Ω∞ to be defined later.

The Weil representation of SL2(F ) on Ωv, L2(B∞) satisfies

ρ

((
1 σ
0 1

))
M(x) = ψv

(
σNr(x)

)
M(x),

ρ

((
λ 0
0 λ−1

))
M(x) = |λ|2vM(λx),

ρ

((
0 1
−1 0

))
M(x) = γFM(x),

where γ = 1 if Bv is split and γ = −1 otherwise. For a proof that this defines a representation,
see [JL70, § 1.1].

Note that the representation depends on the choice of an additive character ψv. We will
usually suppress this dependence in the notation, but when we need to keep track of the character
we shall write ρψv . Because Qv is Fourier self-dual, all non-trivial additive characters are of the
form ψ
 v(a) = ψv(a�) for some � ∈ Q×

v . We see that

ρ ψ�
v
(g) = ρψv(diag(�, 1)g diag(�, 1)−1). (17)

Lemma 3.1. Let O(Bv,Nr) be the group of linear transformations preserving the norm form, this
group acts on functions by u.M(x) = M(u−1x). The action of the orthogonal group O(Bv,Nr)
commutes with the action of SL2(F ) via ρ.

Proof. It is sufficient to verify the claim for each of the formulae above. The action of the
upper triangular matrices commutes with the action of any linear transformation that pre-
serves the norm. The Fourier transform intertwines the action of L ∈ GL(Bv) with the action of
|detL|−1

v Lt −1. Hence, it commutes with orthogonal transformations. �

Corollary 3.2. The ρ action of SL2(F ) commutes with the right and left actions of G(F ) by
multiplication. Moreover, the ρ action commutes with the B×-action by conjugation.

Proof. The actions of B× and G(F ) preserve the norm form, hence they factor through the
orthogonal group. �

Lemma 3.3. The Weil representation is a continuous unitary representation of SL2(F ) on Ωv,
L2(B∞).
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Proof. This is established by Weil [Wei64] for the space of Schwartz or Schwartz–Bruhat
functions. The same proof works for L2(B∞). �

3.4 The Archimedean Weil representation
To construct the appropriate subspace Ω∞ ⊂ L2(B∞), we will use a method based on the work
of Vignéras [Vig77]. We define the Laplacian Δ on B∞ as the Fourier multiplier operator with
symbol −4π2 Nr. Write the archimedean additive character as ψ∞(a) = exp(2πia�) and consider
the partial differential equation (PDE)

−ΔM(x) + ω2 Nr(x)M(x) =
ωm

�
M(x), (18)

where m ∈ Z and ω > 0. This is nothing but the PDE for energy eigenstates of four indepen-
dent quantum harmonic oscillators with total energy (ω�)m and angular frequency ω�. We call
m the quantum number of the equation and we denote by Vm,ω the L2-closure of the space of
Schwartz solutions to (18). Note that unlike the standard harmonic oscillator, the individual oscil-
lators may have either positive or negative energy depending on the signature of the quadratic
form Nr.

We fix henceforth ψ∞(a) = exp(2πia), i.e. � = 1. Consider the densely defined linear
operator Lω : L2(B∞) → L2(B∞) given by Lω[M ] = −ΔM + ω2 Nr(x) ·M with the domain of
Schwartz functions D(Lω) = S(B∞). Then, Lω is real, i.e. 〈Lω[M ],M〉 ∈ R for all M ∈ S(B∞).
Hence, Lω is symmetric. For explicitness, we state the following classical linear algebra lemma.

Lemma 3.4. The spaces
{
Vm,ω

}
m∈Z

are mutually orthogonal.

Proof. It is enough to show that if M,M ′ are Schwartz solutions to (18) with quantum num-
bers m �= m′, then 〈M,M ′〉 = 0. Because the operator Lω is symmetric, we have 〈ωmM,M ′〉 =
〈L[M ],M ′〉 = 〈M,L[M ′]〉 = 〈M,ωm′M ′〉. We deduce that 〈M,M ′〉 = 0 in the usual fashion. �

Lemma 3.5. Let kθ :=
(

cos θ sin θ
− sin θ cos θ

) ∈ SO2(R) and set ψ∞(a) = exp(2πia). Then, for every M ∈
Vm,2π we have (

ρ
(
kθ
)
.M

)
(x) = eimθM(x).

Moreover, L2(B∞) =
⊕

m∈Z Vm,2π. Therefore, Vm,2π is the
(
ρ(SO2(R)), eimθ

)
-isotypic subspace

of L2(B∞).

The idea to use the one-dimensional Hermite functions in the proof of the lemma has been
suggested to us by J. Wunsch.

Proof. We establish first the direct sum decomposition. Recall that we need the Laplacian in
(18) to be defined consistently as having Fourier symbol −4π2 Nr. Choose a coordinate system
x1, . . . , x4 for B∞ such that Nr(x) =

∑4
i=1 εix

2
i with εi ∈ {±1}. The Laplacian for our fixed

character can be written in this coordinate system as

1
4

4∑
i=1

εi
∂2

∂x2
i

.

The 1/4 factor appears because the Fourier transform is defined with respect to the bilinear
form

∑4
i=1 2εixiyi. The space of solutions to the one-dimensional quantum harmonic oscillator

with angular frequency 4π, n ∈ Z≥0,

−1
4f

′′(x) + 4π2x2f(x) = (2n+ 1)πf(x)
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is one-dimensional and the L2-normalized solution is

fn(x) :=
1√

2n−1n!
exp

(−2πx2
)
Hn(2

√
πx),

where Hn are the physicist’s Hermite polynomials. Moreover, these solutions form an orthonor-
mal basis of the Hilbert space L2(R). Define for every n = (n1, n2, n3, n4) ∈ Z4

≥0 the function
Mn : B∞ → C by

Mn(x) =
4∏
j=1

fnj (xj) =
4∏
j=1

1√
2nj−1nj !

exp
(−2πx2

j

)
Hnj (2

√
πxj),

where x1, . . . , x4 are the normal form coordinates for the quadratic form Nr(x). Because
L2(B∞) � L2(R)

⊗
4, we deduce that the functions Mn form an orthonormal basis of L2(B∞).

These are Schwartz functions, and a separation of variables computation shows that Mn solves
(18) with5 2m =

∑4
j=1 εj(2nj + 1). This and Lemma 3.4 establish that L2(B∞) =

⊕
m∈Z Vm,2π

as claimed.
We need to prove that if M ∈ Vm,2π then ρ(kθ).M = eimθM for all θ ∈ [0, 2π). By continuity

of the Weil representation it is enough to establish this for Schwartz functions. Because Schwartz
functions are smooth vectors for the Weil representation it is sufficient to show (d/dθ)ρ(kθ).M =
im
(
ρ(kθ).M

)
. Because the group SO2(R) is abelian it is enough to verify this ordinary differential

equation (ODE) at θ = 0. The formula kθ = exp(θw) for w =
(

0 1−1 0

)
implies that the ODE at

θ = 0 is equivalent to
dρ(w).M = imM, (19)

where dρ is the Lie algebra representation of sl2(R) on S(B∞) differentiated from the
Weil representation of SL2(R). Using the definition of the Weil action for upper diag-
onal unipotent matrices one easily computes that

(
dρ ( 0 1

0 0 ) .M
)
(x) = 2πiNr(x)M(x). The

formula
(

0 0−1 0

)
= w−1 ( 0 1

0 0 )w, then implies that dρ
(

0 0−1 0

)
.M = (1/2πi)ΔM , and (dρ(w).M)(x) =

(1/2πi)ΔM(x) + 2πiNr(x)M(x). Thus, (19) is equivalent to (18). �
Corollary 3.6. Let M ∈ Vm,ω for arbitrary ω > 0 and fix g =

(
a b
c d

) ∈ SL2(R). Then,

(ρ(g).M)(x) =
2π
ω

1
D2

ψ∞
(
bd2π

ω + ac ω2π
D2

Nrx
)(√

2π
ω

d

D
− i

√
ω

2π
c

D

)m
M

(√
2π
ω

x

D

)
,

where D =
√
c2(ω/2π) + d2(2π/ω).

Proof. We use the notation a := diag
(√

2π/ω,
√
ω/2π

)
and write ρ(g).M = ρ(ga−1)ρ(a).M .

The Iwasawa decomposition of ga−1 is

ga−1 =

(
1 bd 2π

ω
+ac ω

2π
D2

0 1

)(
1
D 0
0 D

)⎛⎝√2π
ω

d
D −√ ω

2π
c
D√

ω
2π

c
D

√
2π
ω

d
D

⎞⎠ .

The function

(ρ(a).M)(x) =
2π
ω
M

(√
2π
ω
x

)
is a solution of (18) with angular frequency 2π. Hence, we can apply Lemma 3.5 to ρ(ga−1)ρ(a).M
and the Iwasawa decomposition of ga−1. �

5 The sum of four odd numbers
∑4

j=1 εj(2nj + 1) is always even.

2926

https://doi.org/10.1112/S0010437X24007437 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007437


Theta functions, fourth moments of eigenforms, and the sup-norm problem I

Definition 3.7. Fixm ∈ Z. We are now ready to define the subspace Ω∞ < L2(B∞). This space
will depend on a choice of m. Recall that Vm,ω is the L2-completion of the space of solutions of
the quantum harmonic oscillator, (18), for a fixed m ∈ Z and ω > 0. Define

Ω∞ := SpanC

{
ψ∞(σNr(x))M(x) | σ ∈ R,∃ω > 0: M ∈ Vm,ω

and ∃δ > 0: |M(x)| � (1 + ‖x‖)−4−δ}.
The span allows only for finite linear combinations. In other words, Ω∞ is the space generated
by orbits of functions in

⋃
ω>0 Vm,ω satisfying a decay condition at infinity under the Weil action

of unipotent matrices. The decay condition implies that any function in Ω∞ is in Lp(B∞) for all
p ≥ 1.

Proposition 3.8. The space Ω∞ is invariant under the Weil representation and the action of
O(B∞,Nr).

Proof. The space Vm,ω is invariant under O(B∞,Nr) because (18) commutes with orthogo-
nal transformations. Also, the decay condition is invariant under orthogonal transformations.
Invariance under the Weil action follows from Corollary 3.6. �
Remark. We note that we may assume the functions in Ω∞ to be continuous, since we may replace
them with the Fourier inverse of its Fourier transform as it converges absolutely uniformly on
compacta due to the decay condition.

3.5 The non-Archimedean Weil representation
We now describe the interaction between the Weil representation and Eichler orders in Bv for
v <∞. In this section, we fix a prime p and write F = Qp and set v to be the associated place.
For clarity of notation, we will write Bp := Bv. We assume that ψp = ψv is an unramified
character.

Definition 3.9. Let R ⊂ Bp be an order. Then, the dual lattice R̂ is defined as

R̂ =
{
x ∈ Bp | ∀x ∈ R: Tr(x yι ) ∈ Zp

}
.

We begin by discussing maximal orders.

Definition 3.10. Set U0(pn) < SL2(Zp) to be the congruence subgroup defined by

U0(pn) :=
(

Zp Zp
pnZp Zp

)
∩ SL2(Zp).

Lemma 3.11. Let R ⊂ Bp be a maximal order. If Bp is split, then ρ
(
SL2(Zp)

)
.1R = 1R. If Bp

is ramified, then ρ
(
U0(p)

)
.1R = 1R.

Remark. This lemma is closely related to Lemmata 7 and 10 of [Shi72].

Proof. All maximal orders in Bp are conjugate to each other by an element of B×
p . Because the

Weil action commutes with conjugation, it is enough to prove the claim for a specific maximal
order. Moreover, the group SL2(Zp) is generated by the subgroup P< SL2(Zp) of upper triangu-
lar integral matrices and the involution w. The fact that 1R is invariant under P follows because
we have assumed ψv is unramified. If Bp is split, fix an isomorphism Bp � Mat2×2(Qp) and we
need only show that 1Mat2×2(Zp) is invariant under the Fourier transform. This follows from the
fact that 1Zp is invariant under the Fourier transform on Qp with an unramified character.

If Bp is a division algebra, we need only show invariance under the element
(

1 0
p 1

)
=

−w ( 1 −p
0 1

)
w. This element and the upper triangular integral matrices generate U0(p). Because of

the duality of the Fourier transform, this is equivalent to showing that ρ
((

1 −p
0 1

))
.F1R = F1R.
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Let E = F (
√
a)/F be the unique unramified quadratic extension and write Bp as the cyclic

algebra
(a,p

Qp

)
with the standard generators i, j, k and i2 = a, j2 = p and ij = −ji = k. As usual,

we identify E with the sub-ring Qp + iQp < Bp. Denote by OE the maximal order of E. Then,
the unique maximal order of Bp is R � OE + jOE . The Fourier transform on Bp descends to
the standard Fourier transform on E with an unramified character. Identifying Bp � E × E
via a+ jb �→ (a, b), we can write the Fourier self-dual measure on Bp in these coordinates as
p−1mE ×mE . The p−1 factor normalizes the measure to be self-dual.

The Fourier transform on E satisfies F1OE
= 1OE

. An explicit computation with the Fourier
self-dual measure implies

F1OE+jOE
= p−11OE+j−1OE

.

Hence, Nrx ∈ p−1Zp for all x ∈ suppF1R, from which we deduce
(
ρ
((

1 −p
0 1

))
.F1R

)
(x) =

ψv(−pNrx)
(
F1R

)
(x) =

(
F1R

)
(x) and the claim follows. �

Lemma 3.12. Assume Bp is ramified and let R ⊂ Bp be the unique maximal order. Then, there
is an isomorphism of finite abelian additive groups

jv : R̂/R→ Fp2

such that −pNrx mod pZp ≡ Nr jv(x) for all x ∈ R̂. The norm on the right-hand side is the field
norm Fp2 → Fp.

Moreover, if j is a uniformizer of R, then we can choose jv so that the composite map

R/jR
x �→j−1x−−−−−→ R̂/R

jv−→ Fp2
is a field isomorphism.

Note that there are exactly two field isomorphisms R/jR→ Fp2 and they differ by post-
composition with the Frobenius, i.e. by the action of the Galois group. If f : R/jR→ Fp2 is such
an isomorphism, then f(jxj−1) = f(x)p, i.e. conjugation by j is intertwined with the Frobenius.

Hence, the composition of R/jR
x �→xj−1

−−−−−→ R̂/R
jv−→ Fp2 is necessarily also a field isomorphism

differing from the original one by post-composition with the Frobenius.

Proof. Let j be a uniformizer in R. The field norm on R/jR � Fp2 coincides with the reduction
modp of the reduced norm in R. This can be seen by taking a subfield E ⊂ Bp, such that E is
an unramified quadratic extension of F that splits Bp. In these coordinates, we can write

Bp = E + jE, R = OE + jOE , R̂ = OE + j−1OE . (20)

Now, the restriction of the reduced norm in Bp to E coincides with the field norm on E and
R/jR = OE/pOE � Fp2 .

Observe that R̂ = j−1R and R̂/R � R/jR � Fp2 . The last isomorphism is a field iso-
morphism and, thus, it commutes with taking norms. The first isomorphism is via the map
x �→ jx and Nr(jx) = −pNrx. This establishes the claimed formula for norms. To summarize,
the map jv may thus be given explicitly as

jv(a+ j−1b) = b mod pOE , (21)

for a+ j−1b ∈ R̂ with a, b ∈ OE . �
Proposition 3.13. Assume Bp is ramified and let R ⊂ Bp be the unique maximal order.
Then,

ρ(SL2(Zp)).1R =
{
−p−1ψ

(
Nrx
t

)
1
R̂
| 0 < t < p

}
∪ {1R,−p−11

R̂

}
.

Moreover, each of the functions above corresponds to a single coset in SL2(Zp)/U0(p).
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Remark 3.14. Because Nrx ∈ p−1Zp and ψ is unramified, we can rewrite the result above
as

ρ(SL2(Zp)).1R =
{
1R

} ∪ {−p−1ψ
(
tNrx

)
1
R̂
| t ∈ Z/pZ

}
.

Proof. As in the previous lemma, we put coordinates on Bp corresponding to the cyclic algebra(a,p
Qp

)
where E = F (

√
a)/F is the unique unramified quadratic extension, see (20). We shall make

use of the explicit map jv given by (21). It is an isomorphism of abelian groups R̂/R→ Fp2 and
−pNrx mod pZp ≡ Nr jv(x) for all x ∈ R̂, where the norm on the right-hand side is the field
norm Fp2 → Fp.

For each α ∈ Fp2 , fix a representative xα ∈ j−1
v (α). Then,

R̂ =
⊔

α∈Fp2

(
xα + R

)
. (22)

Explicitly, for each α ∈ Fp2 , we take xα = j−1α̌, where α̌ ∈ OE satisfies α̌ mod pOE = α. The
duality between R and R̂ implies that Nr(xα + R) ⊂ Nrxα + Zp.

Recall that 1R is ρ(U0(p))-invariant. Hence, we need only calculate the action of each rep-
resentative of SL2(Zp)/U0(p) on 1R. A set of representatives is given by w, ( 1 0

t 1 ), 0 ≤ t < p.
The action of ρ(w) is the Fourier transform (multiplied by γ = −1) and we have already seen in
the proof of Lemma 3.11 that

ρ(w).1R = −p−11
R̂
.

