
BULL. AUSTRAL. MATH. SOC. 5 3 C 2 0 , 5 3 C 2 1

VOL. 59 (1999) [133-138]

CONJUGATE RADIUS AND ISOMETRY GROUP OF
A MANIFOLD WITH NEGATIVE RICCI CURVATURE

SEONG-HUN PAENG

It is known that the order of the isometry group on a compact Riemannian manifold
with negative Ricci curvature is finite. We show by local nilpotent structures that
a bound on the orders of the isometry groups exists depending only on the Ricci
curvature, the conjugate radius and the diameter.

1. INTRODUCTION

It is a classical Bochner-theorem that if Ricci curvature RJCM < 0, then the group
of isometries of M is finite [7]. But we do not have a bound on the orders of the
isometry groups of manifolds with negative Ricci curvatures.

Yamaguchi found a bound on the isometry groups depending on the volume under
negative sectional curvatures [10]. In [5], the following result is obtained for manifolds
with —K ^ RicM < —k < 0, the injectivity radius injM ^ i0 and the volume vol(M) ^
V:

There exists a constant N(n,K,k,io,V) such that for any n -dimensional Rie-
mannian manifold M satisfying the above conditions, the order of the isometry group
Isom(M) is smaller than N.

They used a C1>Q -compactness theorem due to Anderson [1]. For applying this
compactness theorem, injM ^ i0 is an essential assumption. We shall use the conjugate
radius conjM ^ Co instead of the above injectivity radius condition. This generalises
the above theorem. Let diam (M) be the diameter of M. We shall show the following
theorem.

THEOREM 1 . 1 . Let M be an n-dimensional compact Riemannian manifold with
-K ^ Ricju ^ —k < 0, diam(M) ^ d and conJM ^ Cn. Then there exists a constant
N(n, Co, K, k, d) such that the order of the isometry group is bounded by N.

As an analytic quantity, the injectivity radius and the conjugate radius are the
same. The significant differences arise from the topology of manifold. A lower bound
of the injectivity radii prevents a collapsing of manifolds so we can obtain compactness
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theorems [1] or [2]. But under the conjugate radius bounded below, a collapsing of
manifolds may occur. Even if we assume that M is simply connected and conjM ^ Co,
we cannot obtain injM ^ c0. (See Berger's example for S3 [4].)

Theorem 1.1 shows that the conjugate radius plays a similar role to the injectivity
radius for negative Ricci curvature. Using local nilpotent (solvable) structures for the
manifolds with RACM ^ —K and conjw > CQ [3, 8], the proof of the above theorem
will be reduced to linear algebra.

2. LOCAL GEOMETRY UNDER Ric^ ^ -K AND conjM ^ c0

As we state in section 1, the injectivity radius and conjugate radius have significant
differences so we cannot use any compactness theorems. Hence we cannot apply the
proof of [5] directly.

Let B(p,co/2) be the universal covering space of B(p,co/2), the co/2-ball centred
at p. Denote the deck transformation group, TT\ (B(p, co/2)) by Tp. We easily show that
inj~. /2) ^ co/2. (For the more precise arguments, we may take the eo-ball which
appears in section 3 instead of the co/2-ball.) Then we can apply the compactness
theorem [1] to abounded set of B(p,co/2). We also apply the proof of Theorem 1.3 of
[5] to a bounded set of B(p, co/2). Let p be a lifting of p to B(p, co/2). Then we can
obtain the following lemma.

LEMMA 2 . 1 . Let 4> be an isometry of M. Let <f> be the lifting of cf> to B(p, CQ)

satisfying d(p, 4>{p)) = d(p, 4>{p)). There exists a constant e(n, K, k, c0) > 0 depending

on n,K,k,co such that if <j> satisfies that d(x,<f>(x)) ^ e for all x in the co/2-ball in

B(p, co/2) and <f> o Fp = Tp o <f>, then <t> is the identity map.

