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R-Diagonal Elements and Freeness
With Amalgamation
Alexandru Nica, Dimitri Shlyakhtenko and Roland Speicher

Abstract. The concept of R-diagonal element was introduced in [5], and was subsequently found to
have applications to several problems in free probability. In this paper we describe a new approach
to R-diagonality, which relies on freeness with amalgamation. The class of R-diagonal elements is
enlarged to contain examples living in non-tracial ∗-probability spaces, such as the generalized circular
elements of [7].

1 Introduction and Statement of the Results

We will consider the framework of a ∗-probability space (A, ϕ); this means that A is
a unital ∗-algebra over C, and that ϕ : A → C is a linear functional, normalized by
ϕ(I) = 1 (where I is the unit of A), and selfadjoint, in the sense that ϕ(a∗) = ϕ(a)
for every a ∈ A. An element a ∈ A will be occasionally referred to as a “non-
commutative random variable”, and ϕ(a) will be called “the expectation of a”. The
∗-probability space (A, ϕ) is said to be tracial if ϕ has the trace property (ϕ(ab) =
ϕ(ba), for every a, b ∈ A).

If (A, ϕ) is a ∗-probability space and if a ∈ A, then the expectations of words
made with a and a∗ will be called ∗-moments of a. The family of ∗-moments of a:{

ϕ(as1 · · · asn ) | n ≥ 1, s1, . . . , sn ∈ {1, ∗}
}
,(1.1)

carries significant information about a. For instance, if A is a C∗-algebra and if ϕ is
positive definite and faithful on positive elements, then the family (1.1) determines
(up to isomorphism) the unital C∗-subalgebra of A generated by a and a∗; a similar
fact is true in the framework of von Neumann algebras (see e.g. [11], Remark 1.8).

If (A, ϕ) and (B, ψ) are ∗-probability spaces, we will say about two elements a ∈
A and b ∈ B that they are identically ∗-distributed if their ∗-moments coincide:

ϕ(as1 · · · asn ) = ψ(bs1 · · · bsn ) for every n ≥ 1 and s1, . . . , sn ∈ {1, ∗}.(1.2)

A fundamental concept used throughout the paper is the one of freeness for a
family of subsets of A (where (A, ϕ) is a ∗-probability space). For the definition and
basic properties of freeness, we refer the reader to [13], Chapter 2.
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The concept of R-diagonal element was introduced in [5], and was subsequently
found to play an important role in several problems in free probability (see e.g. [6],
[2], [3]). Loosely speaking, the name “R-diagonal” refers to elements which have a
factorization of the form:

a = up,(1.3)

where u is a unitary such that ϕ(un) = 0 for every n ≥ 1, and where the sets {u, u∗}
and {p, p∗} are free. A more formal definition of the fact that a is R-diagonal must
amount to stating that certain equations are satisfied by the family of ∗-moments
of a. (Equation (1.3) does this, in an implicit way; i.e., the special properties of the
family of ∗-moments of a = up are implicitly contained in the equations describing
the freeness of {u, u∗} from {p, p∗}.)

The main goal of this paper is to present a new approach to R-diagonality, relying
on freeness with amalgamation. For basic facts about freeness with amalgamation
see e.g. [13] Section 3.8, or [10] (the definition of the concept is also reviewed in
Section 3 below).

Several characterizations of R-diagonality being now available, it is no longer ob-
vious which of them is the most suitable to be used as the definition of this notion.
Since we could not come to an agreement on this, we just made a list of possible
candidates in the Theorem-and-Definition 1.2 below, thus allowing the readers to
choose their own favorite(s).

The Theorem 1.2 is at the same time the main result of the paper. The approach
to R-diagonality via freeness with amalgamation is given by the characterization 5o

in this theorem. Let us mention that the characterization 1o of Theorem 1.2 is also
closely related to freeness with amalgamation. The equations in ∗-moments appear-
ing in 1.2.1o are in some sense just “an explicit spelling” of 1.2.5o; we felt it is worth
to point them out, because they can be used as a very elementary approach to R-
diagonality, which is reminiscent of how freeness itself is defined.

Notation 1.1 Let (A, ϕ) be a ∗-probability space, and let a be an element of A. For
every k ≥ 1 we will denote:


P11;k(a) = a∗(aa∗)k−1

P12;k(a) = (a∗a)k − ϕ
(

(a∗a)k
)

I

P21;k(a) = (aa∗)k − ϕ
(

(aa∗)k
)

I

P22;k(a) = a(a∗a)k−1.

(1.4)

Theorem and Definition 1.2 Let (A, ϕ) be a ∗-probability space, and let a be an
element of A. Then the following five conditions on a are equivalent. The element a is
said to be R-diagonal if it satisfies one (hence all) of these conditions.

1o (Condition on ∗-moments) One has

ϕ
(

Pi1i2;k1 (a)Pi2i3;k2 (a) · · · Pinin+1;kn (a)
)
= 0,(1.5)
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for every n ≥ 1, i1, . . . , in, in+1 ∈ {1, 2} and k1, . . . , kn ≥ 1, and where the elements
Pi j;k(a) ∈ A are as defined in (1.4).