Write x = a+ j−1b for x ∈ R̂. Now, we compute the action of ( 1 0
t 1 ) = −w ( 1 −t

0 1

)
w

using6 (22) (
ρ

((
1 0
t 1

))
.1R

)
(x) = −p−1ρ(w).

(
ψ(−tNr y)1

R̂
(y)
)
(x)

= −p−1ρ(w).
( ∑
α∈Fp2

ψ(−tNrxα)1xα+R

)
(x)

= p−21
R̂

(x)
∑
α∈Fp2

ψ(−tNrxα + 〈x, xα〉).

If t �= 0, then the sum above becomes∑
α∈Fp2

ψ

(
Nrx−Nr(x− txα)

t

)
= ψ

(
Nrx
t

) ∑
α∈Fp2

ψ

(
Nr(b− tα)

tp

)
= ψ

(
Nrx
t

) ∑
α0∈Fp2

ψ

(
Nrα0

tp

)

= ψ

(
Nrx
t

)(
(p+ 1)

∑
β∈F

×
p

ψ

(
β

p

)
+ 1

)
= −pψ

(
Nrx
t

)
.

We have used the fact that every element of F×
p is the norm of exactly p+ 1 elements in F×

p2
.

This establishes the claim for 0 < t < p. For t = 0, the sum becomes∑
α∈Fp2

ψ

(
− Tr(αb)

p

)
=

{
p2, b ≡ 0 mod pOE ,
0, otherwise.

In addition, 1
R̂

(x)δb≡0 mod pOE
(x) = 1R(x). Of course, the case of t = 0 is actually trivial to

compute because it corresponds to the identity representative.

6 Note that ρ(−1).M(x) = M(−x) and that our function is symmetric, so −1 acts trivially.
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�
Lemma 3.15. Let M : Bp → C be a Schwartz–Bruhat function. Then, there is an open
subgroup UM < SL2(Zp) such that ρ(UM ).M = M . In particular, ρ

(
SL2(Zp)

)
.M is a finite

set.

Proof. Fix a maximal order R ⊂ Bp. We first claim that for every Schwartz–Bruhat function
M : Bp → C there is some diagonal matrix a ∈ SL2(Qp) such that ρ(a).M is a linear combination
of translates of 1R. Equivalently ρ(a).M(x+ R) = ρ(a).M(x). Because M is Schwartz–Bruhat,
there is a small neighborhood of the origin V⊂ Bp, such that M(x+ V) = M(x). There is
k ≥ 1 such that pkR ⊂ V. The function x �→M(pkx) is invariant under translations by R. Set
a = diag(pk, p−k), then ρ(a).M is a linear combination of translates of 1R as claimed.

Fix b ∈ Bp and consider the group

A(b) =
{
diag(u, u−1) : u ∈ Z×

p and bu− b ∈ R
}
.

Then, A(b) is an open subgroup of the diagonal group in SL2(Zp) and ρ(A(b)).1b+R = 1b+R.
Taking a finite intersection of such subgroups we find an open subgroup A0 of the diagonal group
of SL2(Zp), such that ρ(A0a).M = ρ(a).M . Hence, M is invariant under ρ(A0).

In a similar fashion, let kb ≥ 0 such that pkbb ∈ R and define N(b) =
(

1 pkbZp

0 1

)
. Then, N(b)

is an open subgroup of the upper-triangular unipotent group of SL2(Zp) and ρ(Nb).1b+R =
1b+R. Taking a finite intersection of such subgroups we can find an open subgroup N′

1 of the
integral upper-triangular unipotent subgroup, such that ρ(N′

1a).M = ρ(a).M . Set N1 = a−1N′
1a ∩

SL2(Zp). Then, ρ(N1).M = M and N1 is an open subgroup of the upper unipotent integral group.
Replacing M by ρ(w).M , we can find N2 such that ρ(w−1N2w).M = M , and w−1N2w is an open
subgroup of the lower-triangular integral unipotent group.

Set now UM to be the group generated by A0,N1, w
−1N2w. Then, UM is an open subgroup

of SL2(Zp) and satisfies the requirements of the claim. �
Assume now Bp � Mat2×2(Qp) is split. Maximal orders in Mat2×2(Qp) are endomorphism

rings of lattices in Q2
p and they are in one-to-one correspondence with the vertices of the

Bruhat–Tits tree of SL2(Qp).

Definition 3.16. An Eichler order in Bp of level pn is an intersection of two maximal orders
corresponding to two vertices in the Bruhat–Tits tree with distance n between them.

Lemma 3.17. Let R ⊂ Bp be an Eichler order of level pn. Then, ρ
(
U0(pn)

)
.1R = 1R.

Proof. The action of B×
p on the vertices of the Bruhat–Tits tree is transitive on pairs of vertices

of a fixed distance,7 thus it acts transitively by conjugation on the set of Eichler orders of a fixed
level pn. Because the conjugation action commutes with the Weil representation, it is enough to
consider a single Eichler order of the form

R =
(

Zp Zp
pnZp Zp

)
.

Indeed, invariance of 1R under upper-triangular integral matrices is immediate and it is enough
to check invariance under the element

(
1 0
pn 1

)
= −w ( 1 −pn

0 1

)
w. Equivalently, we need to show

7 This follows from the facts that the action of SL2(Qp) is strongly transitive, i.e. it is transitive on pairs (C,A)
where C is a chamber in the apartment A, and that PGL2(Qp) has an element which inverts the orientation of a
single chamber.
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ρ
((

1 −pn

0 1

))
.F1R = F1R. We can compute the Fourier transform of 1R explicitly and arrive at

F1⎛⎝ Zp Zp
pnZp Zp

⎞⎠ = p−n1⎛⎝Zp p−nZp
Zp Zp

⎞⎠ = p−n1
R̂
.

In particular, for all x ∈ suppF1R, we have Nrx = detx ∈ p−nZp and(
ρ

((
1 −pn
0 1

))
.F1R

)
(x) = ψv(−pn Nrx)

(
F1R

)
(x) =

(
F1R

)
(x)

as necessary. �
Lemma 3.18. Let R = R1 ∩R2 be an Eichler order of level pn, where R1 and R2 are maximal
orders. There is an isomorphism of additive abelian groups jv : R̂/R→ (

Z/pnZ
)2

such that

jv(R1) = Z/pnZ× {0},

jv(R2) = {0} × Z/pnZ,

∀x ∈ R̂: − pn Nr(x) ≡ jv(x)1 · jv(x)2 mod pn.

Moreover, the isomorphism jv is unique up to post-composition with the map (b, c) �→
(bu, cu−1) for u ∈ (Z/pnZ)×.

Note that the isomorphism jv depends not only on R but on an ordered choice of R1 and R2.

Proof. Because all local Eichler orders of fixed level are conjugate, it is enough to verify the
claim for

R1 =
(

Zp Zp
Zp Zp

)
, R2 =

(
Zp p−nZp
pnZp Zp

)
.

In this case, we have

R =
(

Zp Zp
pnZp Zp

)
, R̂ =

(
Zp p−nZp
Zp Zp

)
.

We define the abelian homomorphism jv : R̂→ (
Z/pnZ

)2 explicitly as(
a b/pn

c d

)
�→ (c, b) mod pnZp.

A direct computation shows that this homomorphism has kernel R and that it satisfies the
claimed properties.

This isomorphism is unique up to post-composition with a linear automorphism of the first
and second coordinate of

(
Z/pnZ

)2, i.e. a transformation of the form (b, c) �→ (bu1, cu2) for
u1, u2 ∈ (Z/pnZ)×. The requirement that the quadratic form −pn Nr descends to the product
form (b, c) �→ b · c forces u2 = u−1

1 . �
Remark 3.19. The previous lemma implies that given two maximal orders R1, R2 the map
x �→ (ordp jv(x)1, ordp jv(x)2) from R̂ to {0, 1, . . . , n}2 is uniquely defined.

Definition 3.20. Let R ⊂ Bp be an Eichler order of level pn. For every pk | pn define the lattice

R̂(pk) =
{
x ∈ R̂ | jv(x) ≡ (0, 0) mod pk

}
.

The definition of R̂(pk) does not depend on the choice of jv. Note that R̂(1) = R̂ and R̂(pn) = R.
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Moreover, for x ∈ R̂(pk) define8

νpk(x) := −p−kjv(x)1 · p−kjv(x)2 ∈ Z/
pn−kZ.

Note that νp0(x) ≡ pn Nrx mod pn.

Proposition 3.21. Let R ⊂ Bp be an Eichler order of level pn. Then,

ρ
(
SL2(Zp)

)
.1R =

{
1
R̂

(x) · p−nψv(−pt0 Nrx) | 0 < t0 ≤ pn−1
}

∪
{
1
R̂

(
pordp t

)(x) · p−(n−ordp t)ψv

(
νpordp t(x)

pn−2 ordp tt

)
| 0 < t ≤ pn

}
.

Moreover, each of the functions above corresponds to a single coset of SL2(Zp)/U0(pn). For
t = pn above, the phase is 1, hence the representative for t = pn is simply 1R.

Remark 3.22. Because ψ is unramified, we can rewrite the result above as

ρ
(
SL2(Zp)

)
.1R =

⋃
0<k≤n

{
1
R̂(pk)(x) · p−(n−k)ψv

(
u · νpk(x)
pn−k

)
| u ∈ (Z/

pn−kZ
)×}

∪
{
1
R̂

(x) · p−nψv
(
tNrx

) | t ∈ Z/pnZ

}
.

The set on the second line is analogous to the k = 0 case missing in the first line, but requires t
to traverse the whole congruence subgroup, not just the units.

Proof. Again, as all Eichler orders are conjugate, the claim reduces to the case of

R =
(

Zp Zp
pnZp Zp

)
, R̂ =

(
Zp p−nZp
Zp Zp

)
,

and

jv

((
a b/pn

c d

))
= (c, b) mod pnZp.

Because of Lemma 3.17, it is enough to compute ρ(s).1R for each of the representatives of
SL2(Zp)/U0(pn). To find these representatives, we first write representatives for SL2(Zp)/U0(p)

SL2(Zp) = wU0(p) �
⊔

0<t≤p

(
1 0
t 1

)
U0(p).

This decomposition follows from the fact that U0(p) is the stabilizer of an edge in the apartment
of the diagonal torus in the Bruhat–Tits tree of SL2(Qp) and the representatives above permute
the p+ 1 neighbors of the vertex stabilized by SL2(Zp).

Next, we find representatives for U0(p)/U0(pn) using their definition as congruence subgroups

U0(p) =
⊔

0<t0≤pn−1

(
1 0
pt0 1

)
U0(pn).

By combining, we arrive at

SL2(Zp) = w
⊔

0<t0≤pn−1

(
1 0
pt0 1

)
U0(pn) �

⊔
0<t≤pn

(
1 0
t 1

)
U0(pn).

8 This definition does not depend on the choice of jv.
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We now compute explicitly the action of all representatives. We need to decompose R̂ into
R-cosets

R̂ =
⊔

0≤α,β<pn

(
0 α/pn

β 0

)
+ R.

To simplify notation, we denote xα,β :=
( 0 α/pn

β 0

)
, with jv(xα,β) = (β, α). The duality between

R̂ and R implies Nr(xα,β + R) = Nrxα,β + Zp = −αβ/pn + Zp. Write ( 1 0
t 1 ) = −w ( 1 −t

0 1

)
w and

x =
(
a b/pn

c d

)
. Then,

ρ

((
1 0
t 1

))
.1R(x) = p−nρ(w)ρ

((
1 −t
0 1

))
.1

R̂
(x) = p−nρ(w).

(
ψv(−tNrx)1

R̂
(x)

)
= p−nρ(w).

( ∑
0≤α,β<pn

ψv(tαβ/pn)1xα,β+R(x)
)

= 1
R̂

(x) · p−2n
∑

0≤α,β<pn

ψv(tαβ/pn + 〈xα,β , x〉)

= 1
R̂

(x) · p−2n
∑

0≤α,β<pn

ψv

(−αc− βb+ tαβ

pn

)
.

Let k = ordp t. Then, summing first over α we deduce pk | c and summing first over β we see
that pk | b. Using this input, we can sum first over α and then over β to arrive at

ρ

((
1 0
t 1

))
.1R(x)

= 1
R̂

(x)p−(n−k)

⎧⎨⎩ψv
(
− (c/pk)(b/pk)

(t/pk)pn−k

)
= ψv

(
νpk(x)
tpn−2k

)
, jv(x) ≡ (0, 0) mod pk,

0, otherwise.

We need only deal now with representatives of the form w
(

1 0
pt0 1

)
=
(

1 −pt0
0 1

)
w which are

easier to compute

ρ

(
w

(
1 0
pt0 1

))
.1R(x) = p−nψv(−pt0 Nrx)1

R̂
(x). �

3.6 Local uniformity
As a preparation for the global theory, we will need the following proposition that uniformly
controls the decay of test functions for the Weil representation.

Proposition 3.23. Let M ∈ Ωv, s ∈ SL2(F ) and L ∈ O(Bv,Nr). If v = ∞, then there is δ > 0
such that the inequality

|(ρ(s)M)(Lx)| � (1 + ‖x‖)−4−δ

holds uniformly on compact sets in SL2(F )×O(Bv,Nr). If v <∞, then for every compact subset
of K⊂ SL2(F )×O(Bv,Nr) there is a compact subset C⊂ Bv such that

∀(s, L) ∈K: |(ρ(s)M)(Lx)| �K 1C.

Proof. The claim for v = ∞ follows immediately from Corollary 3.6. Fix now v <∞. We may
cover the set K by the product of its projections onto SL2(F ) and O(Bv,Nr), which is compact.
Hence, we may assume without loss of generality that K= K0 ×K1 is a compact product set.
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Note that it is enough to show that there is some C0 ⊂ Bv such that |ρ(s).M | � 1C0 for s ∈K0.
In particular, the compact set C=

⋃
L∈K1

L−1C0 will satisfy the claimed properties. Using the
Iwasawa decomposition, we can find a compact subset CP of the group of upper triangular
matrices such that K0 ⊂ CPSL2(Zp). Recall from Lemma 3.15 that the ρ

(
SL2(Zp)

)
-orbit of

M is finite and a uniform bound on ρ(K0).M will follow from a uniform bound on ρ(CP ).M ′

for every M ′ in ρ
(
SL2(Zp)

)
.M . A uniform bound on |ρ(CP ).M ′| follows immediately from the

formulae for the Weil action of diagonal and upper unipotent matrices. �

3.7 Global Weil representation and theta series
Fix an additive character ψ : A/Q → C such that ψ =

∏
v ψv and ψv is unramified for all finite

v. This is possible for the adèle ring of Q and the standard character with ψ∞(a) = exp(−2πia)
will do. We consider henceforth always the local Weil representations on Ωv to be with respect
to ψv.

Set

Ω :=
⊗′

Ωv = SpanC

{∏
v

Mv |Mv ∈ Ωv,∀ a.e. v : Mv = 1Rv

}
.

A pure tensor M =
∏
vMv ∈ Ω is called a standard test function. The Weil representations for

each Ωv define in the standard way a representation of SL2(A) on Ω. To see that this action is
well-defined we need to check that for almost every v we have ρ

(
SL2(Zv)

)
.1Rv = 1Rv , and this

follows from Lemma 3.11. The complex vector space Ω also carries actions of G(A) by left and
right multiplication because for every v <∞ the function 1Rv is invariant under left and right
multiplication by elements of Kv.

Definition 3.24. For M ∈ Ω define the theta kernel ΘM : G(A)×G(A)× SL2(A) → C by

ΘM (l, r; s) :=
∑
ξ∈B

(
ρ(s)M

)
(l−1ξr).

The uniform decay from Proposition 3.23 is sufficient for the theta series to converge abso-
lutely and uniformly on compact sets in G(A)×G(A)× SL2(A). In particular, the theta series
is a well-defined continuous function on its domain.

The theta kernel is obviously G(Q)-invariant on the left in the first two coordinates by
virtue of its definition. Less obvious, yet well-known, is that it is also SL2(Q) left-invariant in
the third coordinate. A simple way to verify this is by first showing invariance under upper-
triangular matrices by an elementary calculation and then establishing invariance under the
involution

(
0 1−1 0

)
using the Poisson summation formula. The decay conditions we have imposed

on functions in Ω∞ are sufficient for the Poisson summation formula to hold [SW71, p. 252,
Corollary 2.6].

We now recall the Fourier–Whittaker decomposition of a continuous function ϕ : [SL2(A)]
→ C. For any α ∈ Q, define the Whittaker function

Wϕ(g, α) =
∫

[N(A)]
ϕ

((
1 n
0 1

)
g

)
ψ(−αn) dn.

We have the following standard properties of the Whittaker function

∀n ∈ A : Wϕ

((
1 n
0 1

)
g, α

)
= ψ(αn)Wϕ(g, α),

∀λ ∈ Q× : Wϕ

((
λ 0
0 λ−1

)
g, α

)
= Wϕ(g, λ2α).
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Because our function ϕ is defined on [SL2(A)] and not [PGL2(A)], we cannot reduce the depen-
dence on α to the two cases 0 and 1. Pontryagin duality for the compact abelian group [N(A)]
implies that the following equality

ϕ(g) =
∑
α∈Q

Wϕ(g, α) (23)

holds pointwise as long as the right-hand side is absolutely convergent.9

Proposition 3.25. Fix M ∈ Ω. Then, the Fourier–Whittaker coefficients of ΘM (l, r; s) in the
s-variable are

WΘM (l,r;•)(s, α) =
∑
ξ∈B

Nr ξ=α

(
ρ(s)M

)
(l−1ξr).