P R O O F : Since 4>°TP = Tp o 4>, d(x,(p(x)) = d{x,4>(x)) for all x € B(p,co/2).

Theorem 1.3 of [5] is proved by analytic methods (the second variational formula and

the Sobolev inequality, et cetera). If we apply the same proof to B(p,co/2), then we

can prove the existence of e > 0 such that if d(x, 4>{x)) ^ e, then <£ is the identity map

on the co/2-ball in B(p, CQ) . Since the set of fixed points for an isometry is a totally

geodesic submanifold, M is the set of fixed points for <j>. U

If 4> € Isom(M) is homotopic to the identity and diam (M) ^ e, then the conditions
in Lemma 2.1 are satisfied. As an immediately consequence, we have the following
corollary.

COROLLARY 2 . 2 . Let M be an n-dimensional compact Riemannian manifold
with —K < RicM ^ — k < 0 and conjM ^ c0. Then there exists a constant
e(n,co, K, k) > 0 such that if diam(M) ^ e, then every isometry of M which is
homotopic to the identity is the identity.
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Denote the displacement function d(p, (j>{p)) of an isometry <j> by <^(p). We shall
prove Theorem 1.1 by showing that the number of isometries satisfying 5^(p) ^ e
for some p € M is uniformly bounded for sufficiently small e > 0. Then we obtain
Theorem 1.1 by the standard packing arguments.

Note that the conditions of almost nonnegative Ricci curvature and large conjugate
radius imply that M is a nilmanifold up to finite cover [8]. By a rescaling of the metric,
it follows that there exists eo(n,co,K) > 0 depending only on n, CQ,K such that if
RicM ^ —K and conj^ ^ CQ and diam(M) «C eo(n,co,K), then M is a nilmanifold
up to finite cover. From this fact, if M satisfies the conditions in Theorem 1.1, we may
assume that B(p, eo) — L x Rm up to finite cover, where L is a nilmanifold. This fact
follows from a splitting theorem of [3]. Let Tk be a k -dimensional torus. From [3] and
[9], we can represent the above L as follows by a rescaling of the metric [8]:

(1) L is a fibre bundle over T"1 with fibre

(2) F ( 1 ) is a fibre bundle over T"2 with fibre F ( 2 ) .

(3) F{2) is a fibre bundle over T"3 with fibre F{3).

From the above fact, we know that iri(F^)/m(F^+1^) is Abelian so
contains [TTI(F^),TTI{F^)] . So we easily show that M has a solvable structure.
In fact, we can obtain a nilpotent structure from a commutator estimate [8], but we
only use this solvable structure. We can take orthogonal basis of ni(Fl)/ni(Fl+1),
{7a,- • >7in(} which can be considered as a basis of T"*1, that is, we may consider
TT1{F')/TTI(F1+1) as T:i(Tn'). If diam(M) ^ e0 for the above e0 > 0, we have that

(2.1) 0 < biico,K) ^ J M < 62(c0,K)

for some constants 6i, 62 and we may assume that

rtvA
100&2

for j < j ' .

We consider the isometry of the A:-dimensional flat torus Tk. Let Tk — Rk/(ji,- • ,
where we take 7J G TTI (Tk) as an orthogonal basis of Rfc. Let <j> be an isometry of Tk.

Then we can lift <f> to </> : Rk -> Rk such that d(4>(p),p) = d(0(p),p), where p is a
lifting of some fixed p . We write

4>{x) = Ax + b,
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where A G 0(n) and b 6 Rfc. A generator U of the deck transformation, can be written

as

ti{x) = X + 7J.

Then we have

(2.2) cpotio^-1 =x + A-yi.