2o (Sufficient invariance condition) There exist an enlargement (Ã, ϕ̃) of (A, ϕ)
and a unitary u ∈ Ã, such that: (i) {u, u∗} is free from {a, a∗}; (ii) ϕ̃(u) = 0; (iii) a
and ua are identically ∗-distributed.1

3o (Necessary Invariance condition) For every enlargement (Ã, ϕ̃) of (A, ϕ) and
every unitary u ∈ Ã such that {u, u∗} is free from {a, a∗}, one has that a and ua are
identically ∗-distributed.

4o (Condition on Non-Crossing Cumulants) Consider the family of non-crossing
cumulants of a and a∗,{

κ(s1,...,sn)(a, a∗) | n ≥ 1, s1, . . . , sn ∈ {1, ∗}
}
.(1.6)

Then κ(s1,...,sn)(a, a∗) = 0 whenever (s1, . . . , sn) is not of the form (1, ∗, 1, ∗, . . . ,
1, ∗) or (∗, 1, ∗, 1, . . . , ∗, 1).

5o (Condition Using Freeness With Amalgamation) Let M2(A) be the algebra of
2 × 2 matrices over A. Consider the unital subalgebras D ⊂ M2(CI) ⊂ M2(A),
where:

D :=

{(
αI 0
0 λI

) ∣∣∣∣ α, λ ∈ C

}
, M2(CI) :=

{(
αI βI
γI λI

) ∣∣∣∣ α, β, γ, λ ∈ C

}
;

and consider the conditional expectation E : M2(A)→ D given by the formula:

E

((
a b
c d

))
=

(
ϕ(a)I 0

0 ϕ(d)I

)
, a, b, c, d ∈ A.

Then the matrix:

A :=

(
0 a
a∗ 0

)
∈ M2(A)(1.7)

is free from M2(CI), with amalgamation over D.
The characterization originally used in [5] to define R-diagonality was the one

in terms of non-crossing cumulants, 1.2.4o (the precise definition for the family
(1.6) of non-crossing cumulants will be reviewed in Section 4 below). A version
of the characterizations in 1.2.2o–3o appears in [6], Proposition 4.4. Note however
that R-diagonality (and in particular the equivalence between the characterizations

1By the fact that (Ã, ϕ̃) is an enlargement of (A, ϕ) we mean that (Ã, ϕ̃) is a ∗-probability space,
Ã ⊃ A, and ϕ̃|A = ϕ. Note that one can always find (Ã, ϕ̃) and u ∈ Ã such that (i) + (ii) hold. e.g., one
can take (Ã, ϕ̃) to be the free product (A, ϕ) 
 (L∞(T), dz), where dz is the Haar measure on the torus;
and one can take u to be the function z �→ z in L∞(T) ⊂ Ã. The key condition in 1.2.2o is (iii).
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which were already known) was previously discussed only in the framework of a ∗-
probability space which is tracial. Removing the traciality condition is of relevance,
because there exist natural examples of elements which satisfy the condition 1.2.3o,
but live in a non-tracial framework (see [7], Section 4).

We now return to make precise the “free factorization” property mentioned in
Equation (1.3). As is customary in the literature on free probability, we will call Haar
unitary an element u in a ∗-probability space (A, ϕ) such that u is unitary, and such
that ϕ(un) = 0 for every n ≥ 1.

Theorem 1.3 Let (A, ϕ) be a ∗-probability space. Let u, p ∈ A be such that u is unitary
and such that {u, u∗} is free from {p, p∗}. If either

(A) ϕ(u) = 0 and ϕ
(

p(p∗p)k−1
)
= 0, for every k ≥ 1; or

(B) u is a Haar unitary,

then the element a := up ∈ A is R-diagonal.

There also is another side of the result presented in Theorem 1.3. Namely, given an
R-diagonal element b in a ∗-probability space (B, ψ), we can ask: what kind of u and
p can one fabricate (in some (A, ϕ)), such that the hypothesis of 1.3 is satisfied (in
either version (A) or (B)), and such that a := up is identically ∗-distributed with b?
We don’t know of some special construction working for an arbitrary R-diagonal b—
except of course the choice having p = b, which is guaranteed by Theorem 1.2.3o.
As the next proposition immediately implies, the free factorization game amounts
essentially to finding a nice p such that p∗p, pp∗ have identical moments with b∗b,
bb∗, respectively. An example of how this can work is provided by the case of a tracial
∗-probability space, when selfadjoint choices of p are available—see Corollary 1.5.

Proposition 1.4 Let (A, ϕ) and (B, ψ) be ∗-probability spaces, and let a ∈ A, b ∈ B

be R-diagonal elements. Then a and b are identically ∗-distributed if and only if:{
ϕ
(

(a∗a)k
)
= ψ
(

(b∗b)k
)
,

ϕ
(

(aa∗)k
)
= ψ
(

(bb∗)k
)
,

∀k ≥ 1.(1.8)

Corollary 1.5 Let (B, ψ) be a tracial ∗-probability space, and let b ∈ B be an R-
diagonal element. Then one can find a tracial ∗-probability space (A, ϕ) and an element
a ∈ A which is identically ∗-distributed with b, and which is obtained in the following
way: a = up, where u ∈ A is a Haar unitary, p = p∗ ∈ A is such that {u, u∗} is free
from {p}, and we have ϕ(p2k−1) = 0, ∀k ≥ 1.