Because the theta series in Definition 3.24 converges absolutely, an immediate corollary is
that the Fourier–Whittaker expansion (23) holds pointwise for ΘM (l, r; •).
Proof. Because the theta series converges absolutely, we may exchange summation and integra-
tion in the definition of WΘM (l,r;•) and write

WΘM (l,r;•)(s, α) =
∑
ξ∈B

∫
[N(A)]

(
ρ

((
1 n
0 1

)
s

)
M

)
(l−1ξr)ψ(−αn) dn

=
∑
ξ∈B

∫
[N(A)]

(
ρ
(
s
)
M
)
(l−1ξr)ψ(Nr ξ · n− αn) dn

=
∑
ξ∈B

Nr ξ=α

(
ρ(s)M

)
(l−1ξr). �

4. Theta kernels for Eichler orders

4.1 Weil action on Eichler orders
We first introduce the notation DB for the (reduced) discriminant of B, explicitly

DB =
∏

p:Bp is ramified

p.

Definition 4.1. An Eichler order R ⊂ B is an intersection of two maximal orders R1 and R2.
The completion Rv of R at any finite place v is a local Eichler order in Bv. We say that R is
ramified at v if Rv is non-maximal. If B is ramified at v then Rv is unramified at v because Bv
has a unique maximal order.

For almost all places, the local orders R1,v and R2,v coincide10 and Rv is a maximal order,
i.e. the level of Rv at these places is 1. We define the level of R as

q =
∏
v<∞

level of Rv.

The reader may recall Definition 3.16, where we defined the level of a local Eichler order.

9 For a fixed g ∈ PGL2(A) this is the Fourier expansion of the function n �→ ϕ(ng) evaluated at n = e. The
function n �→ ϕ(ng) is a continuous function on the compact Abelian group [N(A)]. If the Fourier transform of a
continuous functions converges absolutely, then it coincides with the function everywhere.
10 This happens for any two lattices in a rational vector space.
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The dual lattice to R is

R̂ :=
{
x ∈ B | ∀y ∈ R: Tr(x yι ) ∈ Z

}
.

Dualization commutes with localization, i.e. (R̂)v = R̂v. Using the decomposition

R̂/R =
∏
v<∞

R̂v/Rv

and Lemmata 3.18 and 3.12, we see the existence of an isomorphism of abelian groups

j : R̂/R→
(
Z/qZ

)2 ×
∏
p|DB

Fp2 .

The map j fibers through the local maps jv and satisfies the properties inherited from
Lemma 3.18:

j(R1) = Z/qZ× {0} ×
∏
p|DB

Fp2 ,

j(R2) = {0} × Z/qZ×
∏
p|DB

Fp2 ,

∀x ∈ R̂: − qNrx ≡ j(x)1 · j(x)2 mod q,

∀x ∈ R̂, p | DB : − pNrx ≡ Nr j(x)3 mod p.

For m ∈ N and x ∈ Fp2 define

x mod m =

{
x, p | m,
0, p � m.

Similarly, set x mod m = x mod gcd(m, q) for all x ∈ Z/qZ. We extend this definition element-
wise to a map (

Z/qZ

)2 ×
∏
p|DB

Fp2
mod m−−−−→

(
Z/gcd(m, q)Z

)2 ×
∏
p|DB

Fp2 .

Definition 4.2. Let R = R1 ∩R2 ⊂ B be an Eichler order of level q. For every m | qDB define

R̂(m) =
{
x ∈ R̂ | j(x) ≡ 0 mod m

}
.

Note that R̂(1) = R̂ and R̂(qDB) = R and[
R̂: R̂(m)

]
= m2.

Moreover, the definition of R̂(m) does not depend on the choices involved in the definition of j.
We also define for x ∈ R̂(m)

νm(x) :=
∏
p|qDB

{
p1−ordp m Nr(x) mod pordp DB−ordp m, p | DB,

νpordp m(x), p | q, ∈
(
Z/(qDB/m)Z

)
.

The lattices R̂(m) will feature prominently in the description of the action of the Weil rep-
resentation. In classical terms, they will appear in the Fourier expansion of a theta series at
different cusps. We will use the following notation for the completion of an integral lattice at all
finite places.
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Definition 4.3. If L ⊂ B is a lattice, then define 1Lf
: Bf → C to be 1Lf

:=
∏
p 1Lp , where

Lp ⊂ Bp is the p-adic closure of L.

Our goal now is to describe the ρ
(
SL2(Ẑ)

)
-action on 1Rf

. The first step is to identify the
stabilizer of 1Rf

.

Definition 4.4. Define the compact-open subgroup UR =
∏
p<∞ Up < SL2(Af ) by

Up =

⎧⎪⎨⎪⎩
U0(p), B is ramified at p,
U0(pn), Rp has level pn,
SL2(Zp), otherwise.

From Lemmata 3.11 and 3.17, we know that ρ(UR).1Rf
= 1Rf

.
We define the arithmetic function ρ(a | qDB) as

ρ(a | qDB) :=
∏

p|gcd(qDB/a,a)

(1− p−1).

Note that (log log(10qDB))−1 � ρ(a | qDB) ≤ 1.

Proposition 4.5. Let R ⊂ B be an Eichler order. Then,

ρ
(
SL2(Ẑ)

)
.1Rf

=

{
a(−1)ω(DB/ gcd(a,DB))

qDB
ψ

(
t · νa(x)
qDB/a

)
· 1

R̂
(a)
f

∣∣∣a | qDB, t ∈ Z/ qDB
a Z

, gcd(t, a) = 1

}
.

Moreover, each function on the right-hand side corresponds to a single coset of SL2(Ẑ)/UR.

Remark 4.6. For every a | qDB, the characteristic function 1
R̂(a) appears above exactly

(qDB/a)ρ(a | qDB) times with different phase functions.

Proof. This follows from combining the local contributions as calculated in Propositions 3.13
and 3.21 and the remarks following these propositions. �

4.2 Theta series for Eichler orders
We fix once and for all an Eichler order R = R1 ∩R2 ⊂ B of level q. In this section, we unwind
the adelic definition of a theta series for the case of Eichler orders into classical terms.

Denote KR =
∏
v<∞

(
G(Qv) ∩Rv

)
. Strong approximation for the simply connected group

G implies that the double quotient

G(Q)\
G(A)/KR

is a single orbit of G(R). The stabilizer of the identity double coset in G(R) is

Γ := KR ∩G(Q) =
{
x ∈ R | Nrx = 1

}
.

Hence, there is a canonical quotient map

πΓ : G(Q)\
G(A) → Γ\G(R).

Each fiber of this map is a torsor for KR. The quotient map πΓ induces a natural isomorphism

π∗Γ : Map
(
Γ\G(R),C

)
→ Map

(
[G(A)],C

)KR,

where the right-hand side is the set of all KR-invariant maps.
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Set Λ = UR ∩ SL2(Q) < SL2(R). Explicitly, Λ = Γ0(qDB) where DB is the product of the
primes ramified in B and q is the level of R. Again, the double quotient

SL2(Q)\
SL2(A)/UR

is a single orbit of SL2(R) and the stabilizer of the identity is Λ. This induces a map

πΛ : SL2(Q)\
SL2(A) → Λ\SL2(R) (24)

and, furthermore, a natural isomorphism

π∗Λ : Map
(
Λ\SL2(R),C

)
→ Map

(
[SL2(A)],C

)UR.

We can now write the adelic theta kernel in classical terms.

Proposition 4.7. Fix M = M∞ ·
∏
v<∞Mv ∈ Ω such that Mv = 1Rv for all finite v. Let

l∞, r∞ ∈ G(R) and s∞ ∈ SL2(R). Then,

ΘM

(
l∞KR, r∞KR; s∞UR

)
=
∑
ξ∈R

(ρ(s∞)M∞)(l−1
∞ ξr∞).

Hence, ΘM defines a classical theta kernel on Γ\G(R)× Γ\G(R)× Λ\SL2(R).

Proof. This follows from the discussion above, Lemma 3.17, and the local-to-global principle for
lattices that implies

R =
⋂
v<∞

Rv,

where the intersection is taken in B. �

Definition 4.8. Fix M∞ ∈ Ω∞ and define ϑM∞ : Γ\G(R)× Γ\G(R)× Λ\SL2(R) by

ϑM∞(l∞, r∞; s∞) = ΘM (l∞KR, r∞KR; s∞UR).

4.3 The Weil L2-norm of the theta kernel
Our method relies heavily on bounding the L2-norm of ΘM (l, r; s) in the s-variable. We use the
Fourier–Whittaker decomposition from Proposition 3.25 to bound the L2-norm by a second-
moment count of rational matrices. Unfortunately, the classical representation above is not
well adapted to this calculation because of the many cusps of Λ\SL2(R). Instead, we com-
pute adelically the L2-norm. This is easier to execute because the adelic quotient [SL2(A)] =
SL2(Q)\SL2(A) has a single cusp.

Proposition 4.9. Fix M∞ ∈ Ω∞. Then,

1
covol(Λ)

∫
Λ\SL2(R)

|ϑM∞(l∞, r∞; s∞)|2 ds∞

≤ (qDB)−1
∑
a|qDB

∑
α∈Q

∫ ∞
√

3/2

∫
SO2(R)

∑
ξ∈R̂(a)

Nr ξ=α

∣∣(ρ(diag(y1/2, y−1/2)k
)
.M∞

)
(l−1
∞ ξr∞)

∣∣2 dkdy
y2
,

where the measure on SO2(R) is normalized to be a probability measure, and the left-hand side
is independent of the measure normalization on SL2(R).
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Proof. Fix M = M∞ ·
∏
v<∞Mv ∈ Ω such that Mv = 1Rv for all finite v. Then, Proposition 4.7

and the isomorphism (24) imply

1
covol(Λ)

∫
Λ\SL2(R)

|ϑM∞(l∞, r∞; s∞)|2 ds∞ =
∫

[SL2(A)]
|ΘM (l∞KR, r∞KR; s)|2 ds.

We proceed to bound the adelic integral by expanding the domain of integration to a Siegel set.
Denote by N < SL2 the algebraic subgroup of upper triangular matrices. We have N � Ga

and a fundamental domain for the action of N(Q) on N(A) is

N=
(

1 [0, 1)
0 1

)
·
∏
v<∞

(
1 Zv
0 1

)
.

Set A> :=
{
diag(y1/2, y−1/2) : y >

√
3/2

} ⊂ SL2(R). A Siegel set for the action of SL2(Q)
on SL2(A) is given by

S= N ·A> · SO2(R)SL2(Ẑ).

Denote l = (l∞, e, e, . . .) and similarly r = (r∞, e, e, . . .). Because the Siegel set contains a
fundamental domain for the action of the lattice, we can write∫

[SL2(A)]

|ΘM(l∞KR, r∞KR; s)|2 ds

≤
∫
S

|ΘM(l∞KR, r∞KR; s)|2 ds

= 
−1
SL2

∫
[N(A)]

∫ ∞

√
3/2

∫
SL2(Ẑ)

∫
SO2(R)

∣∣∣∣∑
ξ∈B

(ρ(n)ρ(diag(y1/2, y−1/2)kkf ).M)(l−1ξr)
∣∣∣∣2 dndyy2

dkf dk

= 
−1
SL2

∑
α∈Q

∫ ∞

√
3/2

∫
SL2(Ẑ)

∫
SO2(R)

∣∣∣∣ ∑
ξ∈B

Nr ξ=α

(ρ(diag(y1/2, y−1/2)k)ρ(kf ).M)(l−1ξr)
∣∣∣∣2 dkf

dy

y2
dk

≤ 
−1
SL2

∑
α∈Q

∫ ∞

√
3/2

∫
SL2(Ẑ)

∫
SO2(R)

∣∣∣∣ ∑
ξ∈B

Nr ξ=α

∣∣(ρ(diag(y1/2, y−1/2)k)ρ(kf ).M)(l−1ξr)
∣∣∣∣∣∣2 dkf

dy

y2
dk.

The last equality follows from the computation of the Fourier coefficients in the unipotent variable
in Proposition 3.25 and the orthogonality of characters. We normalize the measure on SL2(Af )
so that SL2(Ẑ) has volume 1. Then, the global measure normalization constant 
SL2 is equal to
the volume of SL2(Z)\H with respect to the standard hyperbolic measure dx dy/y2, i.e. 
SL2 =
covol(SL2(Z)) = π/3.

In the last line we have inserted the absolute value into the sum using the triangle inequality,
and we continue to evaluate the integral along SL2(Ẑ). From Lemmata 3.11 and 3.17, we know
that the integrand is invariant under the finite index subgroup UR < SL2(Ẑ). We decompose
the integral into

[
SL2(Ẑ) : UR

]
-integrals along the different cosets of UR in SL2(Ẑ). We have an

exact expression for the integrand on each coset due to Proposition 4.5. The phases of the form
ψ
(
t · νa(x)/qDB/a

)
that appear in each element in the ρ

(
SL2(Ẑ)

)
-orbit are discarded because

of the innermost absolute value. Hence, each UR-coset reduces to a sum over elements in a
lattice R̂(a) for a | qDB. From Remark 4.6, we deduce for any a | qDB that the weight of the
sum over 1

R̂(a) is ρ(a | qDB)
−1
SL2

[
SL2(Ẑ) : UR

]−1. Because Λ = UR ∩ SL2(Af ) and SL2(Z) =
SL2(Ẑ) ∩ SL2(Af ), the index satisfies 
SL2

[
SL2(Ẑ) : UR

]
= covol(Λ). Because Λ = Γ0(qDB), we
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see that the weight factor is equal to

covol(Λ)−1ρ(a | qDB) =

∏
p|gcd(qDB/a,a)

(1− p−1)

(π/3)qDB
∏
p|qDB

(1 + p−1)
≤ (qDB)−1. �

5. The theta lift

In this section we discuss the pairing between a theta kernel and an automorphic form. This
subject is well studied in the literature, we need to review and revisit several results because of
the explicit form that we require.

5.1 Cuspidal theta series
Definition 5.1. We say that a test function M : BA → C is cuspidal if (ρ(s)M)(l−1ξr) = 0 for
all l, r ∈ G(A), s ∈ SL2(A), and ξ ∈ B with Nr ξ = 0.

For example, M is cuspidal if M =
∏
vMv and there is a place v such that ρ(sv).Mv(xv) = 0

for every sv ∈ SL2(Qv), and xv ∈ Bv with Nrxv = 0. The importance of cuspidal test functions
is that their theta series, when well-defined, is a cuspidal function of s on [SL2(A)]. This follows
from Proposition 3.25. Note that the cuspidality condition for M is very restrictive if G is split.
For example, if G = SL2, then the test function exp(−DTr(x∞ xt ∞))P (x∞)

∏
v<∞ 1Rv , for a

polynomial P : Mat2×2(R) → C and D > 0, is used in [Shi72]. This test function is generally not
cuspidal.

5.2 Unfolding
Lemma 5.2. If Rp is an Eichler order, then NrR×

p = Z×
p .

Proof. This is simple to verify if B is split at p by conjugating Rp to
( Zp Zp

pnZp Zp

)
. If B is ramified

at p, then R×
p = O×

Bp
is the unit group of the ring of algebraic integers in Bp. The algebra Bp

contains an unramified quadratic extension E/Qp, hence NrR×
p contains NrO×

E = Z×
p . �

Lemma 5.3. LetMf =
∏
p 1p−kpRp

: B ⊗ Af → C, where kp ∈ Z≥0 for all p and kp = 0 for almost

every prime p. Denote N =
∏
p p

2kp ∈ N and fix ξ ∈ B×. Then,∫
G(Af )

Mf (l−1ξ) dl�ε 

−1
G N |Nr ξ|qε,

where we recall that q denotes the level of R, and this integral vanishes unless Nr ξ ∈ N−1Z.

Proof. The integral decomposes into a product of local integrals 
−1
G

∏
p

∫
G(Qp) 1p−kpRp

(l−1
p ξ) dlp.

All elements of p−kpRp have norms in p−2kpZp. Hence, the local integral vanishes if Nr(l−1
p ξ) =

Nr(ξ) �∈ p−2kpZp. Because Nr ξ ∈ Q, the non-vanishing conditions at all primes p imply that∫
G(Af ) · · · vanishes if Nr ξ �∈ N−1Z.

Fix now p and assume Nr ξ ∈ p−2kpZp. Then, the local integral is equal to∫
G(Qp) 1Rp(l−1

p pkpξ) dlp. The integrand is right-invariant under Kp. Denote by Rp(α) the set of
elements in Rp of norm α ∈ Q×

p . Of course, Rp(α) = ∅ if α �∈ Zp. The set Rp(α) is left-invariant
under multiplication by Kp :− Rp(1), and∫

G(Qp)
1Rp(l−1

p pkpξ) dlp = mG(Qp)(Kp) ·#
(
Kp
\Rp

(
p2kp Nr ξ

))
.

