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The coalescent process describes the ancestry of a
sample of genes as we trace them back through time:
each pair of lineages coalesces in a common ancestor
at a rate 1/2Ne, where Ne is the effective size of the
ancestral population through which the lineages were
passing. This remarkably simple model for the
ancestry of neutral genes, traced backwards in time,
corresponds to the diffusion approximation, which
describes how allele frequencies spread out as popu-
lations evolve forward in time.

The coalescent has come to dominate population
genetics over the past 20 years, displacing the dif-
fusion approximation that had been so important in
the development of the neutral theory. The coalescent
has proved so popular primarily because it gives a
natural framework for analysing samples of DNA
sequences and also because it allows efficient simu-
lation, following samples of genes rather than the
whole population.

Although the coalescent was described relatively
recently (Kingman, 1982), the underlying ideas trace
back to the beginning of population genetics. In the
1920s, Sewall Wright introduced F coefficients in or-
der to quantify inbreeding, and Malécot (1948) clari-
fied these using the concept of ‘ identity by descent ’,
i.e. whether genes descend from the same gene in
an ancestral reference population. Plainly, the prob-
ability of coalescence in any generation is just the
difference between the probability of identity by de-
scent in that generation and in the previous gener-
ation (eqn 1 in Slatkin, 1991). Thus, the classical idea
of identity by descent is essentially the same as the
modern concept of coalescence.

Slatkin’s seminal paper set out the relation between
the coalescent process and the classical theory, and
used that relation to understand ancestry in spatially
structured populations. Rather than working with
the identity by descent, Slatkin used the distinct con-
cept of identity in allelic state – the chance that two
genes have not experienced any mutation since their

divergence from a common ancestor. (Both ‘ identity
by descent ’ and ‘ identity in state ’ are often referred
to simply as ‘ identity ’, which makes the literature
somewhat confusing). The identity in allelic state is
f=g1

t=0(1xm)2tPt, where Pt is the chance of coalesc-
ence at time t, and (1xm)2t is the chance that there
was no mutation during the 2t generations during
which the two genes have been diverging (eqn 21 in
Slatkin, 1991). Approximating to continuous time,
f �

R1
0 ex2 mtP(t)dt, which is just the Laplace trans-

form of the distribution of coalescence times. Thus,
there is a direct correspondence between the distri-
bution of coalescence times and the identity in state :
if we know one, we know the other. There is an
extensive body of theory on identity in state in struc-
tured populations, initiated by Malécot, and elabo-
rated by Maruyama and others. Slatkin (1991)
showed how this carries over directly to give the dis-
tribution of coalescence times. (See Charlesworth
et al., 2003, for a review.)

Slatkin (1991) focuses on Wright’s FST statistic,
which measures the genetic diversity between popu-
lations, relative to the total diversity. It was defined by
Wright (1951) as (f0xf̄ )/(1xf̄ ), where f0 is the identity
between two genes within the same deme, and f̄ is
the identity between two randomly chosen genes.
Here, ‘ identity’ can refer to the identity by descent,
relative to a reference population in the distant past,
or identity in state, in the limit of low mutation rate;
in either case, FST is independent of the time back
to the reference population, or of the mutation
rate. Moreover, Slatkin (1991) showed that FST can
also be written in terms of the mean coalescence
times between two genes from the same deme, t̄ 0,
relative to the mean coalescence time for two ran-
domly chosen genes, t̄ 0 :FST=(t̄xt̄ 0)/t̄ (eqn 22 in
Slatkin, 1991).

For an important class of models, the mean time
since a pair of genes from within the same deme
shared an ancestor is independent of population
structure, and is just equal to the total number of
genes in the whole population: t̄ 0=2NT. This* e-mail : n.barton@ed.ac.uk
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remarkable invariance applies when migration is
conservative (i.e. does not alter overall allele fre-
quency; Strobeck, 1987; Hey, 1991). The average co-
alescence time between genes in different demes will
be longer than that between genes in the same deme
(so that t̄>t̄ 0=2NT); that is, population subdivision
slows down the loss of genetic diversity by keeping it
in separate, partially isolated, demes. However, in
more realistic models, where population sizes fluctu-
ate so that migration is not conservative, coalescence
times within demes can be substantially reduced. In
general, an unstable population structure is likely to
reduce overall genetic diversity (Whitlock & Barton,
1997).

If we assume a stable population, with conservative
migration, then we know that the mean coalescence
time for two genes in the same deme is t̄ 0=2NT, and
so to find FST, we just need to find t̄ 1, the average time
to coalescence between two genes that are in different
demes. This is just the sum of the time taken for two
lineages in separate demes to come together into the
same deme, and the time for them to subsequently
coalesce, t̄ 0 ; the first component depends only on the
pattern of migration, and not on the process of co-
alescence within demes. The simplest case is the island
model, in which each of d demes exchanges genes with
a common gene pool at a rate m (Fig. 1). For this
model, the extra time taken for genes in different
demes to come together in the same deme is just
(dx1)/(2m) (eqn 12 in Slatkin, 1991). Slatkin uses the
classical theory of identity in state to give the corre-
sponding results for populations that are spread over

one and two dimensions. This way of looking at the
ancestry of neutral genes within a structured popu-
lation emphasizes the separation between coalescence
within demes (which may be fast, over a timescale
equal to the number of genes within a local deme) and
the movement of ancestral lineages among demes
(which may be slow if there are very many demes).
This separation of timescales has been exploited very
fruitfully to gain a detailed understanding of coalesc-
ence in structured populations (Wakeley, 2008).

The use of genetic data to make inferences about
population structure has a long history, going back to
the collaboration between Wright and Dobzhansky
(Lewontin et al., 1981). With the current flood of
genetic data, this is now a large and thriving field.
Slatkin’s (1991) paper was seminal, in laying out the
relation between old and new theory, and in showing
how this theory could be used in practical inference.
Nevertheless, there is still a divide in the field, between
qualitative inferences made from genealogies at one
or a few loci (‘phylogeography’), and quantitative
estimation, fitting models to data from multiple loci.
There are problems with both approaches : on the one
hand, genealogies are drawn from a highly random
process, while on the other, specific models do not
capture the messy, and largely unknown, reality of
actual populations (Hey & Machado, 2003). So, it is
essential to build an intuitive understanding of how
structured populations evolve, which allows the
consequences of a wide variety of processes to be
understood. Slatkin (1991) remains an excellent
starting point for this task.
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Fig. 1. Coalescence in the island model. Genes that are in
the same deme (a) may trace back to a common ancestor
within the same deme in the recent past. However, one or
other lineage may escape (b) and wander about for a long
time. Eventually, lineages come together in the same deme;
they may then move apart again (c) or coalesce (d, e).
From Barton et al. (2007).
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