Note that the conditions on u and p appearing in Corollary 1.5 are stronger than
either the versions (A) or (B) of the hypothesis of Theorem 1.3. The traciality con-
dition in 1.5 is necessary. Indeed, ϕ is a trace on both the unital algebras generated
by {u, u∗} and by {p} (these algebras being commutative); but then the freeness of
{u, u∗} from {p} implies that ϕ is also a trace on the unital algebra generated by
{up, (up)∗}—see [13], Proposition 2.5.3.

We next move to the discussion of the concept of “determining series” for an R-
diagonal element, and to its applications to operations with free R-diagonal elements.
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Definition 1.6 Let (A, ϕ) be a ∗-probability space, and let a ∈ A be an R-diagonal
element. Consider the family of non-crossing cumulants of a, a∗ (denoted as in Equa-
tion (1.6) above), and set:


αn := κ(1, ∗, . . . , 1, ∗︸ ︷︷ ︸

2n

)(a, a∗)

βn := κ(∗, 1, . . . , ∗, 1︸ ︷︷ ︸
2n

)(a, a∗),
∀n ≥ 1.(1.9)

Then the formal power series

fa(z) :=
∞∑

n=1

αnzn, ga(z) :=
∞∑

n=1

βnzn(1.10)

are called the determining series of a.
The series fa and ga contain in a concentrated way the information about the ∗-

moments of the R-diagonal element a; this is because—in view of Theorem 1.2.4o—
they determine all the non-crossing cumulants in (1.6) (and the knowledge of the
non-crossing cumulants is equivalent to the one of the ∗-moments).

An example of situation when it is advantageous to use the determining series is
provided by the next Corollary 1.7, concerning the addition of two free R-diagonal
elements. The statement in 1.7 follows directly from the characterization 1.2.4o of
R-diagonality, combined with the additivity of non-crossing cumulants (as put into
evidence in [9]).

Corollary 1.7 Let (A, ϕ) be a ∗-probability space, and let a, b be R-diagonal elements
of A such that {a, a∗} is free from {b, b∗}. Then a + b is also R-diagonal, and we have
the relations in determining series:

fa+b = fa + fb, ga+b = ga + gb.(1.11)

Turning to the multiplication of free R-diagonal elements, let us record the fol-
lowing direct consequence of the characterizations 2o, 3o in Theorem 1.2 (and of the
obvious fact that an element is R-diagonal if and only if its adjoint is so).

Corollary 1.8 Let (A, ϕ) be a a ∗-probability space. Let a, b ∈ A be such that at least
one of a, b is R-diagonal, and such that {a, a∗} is free from {b, b∗}. Then ab is also
R-diagonal.

It is then natural to ask: if a, b of Corollary 1.8 are both R-diagonal, then what is
the formula for the determining series of ab, in terms of those of a and of b? In order
to give some feeling of what this question is about, let us first mention that, in the
case when (A, ϕ) is tracial, the answer can be easily read from the considerations of
[5]; and the instrument used for spelling out the answer is a certain operation “
�
 ”
on formal power series. (A brief review of 
�
 is made in Section 5.1 below.) The
extension from the tracial to the general case turns out to be really non-trivial. Based
on calculations of low-order cumulants, we can guess what the formula (expressing
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fab, gab in terms of fa, ga, fb, gb, in the general case) ought to be; but we do not have
at this time a proof for it. The difficulty comes from the fact that the formula is
very combinatorial, and its proof probably requires some further developments in
the combinatorial theory of the non-crossing cumulants (a direction which is not
pursued by the present paper). A more detailed discussion of this matter is made in
Section 5.

Miscellaneous Remarks 1.9 1o An immediate consequence of the description in
Theorem 1.2.1o is that if a is R-diagonal, then a∗a and aa∗ are free. Indeed, the
particular case of Equation (1.5) where the sequence i1, i2, . . . , in+1 is alternating (i.e.
is of the form 1, 2, 1, 2, . . . or 2, 1, 2, 1, . . . ) gives precisely the freeness of a∗a from
aa∗.

2o The concept of determining series of an R-diagonal element was introduced in
[5], where however only the case of a tracial (A, ϕ) was considered. In this case fa and
ga of (1.10) coincide (which is why in [5] only one determining series is considered,
instead of two).

In the tracial framework one can obtain a simple formula for the determining
series fa(= ga), by using the factorization presented in Corollary 1.5. More precisely:
let (A, ϕ) be a tracial ∗-probability space, and let a = up ∈ A, with u and p as
described in Corollary 1.5. Then the determining series fa satisfies the equation:

fa(z2) = [R(p)](z),(1.12)

where R(p) is the R-transform of p. (For a selfadjoint element x ∈ A, the R-
transform R(x) is a certain formal power series which contains exactly the same in-
formation as the family of moments

(
ϕ(xn)

)∞
n=1

—see [13], Section 3.2.) The Equa-
tion (1.12) can be used as an alternative definition of fa, which is however valid only
in the tracial framework.