We have mG(Qp)(Kp) = 1 if p �| q and mG(Qp)(Kp) = (p+ 1)−1p−n+1 if pn ‖ q with n > 0.
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We now estimate #
(
Kp\Rp(α)

)
. Define

Rp(α)† =
{
x ∈ Rp : |Nrx|p = |α|p

}
,

evidently Rp(α) ⊂ Rp(α)†. The set Rp(α)† is invariant under left multiplication by R×
p .

Because NrR×
p = Z×

p , each coset of R×
p \Rp(α)† contains exactly one coset of Kp\Rp(α). Thus,

#
(
Kp\Rp(α)

)
= #

(
R×
p \Rp(α)†

)
.

If Bp ramifies, then the fact that ordp(Nr •) is a valuation on Bp implies that R(α)† is a single
coset of R×

p if α ∈ Zp. In the split case, we can assume Bp = Mat2×2(Qp) and Rp =
( Zp Zp

pnZp Zp

)
,

where pn ‖ q. Let R̃×
p be the image of R×

p in PGL2(Qp). Then, the map R×
p \Rp(α)† →

R̃×
p \PGL2(Qp) is injective because ZGL2(Qp) ∩ {g ∈ GL2(Qp) : |det g|p = 1} ⊂ R×

p . Hence, it
is enough to find an upper bound for the number of R̃×

p cosets in the image of Rp(α)† in
PGL2(Qp).

The group PGL2(Zp) is the stabilizer of a vertex v0 in the Bruhat–Tits tree of PGL2(Qp) and
diag(p−n, 1)PGL2(Zp) diag(pn, 1) is a stabilizer of a vertex vn, with dist(v0, vn) = n. Hence, R̃×

p ,
which is the intersection of the two, is the stabilizer of the geodesic path of length n connecting
v0 and vn in the tree. Because PGL2(Qp) acts strongly transitively on its Bruhat–Tits tree, it
acts transitively on the set of geodesic paths of length n. Hence, the map gp �→ (g−1

p .v0, g
−1
p .vn)

is a bijection between R̃×
p \PGL2(Qp) and the set of oriented geodesic paths of length n in the

tree. We need to find an upper bound on the number of paths that correspond to the image of
Rp(α)†.

Denote ordp(α) = m. If gp ∈ Rp(α)†, then the existence of the Smith normal form for
gp ∈M2(Zp) implies that gp ∈ GL2(Zp) diag(pm1 , pm2)GL2(Zp) for some m2 ≥ m1 ≥ 0, with
m2 +m1 = m. Then, dist(g−1

p .v0, v0) = m2 −m1 ≤ m. Hence, the number of possibilities for the
first vertex of the n-path is at most the number of vertices in a ball of radius m, that is 1 +
((p+ 1)/(p− 1))(pm − 1) � pm. Because the length of the path is n, the number of possi-
bilities for the final vertex, after the first vertex has been fixed, is at most �(p+ 1)pn−1� =
mG(Qp)(Kp)−1. We conclude that if Bp is split, then

mG(Qp)(Kp) ·#
(
Kp
\Rp(p2kp Nr ξ))� p2kp+ordp(Nr ξ) � |N Nr ξ|−1

p .

Multiplying the contributions from all primes p we arrive at the claimed bound. �
Proposition 5.4. Let M : BA → C be a finite linear combination of standard test functions
such that the component at infinity satisfies the decay condition of Proposition 3.23. Assume
that M is cuspidal. Fix ϕ,ϕ′ ∈ L∞([G(A)]) and let ξα ∈ B be an arbitrary element of norm
α ∈ Q×. Then,∫

[G(A)]

∫
[G(A)]

∑
ξ∈B

M(l−1ξr)ϕ(l)ϕ′(r) dl dr =
∑
α∈Q×

∫
[G(A)]

ϕ′(r)
∫
G(A)

M(l−1ξαr)ϕ(l) dl dr,

where we make the convention that if there is no ξα ∈ B of norm α ∈ Q×, then the summand
pertaining such α is to be omitted.

Remark 5.5. The assumption that M is cuspidal is crucial here. Otherwise, there will be an
additional contribution from the norm-zero elements of B. This contribution may in general
diverge.

Proof. The theta series ΘM can be rewritten as a sum over B× due to the vanishing condition for
norm-zero elements. A priori, we do not even know that the left-hand side is integrable. Thus,
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we proceed with the following computation as formal operations which hold for positive-valued
functions. We will then use the positive-valued case to show absolute convergence which will
justify these operations in general.

Unfold first the integral along the l variable to rewrite the left-hand side above as∫
[G(A)]

ϕ′(r)
∑

ξ∈G(Q)\B×

∫
G(A)

M(l−1ξr)ϕ(l) dl dr.

Two elements in B× are in the same left G(Q)-orbit exactly when they have the same norm.
Thus, the equality in question holds if we can establish absolute integrability. To show absolute
integrability, we first bound∫

[G(A)]

∫
[G(A)]

∑
ξ∈B

∣∣M(l−1ξr)ϕ(l)ϕ′(r)
∣∣ dl dr ≤ ‖ϕ‖∞‖ϕ′‖∞

∑
α∈Q×

∫
[G(A)]

∫
G(A)

∣∣M(l−1ξαr)
∣∣ dl dr.

By expanding the function M into finite summands of standard test functions, we reduce to
the case that M =

∏
vMv. Furthermore, because we are only interested in upper bounds, we

can further reduce to the case that in any finite place v = p the function Mv is a multiple of
the characteristic function of p−kpRp, where kp = 0 for almost all p. Taking into account this
reduction, the function M is right- and left-invariant under KR and we can apply Lemma 5.3
above. First we deduce that the integral over l vanishes unless α ∈ N−1Z for some fixed integer
N depending only on M . In addition, by using the bound from Lemma 5.3, we can write∫

[G(A)]

∫
[G(A)]

∑
ξ∈B

∣∣M(l−1ξr)ϕ(l)ϕ′(r)
∣∣ dl dr

�G,ϕ,ϕ′,M,ε Nq
ε

∑
0�=α∈N−1Z

|α|
∫

Λ\G(R)

∫
G(R)

∣∣M∞(l−1ξαr)
∣∣ dl dr

= Nqε
∑

0�=α∈N−1Z

|α|
∫

Λ\G(R)

∫
G(R)

∣∣M∞(l−1ξα)
∣∣ dl dr

�G,Λ Nq
ε

∑
0�=α∈N−1Z

|α|
∫
G(R)

∣∣M∞(l−1ξα)
∣∣ dl

� Nqε
∑

0�=α∈N−1Z

|α|
∫
G(R)

(
1 +

∥∥l−1ξα
∥∥)−4−δ

dl. (25)

In the second line, we have made a change of variable l �→ ξαrξ
−1
α l. Note that we can take here ξα

to be any real matrix of determinant α, choose ξα = diag
(√|α|, sign(α)

√|α|). The last integral
in (25) can be computed using the formula for the Haar measure in Cartan coordinates∫

G(R)

(
1 +

√
|α|∥∥l−1 diag(1, sign(α))

∥∥)−4−δ
dl

�
∫ ∞

0

(
1 +

√
2|α| cosh(t))

)−4−δ sinh(t) dt

� |α|−2−δ/2
∫ ∞

0

sinh(t)
cosh(t)2+δ/2

dt

= |α|−2−δ/2
[ −1
cosh(t)1+δ/2(1 + δ/2)

]∞
0

� |α|−2−δ/2.
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Finally, we see that the expression in (25) is bounded from above by

N2+δ/2qε
∑

0�=n∈Z

1
|n|1+δ/2 <∞. �

Proposition 5.6. Let M =
∏
vMv ∈ Ω be cuspidal and assume M∞ ∈ Vm,2π for m ∈ Z. Fix

ϕ,ϕ′ ∈ L∞([G(A)]). Denote

F (s) =
∫

[G(A)]

∫
[G(A)]

ΘM (l, r; s)ϕ(l)ϕ′(r) dl dr.

Then, F (s) ∈ L2([SL2(A)]).

Proof. By Proposition 5.4, we know that F (s) is well-defined pointwise and can be rewritten as

F (s) =
∑
α∈Q×

∫
[G(A)]

ϕ′(r)
∫
G(A)

(
ρ(s)M

)
(l−1ξαr)ϕ(l) dl dr.

To calculate
∫
[SL2(A)] |F (s)|2 ds, we will bound the integral over [SL2(A)] by an integral over a

Siegel set S= N ·A> · SO2(R)SL2(Ẑ) as in the proof of Proposition 4.9. Because M belongs
to Ω and M∞ ∈ Vm,2π, the function M has a finite ρ

(
SL2(Ẑ)

)
-orbit and ρ

(
SO2(R)

)
-isotypic.

Hence, it is enough to bound
∫
N·A> F1(z)F2(z) dz where F1, F2 are defined in the same manner

as F but with M replaced by test functions M1, M2 in the ρ
(
SO2(R)SL2(Ẑ)

)
-orbit of M . Denote

a(y) = diag(y1/2, y−1/2) ∈ SL2(R). Using the orthogonality relation of additive characters and
the sup-norm bound on ϕ, ϕ′, we arrive at∣∣∣∣ ∫

N·A>

F1(z)F2(z) dz
∣∣∣∣

�ϕ,ϕ′
∑
α∈Q×

∫
[G(A)]

∫
G(A)

∫
[G(A)]

∫
G(A)∫ ∞

√
3/2

∣∣∣∣ρ∞(a(y)).M1(l−1
1 ξαr1)ρ∞(a(y)).M2(l−1

2 ξαr2)
∣∣∣∣dyy2

dl2 dr2 dl1 dr1

=
∑
α∈Q×

∫
G(A)

∫
G(A)

∫ ∞
√

3/2

∣∣∣∣ρ∞(a(y)).M1(l−1
1 ξα)ρ∞(a(y)).M2(l−1

2 ξα)
∣∣∣∣dyy2

dl2 dl1. (26)

As in the proof of Proposition 5.4, we apply Lemma 5.3 to the integrals in the l1 and l2 variables.
The integral vanishes unless α ∈ N−1Z for some integer N > 0 depending only on M . For every
ε > 0, we can bound (26) from above by


−2
G

∑
0�=α∈N−1Z

|Nα|2qε
∫
G(R)

∫
G(R)

∫ ∞
√

3/2

∣∣∣ρ∞(a(y)).M1(l−1
1 ξα)ρ∞(a(y)).M2(l−1

2 ξα)
∣∣∣dy
y2
dl2 dl1

= 
−2
G

∑
0�=α∈N−1Z

|Nα|2qε
∫
G(R)

∫
G(R)

∫ ∞
√

3/2

∣∣∣M1(
√
yl−1

1 ξα)M2(
√
yl−1

2 ξα)
∣∣∣ dy dl2 dl1

�G,M

∑
0�=α∈N−1Z

|Nα|2qε
∫
G(R)

∫
G(R)

∫ ∞
√

3/2
‖√yl−1

1 ξα‖−4−δ‖√yl−1
2 ξα‖−4−δ dy dl2 dl1

�
∑

0�=α∈N−1Z

|Nα|2qε
∫
G(R)

∫
G(R)

‖l−1
1 ξα‖−4−δ‖l−1

2 ξα‖−4−δ dl2 dl1.
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Take ξα = diag(
√|α|, sign(α)

√|α|) and bound the last integral from above in the same
manner as in the proof of Proposition 5.4 by a multiple of |α|−4−δ. It follows
that ∫

[SL2(A)]
|F (s)|2 ds�ϕ,ϕ′,G,M,ε N

4+δqε
∑

0�=n∈Z

1
|n|2+δ <∞. �

5.3 The theta lift
Definition 5.7. Let ϕ,ϕ′ ∈ L∞([G(A)]) and fix M ∈ Ω cuspidal with M∞ ∈ Vm,2π for some
m ∈ Z. Define (ϕ⊗ ϕ′)M : [SL2(A)] → C by

(ϕ⊗ ϕ′)M (s) :=
∫

[G(A)]

∫
[G(A)]

ΘM (l, r; s)ϕ(l)ϕ′(r) dr dl.

We call (ϕ⊗ ϕ′)M the theta lift of ϕ⊗ ϕ′.
In the case when ϕ = ϕ′, we simply let ϕM := (ϕ⊗ ϕ)M and call ϕM the theta lift of ϕ.
For any α ∈ Q×, we also define

TMα ϕ(r) :=

⎧⎨⎩
∫
G(A)

M(l−1ξαr)ϕ(l) dl, α ∈ NrB×,

0, otherwise.

Assume M = M∞Mf with Mf =
∏
pMp. It would be useful to separate the finite and the

archimedean parts in the integral above. This motivates the definition

T
Mf
α ϕ(r) :=

∫
G(Af )

Mf (l−1
f ξαrf )ϕ

((
ξα√|α|

)
∞
r∞ε(1−signα)/2

∞ · lf
)
dlf ,

where ε∞ ∈ B ⊗ R normalizes K∞ and satisfies11 Nr ε∞ = −1, ε2∞ = 1. Using the change of
variable

(
ξα/

√|α|)−1
l∞ε

(1−sign(α))/2
∞ �→ l∞, we arrive at

TMα ϕ(r) =
∫
G(R)

M∞
(√|α|ε(1−signα)/2

∞ l−1
∞ r∞

)
T
Mf
α ϕ(l∞rf ) dl∞

=
(
T
Mf
α ϕ �G(R) M∞

(√|α|ε(1−signα)/2
∞ · •))(r). (27)

Note that by Propositions 5.4 and 5.6 the theta lift ϕM is well-defined pointwise and belongs
to L2([SL2(A)]). The proof of Proposition 5.6 implies that TMα ϕ is a square-integrable function
on [G(A)] and that

ϕM (s) =
∑
α∈Q×

〈T ρ(s)Mα ϕ,ϕ〉 (28)

not only in an L2-sense, but in fact pointwise.

Proposition 5.8. Let ϕ and M be as in Definition 5.7. Then, for all α ∈ Q×,

WϕM (s;α) = 〈T ρ(s)Mα ϕ,ϕ〉.
More generally, fix ϕ,ϕ′ ∈ L∞([G(A)]). Then, W(ϕ⊗ϕ′)M

(s;α) = 〈T ρ(s)Mα ϕ,ϕ′〉, and

(ϕ⊗ ϕ′)M (s) =
∑
α∈Q×

〈T ρ(s)Mα ϕ,ϕ′〉. (29)

11 Such an element does not exist if B is ramified at infinity, but then there are also no elements ξα ∈ B of negative
norm.
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Proof. We only establish the second claim as it immediately implies the first. Proposition 5.6
implies (ϕ⊗ ϕ′)M (s) ∈ L2([SL2(A)]). We then apply Propositions 5.4 to deduce (29).

We use the notation un := ( 1 n
0 1 ). Fubini’s theorem and the orthogonality of characters imply

for all α, β ∈ Q×, s ∈ SL2(A), and x ∈ G(A)∫
[N(A)]

T ρ(uns)M
α ϕ(x)ψ(−βn) dn =

{
T
ρ(s)M
α ϕ(x), α = β,

0, α �= β.

The claim follows from substituting this expression in the definition of the Whittaker function
applied to (29). �

5.3.1 Hecke operators. We would like to describe the relation between the Fourier–Whittaker
expansion of ϕM and the Hecke translates of ϕ. A minor difficulty is that the Hecke algebra of
G(A) is not rich enough and we would prefer to work with the Hecke algebra of the adjoint group
Gadj(A). To that end, we lift a KR-invariant function on [G(A)] to [Gadj(A)]. An alternative
more conceptual approach is to work with a PGL2 Weil representation, cf. [Wal85, § I.3] and
[Nel17, § 2.2.5].

Let us recall that the adjoint group is the affine algebraic group over Q representing the
functor

Gadj(L) := L×\(B ⊗ L)×

for any Q-algebra L, where L× is embedded centrally in (B ⊗ L)×. We will also use the algebraic
group B×(L) = (B ⊗ L)×, i.e. Gadj = ZB×\B×.

Definition 5.9. For each finite place v denote by K̃v the image of R×
v in Gadj(Qv) = Q×

v \B×
v .

We further let K̃R :−∏
v<∞ K̃v.

Proposition 5.10. The natural map

G(Q)\
G(A)/KR

→ Gadj(Q)\
Gadj(A)

/
K̃R

is a measure-preserving bijection. In particular, we have a Hilbert space isomorphism between
L2([G(A)])KR and L2([Gadj(A)])KR.

Proof. Denote by h : G→ Gadj the standard isogeny. The image is a normal subgroup and the
quotient is abelian. The kernel of the map h is the center Z < G. The center is isomorphic to
the group of second-order roots of unity μ2. The reduced norm map then completes the exact
sequence

1→ μ2 → G h→ Gadj Nr−→ G2
m
\Gm → 1.

For a local field or a number field F the image of Nr((B ⊗ F )×) in F×, is determined by
the Hasse–Schilling–Maass theorem. In particular, Nr((B ⊗ F )×) = F× if F = Qp, or F = R and
B is indefinite. If B is definite, then Nr((B ⊗ R)×) = R>0. Finally, Nr((B ⊗Q)×) is Q× if B is
indefinite and Q>0 otherwise. It follows that h(G(A))\Gadj(A) ∼−→

Nr
A×2\A× if B is indefinite

and
h(G(A))\Gadj(A) ∼−→

Nr
A×2\(R>0 × A×

f

) � A×2
f \A×

f

if B is definite.