3. P R O O F OF THEOREM 1.1

We use the local solvable structure of M strongly. First we shall consider isometries
of an almost flat manifold (a solvable manifold). Let £o(n, K, k, CQ) > 0 be the quantity
which appears in section 2 and £i(n, K, k, Co) > 0 be the e > 0 which appears in Lemma
2.1. We assume that M satisfies the conditions in Lemma 2.1 with diam(M) ^ e,
where e > 0 is a number smaller than e0 and e i /2 . Let cf> be an isometry of M . Note
that 5$ ^ e. By considering some finite covering space of M, we can consider M as a
nilmanifold L as in Section 2 and <j> can be lifted to L. We also write this lifting as 4>.
Let

Since cj> is an isometry of L, <p acts on each Aj. Precisely, define

P<t>in) : = ^ ^

for 7 € 7Ti(L). In the case of a flat torus Tk, we know that d(j(x), x) = d(p^,(7)(a;), x)
from (2.2). Since i is a nilmanifold as in Section 2, we obtain that for 7 € 7Ti(M),

(3.1) - 1 6i/100.

In fact, we can easily get the above inequality by restricting p^j) to T"' and applying
(2.2) to Tni, since each j ^ ' " 1 ) converges to a flat torus T n ' and isometries on M
converge to isometries of T n ' as e —» 0. Rescaling the metric such that diam (T"<) = 1,
we know that p^ acts on each TTI (T"1').

Now we shall prove Theorem 1.1. We shall use the methods in [6] and [10].

P R O O F OF THEOREM 1.1: We use the same notation as above. We can define a
homomorphism from Isom(M) to Aut(Fp), the automorphism group of F p , as follows:

p : Isom(M) -> Aut(Fp)
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By considering the kernel of p , we obtain that

ker (p) - {<f> | <f> o 7 = 7 o 4>, 7 6 Tp}.

It follows from [6] and Lemma 2.1 that the order of ker(p) < Ci(n, K, k,co,d). Pre-
s

cisely, take {i, | i = 1, • • • ,s} in M such that M can be covered by |J B(xi,e/4)

and B(xi,e/8)'s are pairwise disjoint. We define F(0)(i) as the smallest j such that
<j>(xi) € B(XJ,£/4). Then F is a map from Isom(M) to S 5 = {/ | / : 5 -» S} where
5 = { I , - - , s} . Also F is an injective map, as follows [6]. Let x € B(xi,e/4). For

= F(if>), we obtain that

) , i>(x)) ^ e.

From Lemma 2.1, we know that ^i"1 o cj> is the identity map so F is injective. The
cardinality of 5 is bounded by Ci(n,K, k,co,d) so the order of ker(p) is bounded by
C = Cf1.

Now we only need to compute the order of Im(p). We consider the following two
cases.

CASE I. The cardinality of 7i = {</> | <^(p) ^ e for some p € M}.
We consider B(p, 10e) and we may regard this ball as L x l ' , where L is an

almost flat manifold. From (3.1), for 7 6 Fp,

d(y(p),p)
: foi/100

on an .R-ball in B(p, Co/2) as above. So p^ maps the points in the lattice generated
by {jis} in a 62(00, K) |7n|-ball to those in a 262(co,if) |7n|-ball. The number of such
maps is uniformly bounded by some constant D(co, K) since the number of lattices in
a 262-ball is bounded. Then the cardinality of {p$} is bounded by ]J1 D ^ Dn since
N ^ n, where L is a iV-step nilmanifold, that is, F<N+1) in section 2 is a point. Then
the cardinality of h , | / i | ^ CDn.

CASE II. The cardinality of I2 = {<t> \ ^(p) ^ e for all p e
Let J2 = {0i, • • • ,(J>L) be a maximal subset of I2 such that d(<f>i(x),(f>j(x)) ^ e

for all p E M and all 0t,<£j € /2- Fr°m the above arguments, we know that L ^ C.
For any 0 e J2, we obtain that ^ j " 1 e /1 for some ^ € 72. Then J2 C / i / 2 - Hence,

Consequently, the total number of isometries is bounded by CDn(l + C). Since
e depends only on n,K,k,co,d so (1 + C)CDn also depends on n,K,k,co,d. This
completes the proof of Theorem 1.1. D
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