3o The Haar unitary is one of the main examples of R-diagonal elements which
motivated the work in [5]. This is the only R-diagonal unitary, but let us note that
(especially if the traciality requirement is lifted) one has a larger family of R-diagonal
partial isometries. To be more precise: for every α, β ∈ (0, 1] one can construct
an R-diagonal partial isometry v in a ∗-probability space (A, ϕ) (where it can be
arranged that A is a W ∗-algebra and that ϕ is a faithful normal state of A) such
that ϕ(v∗v) = α, ϕ(vv∗) = β. It makes sense to call such a v an “(α, β)-Haar
partial isometry”. It is clear from Proposition 1.4 that all the ∗-moments of an (α, β)-
Haar partial isometry are completely determined by α and β; and also that every
R-diagonal partial isometry in the W ∗-framework has to be an (α, β)-Haar partial
isometry, for some α and β.

In the case when α = 1, a way to construct (1, β)-Haar isometries is by taking the
polar decomposition of the “generalized circular elements” considered in [7]. (The
generalized circular elements are R-diagonal by the Lemma 4.6 of [7]; the fact that
their polar parts are also R-diagonal follows by an immediate application of 2o–3o in
Theorem 1.2 above. Some relevant calculations concerning these polar parts appear
in the Lemma 4.3 of [7].) For arbitrary α and β in (0, 1], an (α, β)-Haar partial

https://doi.org/10.4153/CJM-2001-015-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2001-015-6


R-Diagonal Elements 361

isometry can be obtained as v = v1v∗2 , where v1 is an (1, β)-Haar isometry, v2 is an
(1, α)-Haar isometry, and {v1, v∗1} is free from {v2, v∗2}.

4o D. Voiculescu has recently shown (see [12], Sections 5.17, 14.4) how the free-
ness of two subalgebras A,B, in a tracial non-commutative probability space (M, ϕ),
can be described in terms of a certain derivation δA,B associated to the algebras. We
would like to point out that R-diagonality admits a characterization on similar lines
(which seems however to work nicely only in the tracial framework).

More precisely: let C〈X,X∗〉 denote the unital ∗-algebra of non-commuting poly-
nomials in X and X∗. On C〈X,X∗〉 ⊗ C〈X,X∗〉 we consider the natural C〈X,X∗〉-
bimodule structure, determined by:

P · (S⊗ T) = (PS)⊗ T, (S⊗ T) · Q = S⊗ (TQ), P,Q, S,T ∈ C〈X,X∗〉.

(1.13)

Let ∆ : C〈X,X∗〉 → C〈X,X∗〉 ⊗ C〈X,X∗〉 denote the unique linear map which is a
derivation (in the sense that∆(PQ) = ∆(P) · Q + P ·∆(Q), ∀P,Q ∈ C〈X,X∗〉) and
which satisfies:

∆(X) = −X ⊗ 1, ∆(X∗) = 1⊗ X∗.(1.14)

Consider on the other hand a tracial ∗-probability space (A, ϕ), and an element
a ∈ A; and consider the linear functional µ : C〈X,X∗〉 → C, defined by:

µ(P) := ϕ
(

P(a, a∗)
)
, ∀P ∈ C〈X,X∗〉(1.15)

(µ is sometimes called the ∗-distribution of a). Then the following statement is true:

a is R-diagonal ⇔ (µ⊗ µ) ◦∆ = 0.(1.16)

The equivalence (1.16) can be obtained without much difficulty from the character-
ization of R-diagonality in terms of ∗-moments, which is given in Theorem 1.2.1o.

The remaining sections of the paper are organized as follows:

- In Section 2 we collect a sequence of proofs which are “elementary”, in the sense
that they only use the condition in ∗-moments (1.5), and basic facts about free-
ness. We obtain here: the equivalences 1o ⇔ 2o ⇔ 3o of Theorem 1.2, and the
proofs of Theorem 1.3, Proposition 1.4, Corollary 1.5.

- In Section 3 we review the definition of freeness with amalgamation, and prove
the equivalence 1o⇔ 5o of Theorem 1.2.

- In Section 4 we address the relation between R-diagonality and non-crossing cu-
mulants. This relation was first obtained in [5], via a fairly complicated argu-
ment based on the combinatorial approach to the non-crossing cumulants. A
different—and sensibly shorter—route is taken in this paper; namely, the equiv-
alence 4o ⇔ 5o of Theorem 1.3 is proved by using the “full Fock space model”
approach to non-crossing cumulants (see Sections 4.4, 4.5 for details). The idea
of our new proof comes from the theory of generalized free creation operators
developed in [8].
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- In the final Section 5 we briefly review the operation
�
 , then we state and make
some comments around our conjectured formula for the determining series of a
product of two free R-diagonal elements.

Acknowledgement We would like to acknowledge the hospitality of the Erwin
Schroedinger Institute in Vienna, where we visited in January–February 1999, during
the final stage of the preparation of this paper.

2 Elementary Proofs

The correspondence between the sequence of propositions appearing below, and the
results stated in the Introduction, goes as follows: the equivalences 1o ⇔ 2o ⇔ 3o of
Theorem 1.2 are shown in 2.7; the Theorem 1.3 is covered by 2.3–2.5; the Proposi-
tion 1.4 is covered by 2.1; the Corollary 1.5 is covered by 2.6.