Injectivity. Assume h(g′) = γ̃h(g)k̃ for some g, g′ ∈ G(A), γ̃ ∈ Gadj(Q), and k̃ ∈ K̃R. We need
to show [g] = [g′] in G(Q)\G(A)/KR. To show that γ̃ ∈ h(G(Q)) we establish that Nr(γ̃) is a
square in Q×, this can be checked locally at all places. Examining the archimedean component
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of the equality, we arrive at γ̃ = h(g′∞g−1∞ ). Hence, Nr γ̃ is positive. Similarly, at all finite places
p <∞ we can write γ̃ = h(g′pg−1

p )k̃−1
p and |Nr γ̃|p = |h(g′pg−1

p )|p ∈ p2Z. Thus, γ̃ = h(γ) for some
γ ∈ G(Q). We can now write h(g′) = h(γg)k̃. Hence, Nr k̃ = 1 as well, and k̃ = h(k) for some
k ∈ KR. We deduce h(g′) = h(γgk), and [g′] ∈ [Z(A)g] in G(Q)\G(A)/KR.

To conclude [g′] = [g] it is enough to show that Z(Q)\Z(A)/
∏
p

(
Kp ∩ Z(Qp)

)
is a trivial

group. Because Kp contains ± Id for all p, this group is ±1\A×[2]/
∏
p Z×

p [2] � 1 as required.

Surjectivity. Using the norm map, it is enough to demonstrate that A×2Q×\A×/
∏
p Nr K̃p is

trivial. Lemma 5.2 implies that Nr K̃p = Z×2
p \Z×

p for all p. Because Q has class number 1, the
double quotient is isomorphic to R×2\R×/Z× � 1.

Measure preservation. Strong approximation implies that the group G(R) acts transitively on
the left-hand side in the claimed equality. Hence, it acts transitively on the right-hand side as well
because the map is equivariant. The Haar measure on both spaces is a G(R)-invariant probability
measure on a locally compact homogeneous G(R)-space. Uniqueness of Haar measure implies
that the map is measure preserving. �
Definition 5.11. Let ϕ : [G(A)] → C be KR-invariant. Denote by ϕ̃ : [Gadj(A)] → C its unique
lift to a K̃R-invariant function on [Gadj(A)].

We use the notation Γ̃ = Gadj(Q) ∩ K̃R, which is a lattice in Gadj(R). Equivalently, Γ̃
is the image of R× in Gadj(R). Proposition 5.10 implies that Gadj(R) acts transitively on
Gadj(Q)\Gadj(A)/K̃R and Gadj(Q)\Gadj(A)/K̃R � Γ̃\Gadj(R). We introduce Hecke operators
adapted to the order R.

Definition 5.12. Let α ∈ Q and f : Γ̃\Gadj(R) → C continuous. Set

R(α) = {x ∈ R | Nrx = α},R(α)† = {x ∈ R | |Nrx|∞ = |α|∞}
and define

Tαf(g) =
∑

[δ+]∈R(1)\R(α)

f
(
δ+gε(1−signα)/2

∞
)

=
∑

[δ]∈R×\R(α)†
f
(
δgε(1−signα)/2

∞
)
.

The two expressions are equal because R× contains an element of determinant −1 if B is indef-
inite. These operators coincide with the classical Hecke operators for α > 0 co-prime to qDB.
Note that if α �∈ NrR then Tα = 0.

Lemma 5.13. Let α ∈ Q× and f : [Gadj(A)] → C continuous and K̃R-invariant. Set

Rf (α)† =
∏
p

{
xp ∈ Rp | |Nrxp|p = |Nrα|p

}
.

Then, for every g ∈ Gadj(R),(
Tαf(•K̃R)

)
(g) =

(
f � 1Rf (α)†

)
(gε(1−signα)/2

∞ ),

where the convolution takes place in B×(Af ) with the measure normalization mB×(Af )(R
×
f ) = 1.

Proof. The right K̃R-invariance of f and the left R×
f -invariance of 1Rf (α)† imply(

f � 1Rf (α)†
)
(g) =

∫
Rf (α)†

f(gh−1
f ) dhf =

∑
[af ]∈R×

f \Rf (α)†
f(ga−1

f ).

There is a natural map R×\R(α)† → R×
f \Rf (α)†. Strong approximation implies that this map is

surjective. To show this map is also injective, we observe that if δ ≡ δ′ mod R×
f for δ, δ′ ∈ R(α)†,
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then δδ′−1, δ′δ−1 ∈ B ∩R×
f ⊂ R, and δδ′−1 ∈ R×. By choosing a rational representative for each

coset in R×
f \Rf (α)† and using the left Gadj(Q)-invariance of f , we arrive at the claim. �

Proposition 5.14. Let 0 �= α ∈ Q× and assume Mf =
∏
p 1Rp . Then, for ϕ and ϕ̃ as in

Definition 5.11, we have

˜
T
Mf
α ϕ(r) = Tαϕ̃

(
r
)
.

Proof. Assume α ∈ NrR, otherwise the claim is trivial. Although we claim the equality for all r ∈
[Gadj(A)], because of the uniqueness of the lift in Definition 5.11, it is enough to verify the claim
for r ∈ [Z\G(A)]. We apply Lemma 5.13 and evaluate the convolution by decomposing the Haar
measure on B×(Af ) into fibers over G(Af )\B×(Af ), this is possible because B×(Af ) and G(Af )
are unimodular. For consistent measure normalization, we set mB×(Af )(R

×
f ) = mG(Af )(Kf ) =

mNrB×
Af

(Ẑ×) = 1:

ϕ̃ � 1Rf (α)†(r) =
∫
B×(Af )

1Rf (α)†(l
−1
f rf )ϕ̃(r∞lf ) dlf

=
∫
G(Af )\B×(Af )

∫
G(Af )

1Rf (α)†(λ
−1l−1

f rf )ϕ̃(r∞lfλ) dlf dλ

=
∫
G(Af )\B×(Af )/R×

f

∫
G(Af )

1Rf (α)†(λ
−1l−1

f rf )ϕ̃(r∞lfλ) dlf dλ.

In the last line, we have used the fact that 1Rf (α)†(l
−1
f rf ) is left R×

f -invariant and ϕ̃ is right K̃f -

invariant. Fix ξα ∈ B× with Nr ξα = α. Because Nr l−1
f rf = 1 and NrRf (α)† = Ẑ×α, the inner

integral vanishes unless λ ≡ ξ−1
α mod G(Af )\B×(Af )/R×

f . We conclude that

ϕ̃ � 1Rf (α)†(r) =
∫
G(Af )

1Rf (α)†(ξαl
−1
f rf )ϕ̃(r∞lf (ξα)−1

f ) dlf

=
∫
G(Af )

1Rf (α)†(l
−1
f ξαrf )ϕ̃(r∞(ξα)−1

f lf ) dlf

=
∫
G(Af )

1Rf (α)†(l
−1
f ξαrf )ϕ̃((ξα)∞r∞lf ) dlf

=
∫
G(Af )

1Rf (α)†(l
−1
f ξαrf )ϕ̃

((
ξα√|α|

)
∞
r∞lf

)
dlf

= T
Mf
α ϕ(rε(1−signα)/2

∞ ),

where in the first line we have used the change of variables ξαlfξ−1
α �→ lf and in the second line

we have applied the left Gadj(Q)-invariance of ϕ̃. �

Corollary 5.15. Let ϕ,ϕ′ ∈ L∞([G(A)])KR and α ∈ Q×. Assume Tαϕ = λ(α)ϕ, Mf =∏
p 1Rp , and M∞ ∈ Vm,2π for some m ∈ Z. Then, the function

F (s) =
∫

[G(A)]

∫
[G(A)]

ΘM (l, r; s)ϕ(l)ϕ′(r) dr dl

satisfies

WF (s∞UR;α) = λ(α)
〈
ϕ �

(
ρ(s∞).M∞

(√|α|ε(1−signα)/2
∞ · •)), ϕ′〉
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for all s∞ ∈ SL2(R), where the convolution takes place in G(R) and where we recall UR from
Definition 4.4.

Proof. Recall ρ(UR).1Rf
= 1Rf

from the sentence immediately below Definition 4.4. Proposi-
tions 5.8, 5.14, and (27) then imply that

WF (s∞UR;α) =
〈
T
Mf
α ϕ �

(
ρ(s∞).M∞

(√|α|ε(1−signα)/2
∞ · •)), ϕ′〉

= λ(α)
〈
ϕ �

(
ρ(s∞).M∞

(√|α|ε(1−signα)/2
∞ · •)), ϕ′〉. �

6. The Bergman kernel

6.1 The Bergman Archimedean test function
From now on, we shall assume that B is split over R. Recall that we have fixed an isomorphism
B∞ � Mat2×2(R) and have used it to identify the two spaces. We construct a theta series whose
Fourier–Whittaker coefficients coincide with the Bergman kernel. For this endeavor, we will use
the following archimedean test function. We fix the global character ψ as in § 3.4.

Definition 6.1. Fix a weight m ≥ 2 and define

M (m)
∞ (x) = exp(−2πNrx)

⎧⎪⎪⎨⎪⎪⎩
Nr(x)m−1(

(b−c)+i(a+d)
2i

)m , Nrx > 0,

0, Nrx ≤ 0,

for x =
(
a b
c d

)
. Note that M (m)

∞ ( xι ) = M
(m)
∞ (x).

Set μ : PGL2(R) → C

μ(x) =

⎧⎪⎨⎪⎩
2i
√

Nrx
(b− c) + i(a+ d)

, Nrx > 0,

0, Nrx ≤ 0.

Then, we can write M (m)
∞ (x) = exp(−2πNrx) Nr(x)m/2−1μ(x)m.

Lemma 6.2. Let kθ :=
(

cos θ sin θ
− sin θ cos θ

) ∈ SO2(R). Then, for every g ∈ PGL2(R),

μ(gkθ) = μ(g)eiθ. (30)

Proof. We assume Nr g > 0 as the claim is trivial for non-positive determinants. We verify the
claim by a direction computation. Let g =

(
a b
c d

)
and gkθ =

(
a′ b′
c′ d′

)
. We have

(b′ − c′) + i(a′ + d′) =
(
a sin θ + b cos θ − c cos θ + d sin θ

)
+ i

(
a cos θ − b sin θ + c sin θ + d cos θ

)
=
(
(b− c) + i(a+ d)

)(
cos θ − i sin θ).

Hence, μ(gkθ) = μ(g)eiθ. �
Corollary 6.3. For every weight m ≥ 2 and kθ1 , kθ2 ∈ SO2(R),

M (m)
∞ (kθ1xkθ2) = eim(θ2+θ1)M (m)

∞ (x).

Proof. Apply the previous lemma to M
(m)
∞ (x) = exp(−2πNrx) Nr(x)m/2−1μ(x)m and use the

identity M (m)
∞ (xι) = M

(m)
∞ (x). �

Lemma 6.4. If m ≥ 2, then

|M (m)
∞ (x)| �m (1 + ‖x‖)−m.
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Proof. This is trivial if Nrx ≤ 0, hence we assume the determinant is positive. Denote r = ‖x‖ =√
Tr(x xt ). A simple calculation shows that

|μ(x)|−2 =
r2 + 2 Nr(x)

4 Nr(x)
,

|M (m)
∞ (x)| = exp(−2πNrx)

2m Nr(x)m−1

(r2 + 2 Nr(x))m/2
.

If r ≤ 1, then we write

|M (m)
∞ (x)| �m exp(−2πNrx) Nr(x)m/2−1 � 1.

The last equality holds for all Nr(x) > 0 because we have assumed m ≥ 2. Otherwise, if r > 1,
then

|M (m)
∞ (x)| ≤ exp(−2πNrx)2m Nr(x)m−1r−m �m r−m,

where we have used the fact that the real function exp(−2πt)tm−1 is bounded for t ∈ [0,∞) and
m ≥ 1. �

Up until this point, we have established that M
(m)
∞ satisfies the decay condition in

Definition 3.7 if m > 4. We now turn to show that it also belongs to the space Vm,2π by checking
that it solves the quantum harmonic oscillator, see (18).

Lemma 6.5. If m ≥ 6, then the function M
(m)
∞ from Definition 6.1 belongs to Vm,2π.

Proof. Lemma 6.4 above implies that M (m)
∞ ∈ L2(B∞) if m > 4. To prove M

(m)
∞ ∈ Vm,2π we

will show that M (m)
∞ ⊥ Vm′,2π for all m′ �= m. It is enough to establish 〈M (m)

∞ ,M ′〉 = 0 for any
Schwartz solution M ′ of (18) with quantum number m′ �= m and ω = 2π.

Define F (x) = exp(−2πNr(x))N(x) and N(x) = Nr(x)m−1(2i)m
(
(b− c) + i(a+ d)

)−m.
Then, F (x) is a well-defined continuous function on the open subset U= B∞ \

{(
a b
b −a

)
: a, b ∈

R
}
. Moreover, M (m)

∞ = 1Nr(x)>0 · F . Define V = {x ∈ B∞ | Nrx ≥ 0} and VR = V ∩B(0, R) \
B(0, R−1) for R > 1, where B(0, r) is a closed ball of radius r centered at the origin. Note that
VR ⊂ U.

We claim that F (x) solves the PDE (18) on U with ω = 2π and quantum number m. The
PDE (18) with ω = 2π, � = 1 for F is equivalent to the following PDE for N :

−ΔN + 2π〈x,∇〉N = 2π(m− 2)N, (31)

where ∇ denotes the gradient operator and the bilinear form 〈x1, x2〉 is the twisted trace form
Tr(x1 x

ι
2) as before. Using the definition of the Laplace operator as the Fourier multiplier with

symbol −4π2 Nr and the definition of the gradient, we arrive at

Δ =
∂2

∂a∂d
− ∂2

∂b∂c
,

〈x,∇〉 = a
∂

∂a
+ d

∂

∂d
+ b

∂

∂b
+ c

∂

∂c
.

Substituting the definition N(x) = (2i)m((ad− bc)m−1/((b− c) + i(a+ d))m) into the formulae
above we see that

ΔN = 0,

〈x,∇〉N = (m− 2)N.
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These and (31) show that F is a solution with quantum number m. Because the PDE (18) is
local, this establishes that12 L2π[M

(m)
∞ ] = 2πmM (m)

∞ .
Fix a Schwartz function M ′ : B∞ → C. We want to show now that 〈L2π[M

(m)
∞ ],M ′〉 =

〈M (m)
∞ , L2π[M ′]〉. The equality 〈Nr(x)M (m)

∞ ,M ′〉 = 〈M (m)
∞ ,Nr(x)M ′〉 is obvious. We need only

show
〈ΔM (m)

∞ ,M ′〉 = 〈M (m)
∞ ,ΔM ′〉. (32)

Note that the integrals defining these individual inner products are absolutely convergent because
M ′ and ΔM ′ are Schwartz, and M (m)

∞ , Nr(x)M (m)
∞ , ΔM (m)

∞ have at most polynomial growth. To
establish (32) we use the equality

〈ΔM (m)
∞ ,M ′〉 = lim

R→∞

∫
VR

ΔF (x)M ′(x) dx,

and the analogous formula for 〈M (m)
∞ ,ΔM ′〉. These follow from the dominated convergence

theorem. Denote

W =

⎛⎜⎜⎝
0 1/2 0 0

1/2 0 0 0
0 0 0 −1/2
0 0 −1/2 0

⎞⎟⎟⎠
and write Δ = ∇ · (W∇) with respect to the coordinates (a, d, b, c). Using the symmetry of the
matrix W and the divergence theorem we arrive at∫

VR

ΔF (x)M ′(x) dx =
∫
VR

∇ · (M ′(x)W∇F ) dx− ∫
VR

(W∇F ) · (∇M ′(x)) dx

=
∫
VR

∇ · (M ′(x)W∇F − FW∇M ′(x)
)
dx+

∫
VR

F (x)ΔM ′(x) dx

=
∫
∂VR

(
M ′(x)W∇F − FW∇M ′(x)

) · n̂ dA(x) +
∫
VR

F (x)ΔM ′(x) dx.

The conditions of the divergence theorem are satisfied because F and M are smooth in an
open neighborhood of the closure of VR, which is compact, and the boundary ∂VR is piecewise
smooth. A direct computation, as in the proof of Lemma 6.4, shows that F and ∇F vanish on
the boundary of the cone V , except perhaps the origin where they remain bounded. It remains
to consider the contributions from the surfaces SR = ∂VR ∩B(0, R) and sR = ∂VR ∩B(0, 1/R).
The area of SR is bounded from above by the area of a 3-sphere of radius R, thus Area(SR) � R3.
On the other hand, because M ′ is Schwartz and F,∇F are bounded on V we have that∣∣∣∣ ∫

SR

(
M ′(x)W∇F − FW∇M ′(x)

) · n̂ dA(x)
∣∣∣∣�N R−NR3 →R→∞ 0.

Similarly, Area(sR) � R−3 and M ′(x)W∇F − FW∇M ′(x) is bounded on B(0, 1) ∩ V , hence
the surface integral over sR converges to 0 as R→∞.

Now let M ′ ∈ Vm′,2π be a Schwartz function and assume m′ �= m, then we have

2πm〈M (m)
∞ ,M ′〉 = 〈L2π[M (m)

∞ ],M ′〉 = 〈M (m)
∞ , L2π[M ′]〉 = 2πm′〈M (m)

∞ ,M ′〉
and we deduce 〈M (m)

∞ ,M ′〉 = 0 as necessary. �

12 The function M
(m)
∞ is not necessarily in C2(B∞) and we extend the definition of L2π to this function in the

naive way, in particular this equality does not need to be well-defined on the cone Nr x = 0.
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Corollary 6.6. The Bergman test function of weight m ≥ 6 belongs to Ω∞.

Proof. Lemma 6.4 implies that this test function satisfies the decay condition in the definition of
Ω∞ and Lemma 6.5 above implies that the Bergman test function transforms under ρ(SO2(R))
by a character. �

7. The spectral expansion

Fix a global Eichler order R = R1 ∩R2 ⊂ B and a weight m > 2. We focus henceforth on the
test function M = M

(m)
∞ ·∏p 1Rp ∈ Ω. This test function is cuspidal as M (m)

∞ (x) = 0 if Nrx = 0
and we denote the classical theta series attached to the test function M by Proposition 4.7 by

ϑ(m)(l, r; s) =
∑
ξ∈R

(
ρ(s)M (m)

∞
)
(l−1ξr)

for s ∈ Λ\SL2(R), l, r ∈ Γ\G(R). In this section, we prove the main theorem about the spectral
expansion of ϑ(m).

Definition 7.1. Denote by Sm(Γ) the space of Γ-modular weight m modular forms on H.
Write Sm(Γ) = Sold

m (Γ)⊕ Snew
m (Γ) for the direct sum decomposition into new and old forms. The

decomposition is orthogonal with respect to the Petersson inner product.
If f ∈ Sm(Γ), we denote by f � : Γ\G(R) → C the automorphic lift of f . Specifically, if g =

( 1 x
0 1 )

( y1/2 0

0 y−1/2

)
kθ, then f �(g) = ym/2eimθf(x+ iy). Following the discussion in § 4.2, we shall

also consider f � as a KR-invariant function on [G(A)].
Similarly, we decompose Sm(Λ) = Sold

m (Λ)⊕ Snew
m (Λ), and denote by f∗� : Λ\SL2(R) → C the

automorphic lift of f∗ ∈ Sm(Λ). Moreover, we shall also consider f∗� as a UR-invariant function
on [SL2(A)].

Theorem 7.2. Fix an orthonormal basis Bm for Sm(Γ) of Hecke eigenforms for all Hecke oper-
ators Tn with (n, qDB) = 1. For two Hecke eigenforms f, f ′ ∈ Bm, write f ∼ f ′ if and only if

their Hecke eigenvalues agree for (n, qDB) = 1. Denote by (f � ⊗ f ′�)M the theta lift of f � ⊗ f ′�.
Then,

ϑ(m)(l, r; s) =
1

covol(Γ)
8π

m− 1

∑
f,f ′∈Bm

f∼f ′

(f � ⊗ f ′�)M (s) · f �(l)f �(r)

for all s ∈ Λ\SL2(R), l, r ∈ Γ\G(R). Furthermore, (f � ⊗ f ′�)M is an automorphic lift of some
cusp form (f ⊗ f ′)M ∈ Sm(Λ).

Suppose further that f ∈ Snew
m (Γ) is a newform. Let λf (α) be the Tα-eigenvalue of f �, then

f �M = (f � ⊗ f �)M is the automorphic lift of a cusp form fM ∈ Sm(Λ) with Fourier expansion

fM (ζ) =
∑
n>0

nm/2−1λf (n) exp(2πinζ).

Remark 7.3. The operator T1 acts as the identity on KR-invariant functions on [G(A)], i.e. func-
tions on Γ\G(R). Hence, λf (1) = 1 and the theta lift fM is an arithmetically normalized cusp
form.

The case where Γ\G(R) = SL2(Z)\SL2(R) is already contained in [Zag77, § 2, Proposition 1],
see also (14). For the general case, the proof will bootstrap from the fact that the convolution
operator �G(R)μ

m acting on Γ\G(R) coincides with the Bergman kernel on Γ\H. This dates
back at least to Selberg [Sel56], though geometric expressions for the Bergman kernel in terms of
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Poincaré series were already known to Petersson [Pet40, Pet41]. The particular expression for the
Bergman kernel suitable for our needs may be found in [Zag76] and [Zag77, § 2, Proposition 1],
[Ste16, Theorem 3], or [DS15, § 2.3]. The first three references each contain the split case and the
latter the non-split case. There does, however, appear to be an error in the constant in [DS15].
Compare with the computation in [Zag76, Ste16], whose proofs also apply to co-compact lattices.
The statement is as follows.

Proposition 7.4. Set

k(m)(l, r) :=
∑
γ∈Γ

μm(l−1γr).

The function k(m) is the kernel of the convolution operator �μm acting on L2(Γ\G(R)), where
the convolution takes place in G(R). Fix an orthonormal basis Bm for Sm(Γ). Then, for all
l, r ∈ G(R),

k(m)(l, r) =
1

covol(Γ)
8π

m− 1

∑
f∈Bm

f �(l)f �(r).

In particular, the operator �μm annihilates all the continuous, residual, and cuspidal spectrum,
whose archimedean component is not discrete series.

Proof of Theorem 7.2. Let ζ = σ + iτ ∈ H and fix s = ( 1 σ
0 1 )

(
τ1/2 0

0 τ−1/2

)
kθ ∈ SL2(R). The

definition of the Weil action, Definition 6.1, and Lemmata 3.5 and 6.5 imply for n > 0, g ∈ G(R)(
ρ(s)M (m)

∞
)
(
√
ng) = τm/2nm/2−1 exp(2πinζ + imθ)μm(g). (33)

We will establish that ϑ(m)(l, r; s) coincides with the spectral expansion in the claim by show-
ing equality in L2(Γ\G(R)× Γ\G(R)). Pointwise identity then follows because both sides are
continuous.

The Bergmann test function M
(m)
∞ vanishes on the null-cone {x ∈ B∞ : Nrx = 0}, thus it

follows from Corollary 3.6 that M is cuspidal. For any ϕ,ϕ′ ∈ L∞(Γ\G(R)) ⊂ L2(Γ\G(R)), we
can use Proposition 5.8, (27), and (33) to write the Fourier expansion

(ϕ⊗ ϕ′)M (s) =
∫

[G(A)]

∫
[G(A)]

ΘM (l, r; s)ϕ(l)ϕ′(r) dl dr

=
∑
n>0

〈
(TMf
n ϕ) �

((
ρ(s)M∞

)
(
√
n · •)), ϕ′〉

=
∑
n>0

τm/2nm/2−1 exp(2πinζ + imθ)
〈
(TMf
n ϕ) � μm, ϕ′〉. (34)

Because TMf
n is a convolution operator, the maps ϕ �→ T

Mf
n ϕ, ϕ �→ (TMf

n ϕ) � μm preserve the
continuous and the discrete spectra. Proposition 7.4 then implies that (34) vanishes whenever
ϕ or ϕ′ is a bounded function in the continuous spectrum. Using pseudo-Eisenstein series we
can construct a dense set of bounded vectors in the continuous spectrum of L2([G(A)]), hence
ΘM (l, r; s) ∈ L2

discrete([G(A)]× [G(A)]). Moreover, ΘM (l, r; s) isKR ×KR-invariant. There is an
orthonormal basis of L2

discrete([G(A)])KR consisting of bounded Hecke eigenforms for all Hecke
operators Tn with (n, qDB) = 1.

Furthermore, ϕ �→ T
Mf
n ϕ, ϕ �→ (TMf

n ϕ) � μm preserve adelic automorphic representations.
Hence, Proposition 7.4 implies that (34) vanishes unless both ϕ and ϕ′ are lifts of weight m
modular forms with the same Hecke eigenvalues for (n, qDB) = 1. The claimed spectral expansion
follows as the automorphic lifts of Bm(Γ)×Bm(Γ) can be completed to an orthogonal basis of
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L2
discrete([G(A)]× [G(A)]) consisting of bounded Hecke eigenforms for all Hecke operators Tn

with (n, qDB) = 1. The Whittaker expansion (34) further shows that the Whittaker function of
(ϕ⊗ ϕ′)M at infinity agrees with the Whittaker functions of a weight m holomorphic form, is
furthermore clear, following the discussion in § 4.2, that it is an automorphic lift of a holomorphic
form in Sm(Λ).

If ϕ is a bounded Hecke newform with eigenvalues λ(•), we can use Corollary 5.15 to rewrite
(34) as∫

[G(A)]

∫
[G(A)]

ΘM (l, r; s)ϕ(l)ϕ′(r) dl dr =
∑
n>0

λ(n)τm/2nm/2−1 exp(2πinζ + imθ)
〈
ϕ � μm, ϕ′〉.

(35)
The formula for the Fourier–Whittaker expansion of fM follows from (35) with ϕ = ϕ′ = f �. �

A careful local analysis, following Shimizu [Shi72] shows that if f is a newform, then fM (s)
is the unique arithmetically normalized new modular form in the Jacquet–Langlands transfer of
the automorphic representation generated by f̃ � (to be defined momentarily). We will need only a
weaker result. To discuss the Jacquet–Langlands transfer we need to lift functions from [SL2(A)]
to [PGL2(A)]. Define ŨR to be the image of

{
g ∈ ( Ẑ Ẑ

qDBẐ Ẑ

)
: det g ∈ Ẑ×} in PGL2(Af ). Then,

ŨR is a compact open subgroup, and an argument identical to Proposition 5.10 proves that

SL2(Q)\
SL2(A)/UR

→ PGL2(Q)\
PGL2(A)/

ŨR

is a measure-preserving bijection. Hence, we have a unique lift ϕ �→ ϕ̃ from L2([SL2(A)])UR to
L2([PGL2(A)])ŨR.

Definition 7.5. Let f ∈ Sm(Γ) be a Hecke eigenform for all Hecke operators Tn with (n, qDB) =
1. If f is a newform denote by fJL ∈ Snew

m (Λ) the unique arithmetically normalized holomorphic

newform such that f̃ �JL belongs to the Jacquet–Langlands transfer of the automorphic represen-
tation generated by f̃ �. That such a vector exists and is unique follows from [JL70, Shi72]. If f
is an oldform, then it factors through a newform with respect to a lattice arising from an Eichler
order R′ � R with level q′ | q. In this case, we denote by fJL the lift of the Jacquet–Langlands
transfer, defined as above, from Snew

m (Γ0(q′DB)) to Sold
m (Λ = Γ0(qDB)).

In both cases, the modular form fJL is an eigenform of all the classical Hecke operators
corresponding to n co-prime to qDB, and its n-Fourier coefficient coincides with the Tn Hecke
eigenvalue of f � if gcd(n, qDB) = 1.

Lemma 7.6. Let f ∈ Sm(Γ) be a Hecke eigenform for all Hecke operators Tn with (n, qDB) = 1.
If f is a newform, then the orthogonal projection of fM onto Snew

m (Λ) is equal to fJL. If f ∼ f ′

are oldforms, then (f ⊗ f ′)M is an oldform as well.

Proof. Theorem 7.2 implies that the Fourier coefficients of fM and fJL coincide for all n co-
prime to qDB, which is the level of Λ\H. Theorem 1 of [AL70] then implies that fM − fJL is an
oldform. Because fJL is a newform if f is, the claim holds for newforms. If f ∼ f ′ are oldforms,
then so is fJL = f ′JL. Hence, in this case (f ⊗ f ′)M is a sum of oldforms and is an oldform by
itself. �
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Corollary 7.7. Let l, r ∈ G(R) and set z1 = l.i, z2 = r.i ∈ H. Fix an orthonormal basis Bnew
m

of Hecke eigenforms for Snew
m (Γ). Then,

1
covol(Λ)

‖ϑ(m)(l, r; •)‖2L2(Λ\SL2(R))

≥
(

1
covol(Γ)

8π
m− 1

)2

(�(z1)�(z2))m
∑

f∈Bnew
m

‖fJL‖22
covol(Λ)

|f(z1)|2|f(z2)|2

!ε
1

covol(Γ)2
(mqDB)−ε

Γ(m)
(4π)mm2

(�(z1)�(z2))m
∑

f∈Bnew
m

|f(z1)|2|f(z2)|2.

Proof. Define ϑ�(ζ) = τ−m/2ϑ(m)(l, r; s), where ζ = σ + iτ ∈ H and s = ( 1 σ
0 1 )

(
τ1/2 0

0 τ−1/2

)
.

Because ϑ(m)(l, r; •) is K∞-isotypic we have ϑ��(s) = ϑ(m)(l, r; s). Theorem 7.2 and Lemma 7.6
above imply that the orthogonal project of ϑ� onto Snew

m (Λ) is equal to

ϑnew
� (ζ) =

1
covol(Γ)

8π
m− 1

∑
f∈Bnew

m

fJL(ζ)f �(l)f �(r). (36)

Because oldforms are orthogonal to newforms ‖ϑ(m)(l, r; •)‖2L2(Λ\SL2(R)) ≥ ‖ϑnew
� ‖22. The first

claimed inequality follows from (36) and the orthogonality relations of Hecke eigenforms. The
second inequality follows from the Hoffstein and Lockhart [HL94] bound on the L2-norm of an
arithmetically normalized holomorphic Hecke newform f of level N

‖f‖22 !ε
Γ(m)
(4π)m

(mN)−ε.

This bound holds when the Petersson inner product is normalized with respect to the probability
measure on Λ\SL2(R). �

At this point, we shall note that we have also proven Theorem 2.1. Indeed, if we lift adelically
f ∈ Sm(Γ) to f �, then we find

�(z)m/2�(ζ)m/2Ff (z; ζ) = c
∑
n>0

T
Mf
n f � �

(
ρ(s∞).M∞(

√
n · •))(r∞) = c

∫
[G(A)]

ΘM (l, r; s)f �(l) dl

by (34) and Propositions 5.14 and 7.4, where c = covol(Γ)(m− 1)/(8π) and r∞ =
( 1 x

1 )
( y1/2

y−1/2

)
and rp being the identity for all finite places, and similarly for s (with respect

to ζ). Thus, Ff (z; ζ) is the classical holomorphic modular form associated to
∫

ΘM (l, r; s)f �(l) dl,
from which the theorem follows.

8. The geometric expansion

We have now established in Corollary 7.7 a lower bound on ‖ϑ(m)(l, r; •)‖2L2(Λ\SL2(R)) in terms
of a fourth moment of Hecke eigenforms of weight m. In this section, our goal is to establish an
upper bound in terms of a count of quaternions by norm. In the next section, we will establish
a sharp upper-bound for this count.

Definition 8.1. For g ∈ PGL2(R), define

u(g) =
Tr(g gt )− 2|det g|

4|det g| .
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Specifically, for g =
(
a b
c d

)
4u(g) =

a2 + b2 + c2 + d2

|ad− bc| − 2.

Using the fixed isomorphism B ⊗ R � Mat2×2(R), we extend the function u to the group (B ⊗
R)×.

Lemma 8.2. For all g ∈ PGL2(R) with det g > 0,

|μ(g)|2 = (1 + u(g))−1.

Proof. Fix g =
(
a b
c d

)
with det g > 0. We deduce from Definition 6.1 that

|μ(g)|−2 =
(b− c)2 + (a+ d)2

4 det g
=
a2 + b2 + c2 + d2 + 2 det g

4 det g
= 1 + u(g). �

Proposition 8.3. We have

1
covol(Λ)

‖ϑ(m)(l, r; •)‖2L2(Λ\SL2(R)) �ε (qDB)1+ε
Γ(m− 1)

(4π)m
∑
n>0

1
n

( ∑
ξ∈R

Nr ξ=n

(
1 + u(l−1ξr)

)−m/2)2

·
{

1, n ≤ (qDB)2m,
exp(−n/(qDB)2), n > (qDB)2m.

Proof. We first apply Proposition 4.9 to ϑ(m) and use the fact that our choice of M∞ = M
(m)
∞ is

K-isotypical and transforms simply under the diagonal group:

1
covol(Λ)

∫
Λ\SL2(R)

|ϑ(m)(l, r; s)|2 ds

≤ (qDB)−1
∑
a|qDB

∑
α∈Q
α>0

∫ ∞
√

3/2
τmαm−2 exp(−4πατ)

( ∑
ξ∈R̂(a)

Nr ξ=α

∣∣μm(l−1ξr)
∣∣)2

dτ

τ2
.

We bound the integral over τ , which is equivalent to the definition of the partial gamma function,
in two ways. Write first∫ ∞

√
3/2

τm−2αm−2 exp(−4πατ) dτ =
1
α

∫ ∞
√

3/2·α
xm−2 exp(−4πx) dx.

For α ≤ m, we complete the integral to deduce∫ ∞
√

3/2·α
xm−2 exp(−4πx) dx ≤ (4π)−(m−1)Γ(m− 1).

For α > m, we argue∫ ∞
√

3/2·α
xm−2 exp(−4πx) dx ≤ exp(−2π

√
3/2 · α)2m−2

∫ ∞
√

3/2·α
(x/2)m−2 exp(−4π(x/2)) dx

≤ exp(−2π
√

3/2 · α)2m−1(4π)−(m−1)Γ(m− 1)

� exp
(− (2π√3/2− log 2

) · α)(4π)−(m−1)Γ(m− 1)

≤ exp(−α)(4π)−(m−1)Γ(m− 1).