Proposition 2.1 Let (A, ϕ) and (B, ψ) be ∗-probability spaces, and consider two ele-
ments a ∈ A, b ∈ B. It is given that each of a and b satisfies the condition in ∗-moments
described in Theorem 1.2.1o. Then a and b are identically ∗-distributed if and only if:{

ϕ
(

(a∗a)k
)
= ψ
(

(b∗b)k
)
,

ϕ
(

(aa∗)k
)
= ψ
(

(bb∗)k
)
,

∀k ≥ 1.(2.1)

Proof The implication “⇒” is trivial, because the equalities in (2.1) are a subset of
those appearing in (1.2).

For “⇐” we will assume that (2.1) hold, and we will prove by induction on n that:

ϕ(ai1 ai2 · · · ain ) = ψ(bi1 bi2 · · · bin ), ∀n ≥ 1, ∀i1, . . . , in ∈ {1, 2},(2.2)

where we denoted a1 := a, a2 := a∗, b1 := b, b2 := b∗.
For n = 1, (2.2) amounts to showing that ϕ(a) = ψ(b) and ϕ(a∗) = ψ(b∗).

This is true because all of ϕ(a), ψ(b), ϕ(a∗), ψ(b∗) are equal to 0, by (1.5)
(
ϕ(a) =

ϕ(P22;1(a)
)
= 0, etc.).

We consider now an n ≥ 2. We assume that (2.2) is true for 1, 2, . . . , n − 1 and
we prove it for n. Let us fix some indices i1, . . . , in ∈ {1, 2}, about which we want to
prove that (2.2) holds.

We take the product ai1 ai2 · · · ain , and draw a vertical bar between aim and aim+1 for
every 1 ≤ m ≤ n − 1 such that im = im+1. (For instance if ai1 ai2 · · · ain were to be
aa∗aaaa∗a∗a, then our bars would look like this: aa∗a|a|aa∗|a∗a.) By examining the
sub-products of ai1 ai2 · · · ain which sit between consecutive vertical bars, we find that
we have written:

ai1 ai2 · · · ain =
s∏

r=1

(P jr jr+1;kr (a) + λrI)(2.3)

for some s ≥ 1, j1, . . . , js, js+1 ∈ {1, 2}, k1, . . . , ks ≥ 1 having k1 + · · · + ks = n, and
λ1, . . . , λs ∈ C. The number λr, 1 ≤ r ≤ s, is determined as follows: if jr = jr+1,
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then λr = 0; if jr = 1, jr+1 = 2, then λr = ϕ
(

(a∗a)kr
)

; and if jr = 2, jr+1 = 1, then

λr = ϕ
(

(aa∗)kr
)

.
In a similar way we can write:

bi1 bi2 · · · bin =
s∏

r=1

(
P jr jr+1;kr (b) + λrI

)
;(2.4)

and moreover, the parameters s, j1, . . . , js, js+1, k1, . . . , ks, λ1, . . . , λs appearing
in (2.4) coincide with those from (2.3). Indeed, the values of s, j1, . . . , js+1,
k1, . . . , ks are determined solely by how the vertical bars are placed between the
bim ’s in bi1 bi2 · · · bin , and this is identical to how the vertical bars were placed in
ai1 ai2 · · · ain . After that, the value of every λr is determined as δ jr ,1δ jr+1,2ψ

(
(b∗b)kr

)
+

δ jr ,2δ jr+1,1ψ
(

(bb∗)kr
)

, which is again the same as in (2.3)—due to the fact that (2.1)
is assumed true.

By applying ϕ on both sides of (2.3) and then by expanding the product on the
right-hand side, we obtain:

ϕ(ai1 ai2 · · · ain ) = ϕ
(

P j1 j2;k1 (a) · · ·P js js+1;ks (a)
)

+
∑

∅ �=S⊂{1,...,s}

(∏
r∈S

λr

)
· ϕ
( ∏

r∈{1,...,s}\S

P jr jr+1;kr (a)
)
.

The corresponding operations done in (2.4) yield an identical formula, where we
have b’s instead of a’s, and ψ instead of ϕ. But we know from (1.4) that

ϕ
(

P j1 j2;k1 (a) · · ·P js js+1;ks (a)
)
= 0 = ψ

(
P j1 j2;k1 (b) · · · P js js+1;ks (b)

)
;

while on the other hand the induction hypothesis gives us that:

ϕ
( ∏

r∈{1,...,s}\S

P jr jr+1;kr (a)
)
= ψ
( ∏

r∈{1,...,s}\S

P jr jr+1;kr (b)
)
,

for every ∅ �= S ⊂ {1, . . . , s}. By combining all these equalities, we obtain (2.2).

Remark 2.2 The numbers λ1, . . . , λs appearing in Equation (2.3) are all real (as is
clear from their explicit description, made following to (2.3)). As a consequence, an
induction argument similar to the one made in the preceding proof shows the follow-
ing: if a satisfies the conditions in ∗-moments from 1.2.1o, then all the ∗-moments of
a are real numbers.

Proposition 2.3 Let (A, ϕ) be a ∗-probability space. Assume that u, p ∈ A satisfy the
following conditions: (i) {u, u∗} is free from {p, p∗}; (ii) u is unitary, with ϕ(u) = 0;
(iii) ϕ

(
p(p∗p)k−1

)
= 0, for every k ≥ 1. Then the element a := up ∈ A satisfies the

condition in ∗-moments of Theorem 1.2.1o.

https://doi.org/10.4153/CJM-2001-015-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2001-015-6


364 A. Nica, D. Shlyakhtenko and R. Speicher

Proof The expressions Pi j;k(a) defined in (1.4) are having here the form:{
P11;k(a) = p∗(pp∗)k−1u∗, P12;k(a) = (p∗p)k − ϕ

(
(p∗p)k

)
I,

P21;k(a) = u
(

(pp∗)k − ϕ
(

(pp∗)k
)

I
)

u∗, P22;k(a) = up(p∗p)k−1.
(2.5)

Note that in the expression for P21;k(a) we used the fact that ϕ
(

u(pp∗)ku∗
)
=

ϕ
(

(pp∗)k
)

. This follows from the general formula:

ϕ(x ′yx ′ ′) = ϕ(x ′x ′ ′)ϕ(y),(2.6)

holding for every x ′, x ′′, y ∈ A such that {x ′, x ′ ′} is free from {y}; the Equa-
tion (2.6) is in turn a direct consequence of the definition of freeness (see [13], Sec-
tion 2.5).

By taking the adjoint in the hypothesis (iii), we also get that ϕ
(

p∗(pp∗)k−1
)
= 0,

for every k ≥ 1. Hence if we denote:

W = {w ∈ Alg(I, p, p∗) | ϕ(w) = 0},(2.7)

then p∗(pp∗)k−1, (p∗p)k − ϕ
(

(p∗p)k
)

I, (pp∗)k − ϕ
(

(pp∗)k
)

I, and p(p∗p)k−1 are
elements of W, for every k ≥ 1. From the Equations (2.5) it thus follows that every
Pi j;k(a) can be viewed as a word with 1, 2, or 3 letters over the alphabet {u, u∗} ∪W;
and moreover the letters which form Pi j;k(a) always come alternatively from {u, u∗}
and W.

Given any n ≥ 1, i1, . . . , in, in+1 ∈ {1, 2} and k1, . . . , kn ≥ 1, we claim that the
product:

w := Pi1i2;k1 (a)Pi2i3;k2 (a) · · · Pinin+1;kn (a)(2.8)

still has the same alternance property of the letters, when viewed as a word over the
alphabet {u, u∗} ∪ W. Indeed, for every 2 ≤ m ≤ n there are two possibilities:
either im = 1, in which case Pim−1im ;km (a) ends with u∗ and Pimim+1;km+1 (a) begins with
a letter from W; or im = 2, in which case Pim−1im ;km (a) ends with a letter from W,
and Pimim+1;km+1 (a) begins with u. In both cases, the concatenation of Pim−1im ;km (a) and
Pimim+1;km+1 (a) is still alternating.

But if the product w appearing in (2.8) is alternating when viewed as a word with
letters from {u, u∗} ∪W, then the equality ϕ(w) = 0 follows from the definition of
freeness (since {u, u∗}∪W ⊂ Ker(ϕ), due to hypothesis (ii), and {u, u∗} is free from
{p, p∗} by (i)).

Proposition 2.4 Let (A, ϕ) be a ∗-probability space. Assume that u, p ∈ A satisfy the
following conditions:

(i) {u, u∗} is free from {p, p∗};
(ii) u is a Haar unitary.

Then the element a := up ∈ A satisfies the condition in ∗-moments of Theorem 1.2.1o.
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Proposition 2.4 is similar to Proposition 2.3, but its proof requires an additional
argument, in order to take care of the fact that now p(p∗p)k−1 and p∗(pp∗)k−1 do
not necessarily belong to W of (2.7). We will use a:

Lemma 2.5 Let (A, ϕ) be a ∗-probability space, and let u ∈ A be a Haar unitary. Let
C be a unital ∗-subalgebra of A, which is free from {u, u∗}. Then ϕ(w) = 0 for every
word of the form:

w = uh0 x1uh1 · · · xnuhn ∈ A,(2.9)

where n ≥ 2, h0, h1, . . . , hn ∈ Z, x1, . . . , xn ∈ C and such that the following conditions
hold:

(i) hm �= 0, for every 1 ≤ m ≤ n− 1;
(ii) hm−1 · hm ≥ 0, for every 1 ≤ m ≤ n such that ϕ(xm) �= 0.

Proof of Lemma 2.5 By induction on the cardinality of {m | 1 ≤ m ≤ n, ϕ(xm) �=
0}. If this cardinality is zero, then the equality ϕ(w) = 0 follows from the definition
of freeness. For the induction step, we pick the smallest index m ∈ {1, . . . , n} such
that ϕ(xm) �= 0, and we write:

ϕ(uh0 x1uh1 · · · xnuhn ) = ϕ
(

uh0 x1uh1 · · · xm−1uhm−1
(

xm − ϕ(xm)I
)

uhm · · · xnuhn

)(2.10)

+ ϕ(xm) · ϕ(uh0 x1uh1 · · · xm−1uhm−1+hm xm+1uhm+1 · · · xnuhn ).

By direct inspection, one sees that the induction hypothesis applies to both the words
appearing on the right-hand side of (2.10); hence the quantity in (2.10) is equal to
0 + ϕ(xm) · 0 = 0.