2955

https://doi.org/10.1112/S0010437X24007437 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007437


I. Khayutin and R. S. Steiner

We thus arrive at∫ ∞
√

3/2
τmαm−2 exp(−4πατ)

( ∑
ξ∈R̂(a)

Nr ξ=α

∣∣μm(l−1ξr)
∣∣)2

dτ

τ2
�(4π)−mΓ(m−1)

1
α

( ∑
ξ∈R̂(a)

Nr ξ=α

|μm(l−1ξr)|
)2

·
{

1, α ≤ m,

exp(−α), α > m.

Note that R̂(a) ⊂ (qDB)−1R and( ∑
ξ∈R̂(a)

Nr ξ=α

|μm(l−1ξr)|
)2

≤
( ∑

ξ∈R
Nr ξ=(qDB)2α

|μm(l−1ξr)|
)2

.

The claimed bound follows from combining these inequalities with the divisor bound and
Lemma 8.2 above. �

Definition 8.4. For any g ∈ G(R), n ∈ N, and δ > 0, set

M(g, n; δ) :=
{
ξ ∈ R | Nr ξ = n, u(g−1ξg) < δ

}
.

Corollary 8.5. If m > 2, then

1
covol(Λ)

‖ϑ(m)(g, g; •)‖2L2(Λ\SL2(R))

�ε (qDB)1+ε
Γ(m− 1)

(4π)m

{
m

2

∫ ∞

0

[ (qDB)2m∑
n=1

1
n
M(g, n; δ)2

]1/2

+
[ ∞∑
n>(qDB)2m

exp(−n/(qDB)2)
n

M(g, n; δ)2
]1/2 dδ

(1 + δ)m/2+1

}2

.

Proof. Integration by parts for Riemann–Stieltjes integrals implies∑
ξ∈R

Nr ξ=n

(
1 + u(g−1ξg)

)−m/2 =
∫ ∞

0
(1 + δ)−m/2 dM(g, n; δ)

= lim
δ→∞

M(g, n; δ)(1 + δ)−m/2 +
m

2

∫ ∞

0
(1 + δ)−m/2−1M(g, n; δ) dδ.

(37)

The left-hand side is exactly the expression we need to bound in Proposition 8.3. Iwaniec and
Sarnak in [IS95, Lemma 1.3 & Appendix 1] establish the bound

M(g, n; δ)�ε,q,DB ,g n
ε + (δ + δ1/4)n1+ε. (38)

Thus, the first term in (37) vanishes for m > 2. Set wn = 1/n if n ≤ (qDB)2m and wn =
exp(−n/(qDB)2)/n otherwise. We apply Minkowski’s integral inequality to deduce

∞∑
n=1

wn

∣∣∣∣∣ ∑
ξ∈R

Nr ξ=n

(1 + u(g−1ξg))−m/2
∣∣∣∣∣
2

≤
(
m

2

∫ ∞

0

√√√√ ∞∑
n=1

wnM(g, n; δ)2
dδ

(1 + δ)m/2+1

)2

.
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The claim follows by splitting the sum into two ranges: 1 ≤ n ≤ (qDB)2m and n > (qDB)2m
and using the l2–l1 inequality. �

9. Second-moment count of quaternions by norm

In this section, we prove our main results about the second-moment count of quaternions by norm
in a small ball. This bound in combination with the results of the previous sections will lead to
the proof of Theorem 1.1. To bound

∑N
n=1M(g, n; δ)2 we can assume henceforth without loss of

generality that R is a maximal order, otherwise we can replace the Eichler order R = R1 ∩R2

by R1 and the second-moment sum will only increase.
We shall deal separately with the split case G = SL2 and the case of anisotropic G. The

proof in both cases is very similar except that we need to track the dependence on g differently.
While in the split case we shall work with the Iwasawa decomposition of g, in the anisotropic
case we will use an adapted Cartan decomposition of g.

9.1 Second-moment bound for the split matrix algebra
In this section, we fix G = SL2, i.e. B = Mat2×2(Q) and R = Mat2×2(Z). If we write in
coordinates ξ =

(
a b
c d

)
, then the inequalities u(ξ) < δ, 0 < det ξ < N imply

a2 + b2 + c2 + d2 < N(4δ + 2), (39)

(a− d)2 + (b+ c)2 < 4Nδ. (40)

For g ∈ G(R), write g = nak with k ∈ SO2(R) and

n =
(

1 x
0 1

)
,

a =
(
y1/2 0
0 y−1/2

)
.

This is the standard Iwasawa decomposition of g.

Proposition 9.1. Let g ∈ SL2(R) and write g.i = x+ iy. Assume |x| ≤ C and y ≥ A > 0.
Then,

N∑
n=1

M(g, n; δ)2 �A,C,ε N
3+εδ2 +N1+ε +N1/2+ε min(N1/2, (Nδ)1/2 + 1)(y2Nδ + 1).

Remark 9.2. In the end, we may restrict ourselves to g in a fundamental domain for SL2(Z) and,
hence, the restrictions on x, y will be satisfied.

Using the inequality of geometric and arithmetic means we can split the second-moment
count into two cases. The first is when both matrices are upper triangular and the second is
when neither is. We now prepare some preliminary results needed in the proof of Proposition 9.1.

Lemma 9.3. Denote by U ⊂ B∞ the subset of upper triangular matrices. Then,

#
{

(ξ1, ξ2) ∈
(
Mat2×2(Z) ∩ U

)2 : u(g−1ξ1g), u(g−1ξ2g) < δ, 0 < det ξ1 = det ξ2 < N
}

�ε N
1/2+ε min(N1/2, (Nδ)1/2 + 1)(y2Nδ + 1).
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Proof. Write ξi =
(
ai bi
0 di

)
. For upper triangular matrices we rewrite (40) for g−1ξig as

(ai − di)2 +

(
bi + x(ai − di)

)2
y2

< 4Nδ.

Hence, we have at most � (Nδ)1/2 + 1 choices for |a1 − d1|. In addition, the condition
0 < 4 det ξ1 = (a1 + d1)2 − (a1 − d1)2 < 4N implies 0 < |a1 + d1| − |a1 − d1| � N1/2. We deduce
that there are at most � ((Nδ)1/2 + 1)N1/2 possibilities for (|a1 + d1|, |a1 − d1|) and a similar
statement holds for (a1, d1).

On the other hand, 0 < a1d1 < N and the divisor bound implies that the number of possible
pairs (a1, d1) is also bounded by �ε N

1+ε. The number of possibilities for b1 is now bounded
above by y(Nδ)1/2 + 1. Thus, there are at most �ε N

1/2+ε min
(
N1/2, (Nδ)1/2 + 1

)
(y(Nδ)1/2 +

1) possibilities for ξ1.
Once ξ1 is fixed the condition det ξ1 = det ξ2 > 0 fixes a2d2 and the divisor bound restricts

the number of possible pairs (a2, d2) to �ε N
ε. Finally, the number of possible b2 after fixing

(a2, d2) is at most � y(Nδ)1/2 + 1. �
We continue to analyze the case when neither matrix is upper triangular. We will use the

direct sum decomposition B∞ = R Id +B0∞. This decomposition is preserved by the conjugation
action. We denote by ξ0 = ξ − 1

2 Tr(ξ) the traceless part of ξ ∈ B∞. In coordinates we write

ξ0 =
(
e b
c −e

)
,

where e = (a− d)/2. If ξ satisfies (39) and (40), then ξ0 satisfies 2e2 + b2 + c2 < N(4δ + 2). This
leads us to define

B0
∞ ⊃ X :=

{
ξ0 =

(
e b
c −e

)
: 4e2 + (b+ c)2 < 4Nδ, 2e2 + b2 + c2 < N(4δ + 2)

}
,

B0
∞ ⊃ Xg :− gXg−1.

The set X is invariant under conjugation by K and using the Iwasawa decomposition we can
write the conditions for

(
e b
c −e

) ∈ Xg explicitly as

2(e− xc)2 +
(b+ 2xe− x2c)2

y2
+ y2c2 < N(4δ + 2), (41)

4(e− xc)2 +

(
b+ 2x(e− xc) + (x2 + y2)c

)2
y2

< 4Nδ. (42)

Lemma 9.4. Assume y ≥ A > 0 and 0 < δ ≤ 1, then

#
(

1
2 Mat2×2(Z)0 ∩Xg \ U

)� N3/2δ +N1/2.

Proof. From (41), we learn that there are � y−1N1/2(1 + δ) options for c (c �= 0 because the
matrices are not upper triangular). For any fixed c, (42) describes an ellipse in the e, b plane
with radii � √

Nδ, y
√
Nδ. Hence, the number of possibilities for (e, b) ∈ 1

2Z× 1
2Z is bounded

from above by

� yNδ + (Nδ)1/2 max(y, 1) + 1 �A y
(
Nδ + (Nδ)1/2 + 1

)
.

Multiplying this by the bound for possible values of c and the inequality Nδ1/2 <
max(N3/2δ,N1/2) establish the claim. �
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Lemma 9.5. Assume y ≥ A > 0, |x| < C, and 0 < δ ≤ 1. Then,

#
{
(ξ01 , ξ

0
2) ∈ (1

2 Mat2×2(Z)0 ∩Xg \ U
)2 : det ξ01 = det ξ02

}�A,C N
5/2δ2 +N1/2.

Proof. Note that the number of possible elements ξ01 is bounded by Lemma 9.4 above. We fix
henceforth ξ01 as in the claim and count the number of possible ξ02 �∈ U with det ξ02 = det ξ01 .
Denote

g−1ξ0i g =
(
ẽi b̃i
c̃i −ẽi

)
.

We now rewrite (40) for ξ0i as

4(ei − cix)2 +
(
(b̃i − c̃i) + 2yci

)2
< 4Nδ. (43)

Then, (b̃1 − c̃1) is restricted to an interval of length � √
Nδ. Equation (40) implies

(b̃i + c̃i)2 + 4ẽi2 = (b̃i − c̃i)2 − 4 det(ξ0i ) = (b̃i − c̃i)2 − 4 det(g−1ξ0i g) ∈ [0, 4Nδ]

and
∣∣(b̃1 − c̃1)2 − (b̃2 − c̃2)2

∣∣� Nδ. We deduce that
∣∣|b̃1 − c̃1| − |b̃2 − c̃2|∣∣� √

Nδ. In particular,
(b̃2 − c̃2) is restricted to two intervals of length � √

Nδ.
Consider (43) for ξ02 with (b̃2 − c̃2) as a varying quantity in the aforementioned intervals, thus

ignoring their dependencies on e2, c2. It describes an ellipse in the variables e2, c2 with center
−(b̃2 − c̃2)/2y · (x, 1). Because ξ01 is fixed, the center of the ellipse is restricted to one of two
intervals of length �C y

−1
√
Nδ. The radii of the ellipse satisfy �C

√
Nδ, y−1

√
Nδ. We deduce

that the number of possibilities for (e2, c2) is �A,C y
−1Nδ + (Nδ)1/2 + 1�A,C Nδ + 1. Once

ξ01 , e2 and c2 �= 0 are fixed, the value of b2 is fixed by the equality det ξ02 = det ξ01 . Hence, the
total number of pairs (ξ01 , ξ

0
2) is bounded from above in this case by

�A,C (N3/2δ +N1/2)(Nδ + 1) �A,C N
5/2δ2 +N3/2δ +N1/2 �A,C N

5/2δ2 +N1/2. �
Proof of Proposition 9.1. Define

M�(g, n; δ) :=
{
ξ ∈ Mat2×2(Z) \ U | det ξ = n, u(g−1ξg) < δ

}
,

Mu(g, n; δ) :=
{
ξ ∈ Mat2×2(Z) ∩ U | det ξ = n, u(g−1ξg) < δ

}
.

Then, the inequality of means imply
N∑
n=1

M(g, n; δ)2 ≤ 2
N∑
n=1

M�(g, n; δ)2 + 2
N∑
n=1

Mu(g, n; δ)2

and we turn to bounding each term individually. The second term is controlled by Lemma 9.3
and is consistent with the claim.

To bound the first term we need to bound the number of pairs (ξ1, ξ2) ∈
(
Mat2×2(Z) \ U

)2
such that 0 < det ξ1 = det ξ2 < N and u(g−1ξig) < δ for i = 1, 2. Assume first δ > 1, we then
argue as in [IS95] to show the stronger bound M�(g, n; δ)�A,C,ε n

1+εδ. Let det ξ = n and write
ξ =

(
a b
c d

)
as usual. When δ > 1, we can replace the right-hand side in inequalities (39) and (41)

by 6Nδ. If either a = 0 or d = 0, then the equation bc = n and the divisor bound imply that we
have at most�ε n

ε possibilities for (b, c). Moreover, (39) implies that there are at most� (nδ)1/2

options for Tr(ξ). Hence, the number of possible values of ξ in these cases is �ε n
1/2+εδ1/2 �

n1+εδ. Assume next a �= 0 and d �= 0. Equation (41) implies that we have at most � y−1(nδ)1/2

options for c. Likewise, we have � 1 + (nδ)1/2(x2 + y2)y−1 �A,C y(nδ)1/2 choices for b. This
may be seen by either repeating the computation for (41) using the Iwasawa decomposition with
respect to the lower triangular unipotents or noting that

(
1−1

)
g.i = (−x+ iy)/(x2 + y2) and
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1−1

)
ξ
(

1−1

)−1 =
(
d −c
−b a

)
. Now that (b, c) is fixed, we use the equality ad = bc+ n and the

divisor bound to see that there are at most �ε n
ε possibilities for (a, d). This establishes the

inequality for δ > 1.
Assume henceforth δ < 1. We will be using the simple identity

det ξ =
Tr(ξ)2

4
+ det ξ0 (44)

and argue in two different ways depending on whether the traces of ξ1, ξ2 are equal or not.

Case I: |Tr(ξ1)| �= |Tr(ξ2)|. Lemma 9.4 implies that there are at most �A N
3δ2 +N options for

(ξ01 , ξ
0
2). After fixing the traceless parts, (44) fixed Tr(ξ1)2 − Tr(ξ2)2. Because the traces are not

equal in absolute value the divisor bound and the trivial bound |Tr(ξ)| � N imply there are at
most �ε N

ε choices for the traces. This establishes the claim in this case.

Case II: |Tr(ξ1)| = |Tr(ξ2)|. In this case, we use the trivial bound |Tr(ξ1)| = |Tr(ξ2)| � N1/2

from (39) to fix the traces and Lemma 9.5 to fix the traceless part. The final bound is consistent
with the claim. �

9.2 Second-moment bound for division algebras
In the section, we assume G is anisotropic, i.e. B is a ramified quaternion algebra over Q, and
that B is split over R. Fix an imaginary quadratic field E/Q of discriminant DE , such that every
prime dividing DB is inert in E. Let us denote by OE the ring of integers of E. By a theorem of
Chinburg and Friedman [CF99], there is an optimal embedding OE ↪→ R. We henceforth identify
OE with its image in R. Denote by KE < G(R) the group of norm 1 elements in (E ⊗ R)×.
Recall that we have a fixed isomorphism B∞ � Mat2×2(R) that induces a group isomorphism
G(R) � SL2(R), which we use to identify the two groups. Moreover, K∞ was defined as the
image of SO2(R) in G(R), and we define similarly A to be the image of the diagonal subgroup
in G(R). The group KE is conjugate to K∞, and we can write K∞ = hKEh

−1.

Proposition 9.6. Assume OE ↪→ R is an optimal embedding of the ring of integers OE of an
imaginary quadratic field E in the maximal order R. Let h ∈ G(R) be an element conjugating
KE to K∞ < SL2(R). Then, for any g ∈ G(R), 1 > δ > 0,

N∑
n=1

M(g, n; δ)2 � |DE |2+εN ε
[
N3δ2 + (λ+ λ−1)2+ε(N5/2δ3/2 +N)

]
,

where we write
√
λ ≥ (

√
λ)−1 > 0 for the eigenvalue of the diagonal part in the K∞AK∞ Cartan

decomposition of hg. Moreover, if δ ≥ 1 the bound

M(g, n; δ) �ε

(
(λ+ λ−1)nδ|DE |1/2

)1+ε
holds for all g ∈ G(R) and n ∈ N.

We now fix R, E, h, g as in the proposition above and prepare some notation and lemmata
that we will use in the course of the proof. The proof is very similar to the split case, except
that we track the dependence on g differently, not using its Iwasawa decomposition but rather
its Cartan decomposition relative to the stabilizer of E ↪→ B.

Because of our choice of E as optimally embedded in R, we can find an isomorphism B ⊗ E �
M2(E) where R is mapped to{(

a DBb
bσ aσ

)
: a, b ∈ ÔE , a+ b ∈ OE

}

2960

https://doi.org/10.1112/S0010437X24007437 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007437


Theta functions, fourth moments of eigenforms, and the sup-norm problem I

and after fixing a field embedding E ↪→ C the algebra B∞ coincides with
{( a DBb

bσ aσ

)
: a, b ∈ C

}
.