Proof of Proposition 2.4 We have to show that ϕ(w) = 0, where w is a product of n
factors Pi j;k(a), of the special form appearing in Equation (2.8) above. The formulas
for the Pi j;k(a)’s are exactly as in Equation (2.5).

If n = 1, then the verification of the fact that ϕ(w) = 0 is immediate. (e.g., if w
is of the form P11;k(a) = p∗(pp∗)k−1u∗, then ϕ(w) = ϕ(p∗(pp∗)k−1) · ϕ(u∗) = 0,
where we first used that {p, p∗} is free from {u, u∗}, and then the fact that ϕ(u∗) =
ϕ(u) = 0.) So we will assume that n ≥ 2. In this case the argument given in the
proof of Proposition 2.3 (paragraph containing Equation (2.8)) shows that we can
also write:

w = uh0 x1uh1 · · · xnuhn ∈ A,(2.11)

with h1, . . . , hn−1 ∈ {−1, 1}, h0, hn ∈ {−1, 0, 1}, and where every xm (1 ≤ m ≤ n)
is of one of the forms p∗(pp∗)k−1, (pp∗)k − ϕ

(
(pp∗)k

)
I, (p∗p)k − ϕ

(
(p∗p)k

)
I, or

p(p∗p)k−1, for some k ≥ 1. Let us now make the additional remark, also following
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from (2.5), (2.8), that every xm which is of the form p∗(pp∗)k−1 “sits between two
u∗’s”; or more precisely—if xm is of the form p∗(pp∗)k−1, then hm = −1 and hm−1 ∈
{−1, 0} (where in fact hm−1 can be 0 only if m = 1). Similarly, we remark that
every xm in (2.11) which is of the form p(p∗p)k−1 “sits between two u’s”. But then
the Lemma 2.4 can be applied to (2.11) (with C = Alg(I, p, p∗)), and yields that
ϕ(w) = 0, as desired.

Proposition 2.6 Let (B, ψ) be a tracial ∗-probability space, and let b ∈ B be an
element which satisfies the condition in ∗-moments of Theorem 1.2.1o. Then one can
find a tracial ∗-probability space (A, ϕ) and an element a ∈ A which is identically ∗-
distributed with b, and which is obtained as a = up, where: u ∈ A is a Haar unitary;
p = p∗ ∈ A is such that {u, u∗} is free from {p}, and such that ϕ(p2k−1) = 0, ∀k ≥ 1.

Proof One can find a tracial ∗-probability space (A, ϕ) and a selfadjoint element
p ∈ A such that:

ϕ(pn) =

{
0, if n odd

ψ
(

(b∗b)n/2
)
, if n even.

(2.12)

For instance this can be done as follows: one takes A = C[X] (the algebra of polyno-
mials in an indeterminate X), endowed with the ∗-operation uniquely determined by
the condition that X∗ = X. Then one defines ϕ : A → C to be the linear functional
determined by the equations:

ϕ(Xn) =

{
0, if n odd

ψ
(

(b∗b)n/2
)
, if n even,

and finally one chooses p := X ∈ A.
We fix a tracial ∗-probability space (A, ϕ) containing an element p = p∗ ∈ A

such that (2.12) holds. By enlarging (A, ϕ) if necessary (via the same kind of free
product construction as shown in the footnote to Theorem 1.2.2o), we may arrange
that A also contains a Haar unitary u such that {u, u∗} is free from {p}.

Consider the element a := up ∈ A. As implied by either Proposi-
tion 2.3 or Proposition 2.4, the element a satisfies the conditions in ∗-moments of
Theorem 1.2.1o. In addition, for every k ≥ 1 we have:

ϕ
(

(a∗a)k
)
= ϕ(p2k) = ψ

(
(b∗b)k

)
,

by (2.12). Due to the traciality of ϕ and ψ, it is automatic that we also have
ϕ
(

(aa∗)k
)
= ψ
(

(bb∗)k
)

, for every k ≥ 1, and then Proposition 2.1 implies that
a and b are identically ∗-distributed.

2.7 Proof of Part of Theorem 1.2 (The Equivalences 1o ⇔ 2o ⇔ 3o)

It is clear that 3o ⇒ 2o (if we also take into account the remark in the footnote to
1.2.2o). So it is sufficient to prove that 2o⇒ 1o⇒ 3o.
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2o⇒ 1o. Under the hypotheses of 2o we have, for every k ≥ 1:

ϕ
(

a(a∗a)k−1
)
= ϕ̃
(

(ua) ·
(

(ua)∗(ua)
) k−1
)

(because a and ua are identically ∗-distributed)

= ϕ̃
(

u · a(a∗a)k−1
)
= ϕ̃(u) · ϕ

(
a(a∗a)k−1

)
= 0

(where at the last two equalities we made use of the hypotheses (i) and (ii) of 2o,
respectively). But then the Proposition 2.3 implies that ua satisfies the conditions in
∗-moments from 1.2.1o. Since a and ua are identically ∗-distributed, it follows that a
satisfies these conditions, too.

1o ⇒ 3o. Let (A, ϕ) be a ∗-probability space, and let a be an element of A, which
satisfies the conditions in ∗-moments from 1.2.1o. Let (Ã, ϕ̃) be an extension of
(A, ϕ), and let u ∈ Ã be a unitary such that {a, a∗} is free from {u, u∗}. We want to
show that a and ua are identically ∗-distributed.