We denote by B0∞ the subspace of traceless elements, equivalently pure quaternions. There is a
direct sum decomposition B∞ = R Id +B0∞. This decomposition is preserved by the conjugation
action. In our new coordinate system, the space B0∞ is identified with iR× C and the projection
map becomes (a, b) �→ (a0, b) where a0 = (a− aσ )/2 = i�a is the traceless part of a ∈ C. The
space B0∞ is equipped with an inner product constructed as the direct sum of the standard inner
product on R and C, i.e. |(a0, b)|2 = |a0|2 + |b|2. Let R0 be the projection of R to B0∞. Then,
R0 < B0∞ is a lattice of co-volume # 1.

In this new coordinate system, we have for a quaternion of positive norm13

u

(
h

(
a DBb
bσ aσ

)
h−1

)
=

1
2

[
Nr a+DB Nr b
Nr a−DB Nr b

− 1
]

=
DB Nr b

Nr a−DB Nr b
.

Hence, if we write in coordinates

(gh)−1ξ(gh) =
(
a DBb
bσ aσ

)
with Nr ξ > 0, then the conditions u(g−1ξg) < δ, Nr ξ < N imply

Nr a+DB Nr b < N(2δ + 1), (45)

DB Nr b < δN. (46)

The traceless part of (gh)−1ξ(gh) is

(gh)−1ξ0(gh) =
(
a0 DBb
bσ aσ 0

)
,

where a0 = i�a is the traceless part of a. Equation (45) implies that Nr a0 ≤ N(2δ + 1).
Motivated by these inequalities, we denote

B0
∞ ⊃ X :−

{
x =

(
a0 DBb
bσ aσ 0

)
: DB Nr b ≤ δN,Nr a0 ≤ N(2δ + 1)

}
,

B0
∞ ⊃ Xg :− (gh)X(gh)−1.

We decompose gh according to a Cartan decomposition in KEAEKE where AE is the orthog-
onal group preserving the quadratic form (�a)2 −DB(�b)2. Equivalently, the Lie algebra of
AE is

LieAE = R ·
(

0 DB

1 0

)
< B0

∞.

Write gh = k2aEk1 with k1, k2 ∈ KE , aE ∈ AE , and denote by
√
λ ≥ (

√
λ)−1 > 0 the eigenvalues

of aE . Then,
√
λ, (
√
λ)−1 are also the eigenvalues of the diagonal part of the regular K∞AK∞

Cartan decomposition of hg = h(gh)h−1, i.e. the singular values.
The set X is invariant under conjugation by KE , hence Xg = (k2aE)X(k2aE)−1. We can

write the equations defining the set aEXa−1
E explicitly by decomposing the Lie algebra B0∞ into

the weight spaces of AE . The result of the computation is that every x =
( a0 DBb

bσ aσ 0

) ∈ aEXa−1
E

satisfies (
λ+ λ−1

2
�a0 +

√
DB

λ− λ−1

2
�b
)2

≤ N(2δ + 1), (47)

13 Note that the transpose operation with respect to KE is
( α DBβ

βσ ασ

) �→ ( ασ DBβ

βσ α

)
.
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λ− λ−1

2
�a0 +

√
DB

λ+ λ−1

2
�b
)2

+DB($b)2 ≤ Nδ. (48)

The set Xg = k2(aEXa−1
E )k−1

2 is a rotation of aEXa−1
E around the �a0 axis. Hence, the

equations defining Xg are derived from (47) and (48) by a rotation in the b-plane. Note that (47)
and (48) imply that |�a0| � (λ+ λ−1)N1/2(1 + δ1/2). Because the axis �a0 is invariant under
conjugation by k2 this inequality holds also for Xg.

Lemma 9.7. Assume 0 < δ ≤ 1. Then,

#
(
R0 ∩Xg

)� |DE |
(
N3/2δ + (λ+ λ−1)(Nδ1/2 +N1/2)

)
.

Proof. From |�a0| � (λ+ λ−1)N1/2 we deduce that there are � (λ+ λ−1)(N |DE |)1/2 possibil-
ities for a0 = i�a0. The second equation (48) implies that for any fixed a0 = i�a0 the element b
belongs to an ellipse with radii

√
Nδ/DB, (2/(λ+ λ−1))

√
Nδ/DB. Conjugation by k2 amounts

to rotating the set around the �a0 axis. Hence, this observation remains valid for Xg. We deduce
that for any fixed �a0 we have

� Nδ
√|DE |

DB(λ+ λ−1)
+
(
Nδ|DE |
DB

)1/2

+ 1

possibilities for b. The claim follows by multiplying the number of possibilities for a0 by the
number of possible b for each a0. �
Lemma 9.8. Assume 0 < δ ≤ 1. Then,

#
{
(ξ01 , ξ

0
2) ∈ (R0 ∩Xg

)2 : Nr ξ01 = Nr ξ02
}�ε |DE |1+ε(λ+ λ−1)2+εN ε

(
N2δ3/2 +N1/2

)
.

Proof. Write

ξ01,2 =
(
a0

1,2 DBb1,2
bσ 1,2 aσ 0

1,2

)
and assume ξ01 , ξ

0
2 ∈ Xg and Nr ξ01 = Nr ξ02 . Our goal is to count the number of possible pairs

(ξ01 , ξ
0
2).

For every ξ ∈ B0∞ let ã0 be the a0 coordinate of a−1
E ξaE . Then,

�ã0 =
λ+ λ−1

2
�a0 +

√
DB

λ− λ−1

2
�b.

Moreover, ã0 is also the a0 coordinate of (gh)−1ξ(gh) because conjugation by KE acts trivially
on the a0-axis. By substitution, we can rewrite (48) as(

λ− λ−1

λ+ λ−1
�ã0 +

√
DB

2
λ+ λ−1

�b
)2

+DB($b)2 ≤ Nδ. (49)

Assume ξ ∈ Xg. Because (45) implies that |�ã0| � N1/2, we see that (49) restricts b ∈ Xg to an
ellipse with radii (Nδ/DB)1/2, (λ+ λ−1)(Nδ/DB)1/2 and center in an interval of length� N1/2.
We deduce that there are at most

� (λ+ λ−1)Nδ1/2
√
|DE |
DB

+ (λ+ λ−1)N1/2

√
|DE |
DB

+ 1 (50)

choices for b if ξ ∈ Xg. Moreover, we see that necessarily Nr b� (λ+ λ−1)N

Case I: |a0
1| = |a0

2|. In this case, the condition Nr ξ01 = Nr ξ02 implies that Nr b1 = Nr b2. Because
there are at most �ε (n|DE |)ε elements of norm n in ÔE and Nr b2 � (λ+ λ−1)N we see that
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for any fixed ξ01 there are at most �ε ((λ+ λ−1)N |DE |)ε possibilities for ξ02 . We deduce from
Lemma 9.7 that the number of possible pairs (ξ1, ξ2) with |a0

1| = |a0
2| satisfies

�ε ((λ+ λ−1)N |DE |)ε|DE |
(
N3/2δ + (λ+ λ−1)(Nδ1/2 +N1/2)

)
and this bound is compatible with the claim.

Case II: |a0
1| �= |a0

2|. In this case, we will first count the number of possibilities for (b1, b2). We
bound the number of choices for b1 using (50) above. If ξ ∈ Xg, then (46) implies

(�ã0)2 −Nr ξ = (�ã0)2 −Nr((gh)−1ξ(gh)) ∈ [0, Nδ].

Thus, we deduce for ξ01,2 that
∣∣(�ã0

1)
2 − (�ã0

2)
2
∣∣ ≤ 2Nδ and∣∣|�ã0

1| − |�ã0
2|
∣∣� √

Nδ. (51)

Once b1 is fixed, (49) restricts ((λ− λ−1)/(λ+ λ−1))�ã0
1 to an interval of length � √

Nδ.
Equation (51) then restricts ((λ− λ−1)/(λ+ λ−1))|�ã0

2| to an interval also of length � √
Nδ.

This constraints the possibilities for the center of the ellipse in (49) for b2 into two intervals
of length � √

Nδ. Hence, given b1, there are at most

� (λ+ λ−1)Nδ

√
|DE |
|DB| + (λ+ λ−1)(Nδ)1/2

√
|DE |
|DB| + 1

options for the b2.
After fixing b1, b2, we use the condition Nr ξ01 = Nr ξ02 to fix (�a0

1)
2 − (�a0

2)
2. The divisor

bound and the condition |�a0
1| �= |�a0

2| now implies there are at most �ε ((λ+ λ−1)N |DE |)ε
options for the pair (a0

1, a
0
2).

The total number of possible pairs (ξ01 , ξ
0
2) in this case is thus bounded by

�ε ((λ+ λ−1)N |DE |)ε|DE |
(
(λ+ λ−1)Nδ1/2 + (λ+ λ−1)N1/2

)
· ((λ+ λ−1)Nδ + (λ+ λ−1)(Nδ)1/2 + 1

)
.

This bound is also compatible with the claim. �
Proof of Proposition 9.6. Assume first δ > 1. Then, we follow [IS95] to establish the bound
M(g, n; δ) �ε

(
(λ+ λ−1)nδ|DE |1/2

)1+ε. We have the bounds Tr(a) = 2$a� (nδ)1/2 and �a =
�a0 � (λ+ λ−1)(nδ)1/2. After fixing a we can fix b using the equality n = det ξ = Nr a−
DB Nr b. The divisor bound and the inequality Nr b� (λ+ λ−1)2nδ imply we have at most
�ε (λ+ λ−1)εnεδε|DE |ε choices for b.

Assume next δ ≤ 1. Once again, an important role is reserved for the simple formula

Nrx =
Tr(x)2

4
+ Nrx0 (52)

that holds for all x ∈ B∞ with x0 ∈ B0∞ the traceless part of x. Our goal is to bound the number
of pairs (ξ1, ξ2) ∈ R such that 0 ≤ Nr ξ1 = Nr ξ2 ≤ N and u(g−1ξ1g) = u(g−1ξ2g) < δ.

Case I: |Tr(ξ1)| �= |Tr(ξ2)|. Lemma 9.7 implies that the number of possibilities for the pair
(ξ01 , ξ

0
2) is bounded by

� |DE |2
(
N3δ2 + (λ+ λ−1)2(N5/2δ3/2 +N)

)
.

For any pair (ξ01 , ξ
0
2) ∈ B0∞ ×B0∞, the lifts to B∞ ×B∞ are determined by

(
Tr(ξ1),Tr(ξ2)

)
.

From the formula (52), we derive Tr(ξ1)2 − Tr(ξ2)2 = 4
(
Nr ξ02 −Nr ξ01

)
. The right-hand side

is bounded in absolute value by� N . The divisor bound and the assumption |Tr(ξ1)| �= |Tr(ξ2)|
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imply that for every (ξ01 , ξ
0
2) the number of possible pairs

(
Tr(ξ1),Tr(ξ2)

)
is bounded by �ε N

ε.
The cumulative bound is consistent with the claim.

Case II: |Tr(ξ1)| = |Tr(ξ2)|. In this case, formula (52) implies that Nr ξ01 = Nr ξ02 and we can
bound the total number of pairs (ξ01 , ξ

0
2) using Lemma 9.8. The number of pairs

(
Tr(ξ1),Tr(ξ2)

)
is trivially bounded by � √

N because |Tr(ξ1)| = |Tr(ξ2)|. The resulting bound on the pairs
(ξ1, ξ2) is consistent with the claim. �

10. Proof of the main theorem

This section is dedicated to establishing our main result, Theorem 1.1. Recall that Bnew
m is an

orthonormal basis of Hecke newforms of weight m > 2. We can combine Corollaries 7.7 and 8.5
to deduce

∑
f∈Bnew

m

|f �(g)|4 �ε (qDB)3+ε
m2

m− 2

{
m

2

∫ ∞

0

[ (qDB)2m∑
n=1

1
n
M(g, n; δ)2

]1/2

+
[ ∑
n>(qDB)2m

exp(−n/(qDB)2)
n

M(g, n; δ)2
]1/2 dδ

(1 + δ)m/2+1

}2

. (53)

On the right-hand side, we have denoted by M(g, n; δ) the counting function associated to a
maximal order containing R.

10.1 Proof of the main theorem for the split matrix algebra
Let Fbe a fundamental domain for the action SL2(Z) on H. Recall that in this case Γ = Γ0(q) <
SL2(Z). For g ∈ G(R) = SL2(R), we denote

htΓ(g) = min
{
y | ∃γ ∈ SL2(Z) : (γg).i = x+ iy ∈ F

}
.

We first bound the sum
∑(qDB)2m

n=1 . Because M(g, n; δ) is the count associated to the maximal
order Mat2×2(Z), the sum is invariant under the operation of replacing g by γg for any γ ∈
SL2(Z). In particular, we can arrange g.i = x+ iy with y = htΓ(g). We need to convert the
logarithmic sum

∑
(1/n)M(g, n; δ)2 to an unweighted sum. We achieve this using the general,

integration-by-parts, identity

N∑
n=1

1
n
f(n) =

1
N

N∑
n=1

f(n) +
∫ N

1

1
t

t∑
n=1

f(n)
dt

t
,

which holds for any f : N → C. This identity and Proposition 9.1 imply

N∑
n=1

1
n
M(g, n; δ)2 �ε N

2+εδ2 +N ε + htΓ(g)2
{
N1+εδ3/2 +N1/2+εδ, δ < 1,
N1+εδ, δ ≥ 1,

(54)

where N = (qDB)2m. We next need to compute the integral
∫∞
0

√· · ·(dδ/(1 + δ)m/2+1). We
use the l2–l1 inequality to separate the terms in (54) under the square root. To compute the
contribution of the term proportional to htΓ(g) in (54), we split the integral over δ into

∫ 1
0 +

∫∞
1 .

For the former integral, we have (1 + δ) ≥ eδ/2 for δ ∈ [0, 1] as the function (1 + δ)e−δ/2 only
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increases in the interval [0, 1] and is equal to 1 at 0. Hence, for κ > −1, we have14∫ 1

0

δκ

(1 + δ)m/2+1
dδ ≤

∫ ∞

0
δκe−δ(m/4+1/2) dδ =

Γ(1 + κ)
(m/4 + 1/2)1+κ

�κ m
−1−κ.

On the other hand, we have for κ < m/2 that∫ ∞

1

δκ

(1 + δ)m/2+1
dδ ≤

∫ ∞

1
(1 + δ)κ−m/2−1 dδ =

2−(m/2−κ)

m/2− κ .

Hence, for the first two terms in (54), we have∫ ∞

0

N1+εδ +N ε

(1 + δ)m/2+1
dδ �κ

N1+εm−1 +N ε

m− 2
� (qDB)2+εmε

m− 2
,

and for the last term, we have

htΓ(g)
∫ ∞

0

{
N1/2+εδ3/4 +N1/4+εδ1/2, δ < 1,
N1/2+εδ1/2, δ ≥ 1,

· dδ

(1 + δ)m/2+1

�κ htΓ(g)N ε

(
N1/2

m1+3/4
+

N1/4

m1+1/2
+ 2−m/2

N1/2

m− 2

)
� htΓ(g)(qDB)1+ε

m−1/4+ε

m− 2
.

In conclusion,∫ ∞

0

[ (qDB)2m∑
n=1

1
n
M(g, n; δ)2

]1/2 dδ

(1 + δ)m/2+1
�ε (qDB)2+εmε 1 + htΓ(g)m−1/4

m− 2
.

The computation of the bound for the integral∫ ∞

0

[ ∑
n>(qDB)2m

exp(−n/(qDB)2)
n

M(g, n; δ)2
]1/2 dδ

(1 + δ)m/2+1

uses a very similar argument, except that we need to apply the integration-by-parts
identity∑

n>Am

exp(−n/A)
n

f(n) = −exp(−m)
Am

Am∑
n=1

f(n) +
1
A

∫ ∞

m
exp(−t)

At∑
n=1

f(n)
(

1 +
1
t

)
dt

t
,

that holds for any function f : N → C satisfying log f(n) = o(n) and A,m ≥ 1. The contributions
of these terms is then easily seen to be negligible.

Combining these inequalities with (53), we arrive at∑
f∈Bnew

m

|f �(g)|4 �ε (qDB)7+ε
m4+ε

(m− 2)3
(
1 + htΓ(g)2m−1/2

)
.

This is consistent with the first claim in Theorem 1.1 for m > 2. As mentioned in the introduc-
tion, the second claim requires the additional input of [BKY13, Theorem 1.8], which says that
most of the L4-mass is concentrated on htΓ(g) � m1/4. Since the extension of said theorem to
include a polynomial-level dependence follows their proof almost verbatim, we leave it to the
reader.

14 We thank the referee for this simplification in estimating the integral.
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10.2 Proof of the main theorem for division algebras
In this section, we use the notation of § 9.2. We follow the same arguments as for the split algebra
replacing Proposition 9.1 by Proposition 9.6 to arrive at

∑
f∈Bnew

m

|f �(g)|4 �ε |DE |2+ε(λ+ λ−1)2+ε(qDB)7+ε
m4+ε

(m− 2)3
.

Recall that OE ↪→ R is any optimal embedding of the ring of integers of an imaginary quadratic
field into the fixed maximal order. By [CF99], this is always possible if any prime dividing DB

is inert in E. Using the Chinese remainder theorem, one deduces that such a discriminant DE

exists satisfying |DE | � DB.
Lastly, we can replace g by any γg for any γ ∈ Γ, hence λ+ λ−1 is polynomially bounded

by the volume of Γ\G(R), as follows from [CL16]. The latter has been recently improved by the
second named author in [Ste23].
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