By replacing (Ã, ϕ̃) with the larger extension (Ã, ϕ̃) 

(

L∞(T), dz
)

, we may as-

sume the existence of a Haar unitary v ∈ Ã such that all the three sets {a, a∗},
{u, u∗}, {v, v∗} are free.

We now make the following remarks:
(a) a and va are identically ∗-distributed.
Indeed, both a and va satisfy the conditions in ∗-moments of 1.2.1o (a by hypoth-

esis, va by Proposition 2.4), and we have:

ϕ̃
((

(va)∗(va)
) k
)
= ϕ̃
(

(a∗a)k
)
, ϕ̃
((

(va)(va)∗
) k
)
= ϕ̃
(

(aa∗)k
)
∀k ≥ 1

(2.13)

(where in the second equality (2.13) we used the general fact also invoked in Equa-
tion (2.6) above). Hence the statement (a) follows from Proposition 2.1.

(b) ua and uva are identically ∗-distributed.
Indeed, we have that {u, u∗} is free from {a, a∗}, but also that {u, u∗} is free from

{va, (va)∗}, and that a and va are identically ∗-distributed. This implies that

ϕ̃
(

Q(u, u∗, a, a∗)
)
= ϕ̃
(

Q(u, u∗, va, (va)∗)
)
,(2.14)

for every non-commutative polynomial Q of four variables (see [13], Remark 2.5.2).
The statement (b) is a direct consequence of (2.14).

(c) uva satisfies the condition in ∗-moments of 1.2.1o.
This follows from Proposition 2.3, because: {uv, (uv)∗} is free from {a, a∗};

ϕ̃(uv) = ϕ̃(u)ϕ̃(v) = 0; and ϕ
(

a(a∗a)k−1
)
= 0, for every k ≥ 1, by the hypothesis

on a.
(d) ua satisfies the condition in ∗-moments of 1.2.1o.
This is a direct consequence of (b) and (c).
(e) a and ua are identically ∗-distributed.
Indeed, the analogue of (2.13) still holds when v is replaced there by u. Since

both a and ua satisfy the condition in ∗-moments from 1.2.1o (a by hypothesis, ua by
statement (d)), the Proposition 2.1 implies the statement (e).
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3 The Condition in Terms of Freeness With Amalgamation

In this section we will prove the equivalence 1o ⇔ 5o of Theorem 1.2. The proof is
straightforward, due to the fact that the equations in ∗-moments appearing in 1.2.1o

really are just an explicit spelling of the freeness condition stated in 1.2.5o.
Recall (e.g. from [13], Section 3.8) that the definition of freeness with amalgama-

tion over a subalgebra is made as follows.

Definition 3.1 Assume that M is a unital algebra, that B ⊂M is a unital subalgebra,
and that E : M → B is a conditional expectation (i.e. E is linear, satisfies E(I) = I,
and is such that E(b1xb2) = b1E(x)b2 for every x ∈M, b1, b2 ∈ B).

1o Let (Ms)s∈S be a family of subalgebras of M, such that B ⊂ Ms for every
s ∈ S. We say that (Ms)s∈S are free with amalgamation over B (and with respect to
the conditional expectation E) if:

E(x1x2 · · · xn) = 0

for every n ≥ 1, every s1, s2, . . . , sn ∈ S such that s1 �= s2, s2 �= s3, . . . , sn−1 �= sn, and
every x1 ∈Ms1 , . . . , xn ∈Msn such that E(x1) = · · · = E(xn) = 0.

2o Let (Xs)s∈S be a family of subsets of M. We say that (Xs)s∈S are free with
amalgamation over B if the subalgebras Ms := Alg(Xs ∪B), s ∈ S, are so.

Note that the Definition 3.1 does not require that M and B are ∗-algebras (if they
are, then the definition still makes sense, of course).

3.2 Proof of Part of Theorem 1.2 (The Equivalence 1o ⇔ 5o)

We consider the framework of Theorem 1.2: (A, ϕ) is a ∗-probability space, a is an
element of A, and we denote

A :=

(
0 a
a∗ 0

)
∈ M2(A).(3.1)

Let the subalgebras D ⊂ M2(CI) ⊂ M2(A) and the conditional expectation E:
M2(A)→ D be as described in 1.2.5o.

For j ∈ {1, 2} we will use the notation

j̄ := 3− j(3.2)

(i.e., j̄ is the element of {1, 2} which is not j).
It is immediately seen that Alg({A} ∪ D) ⊂ M2(A) is linearly spanned by the

matrices of the form:(
(aa∗)k 0

0 0

)
,

(
0 a(a∗a)k

0 0

)
,

(
0 0

a∗(aa∗)k 0

)
,

(
0 0
0 (a∗a)k

)
, k ≥ 0.

This in turn implies the formula:

{X ∈ Alg({A} ∪D) | E(X) = 0} = span {Zi j;k | i, j ∈ {1, 2}, k ≥ 1},(3.3)
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where for every k ≥ 1 we denote:

Z11;k =

(
P21;k(a) 0

0 0

)
, Z12;k =

(
0 P22;k(a)
0 0

)
,

Z21;k =

(
0 0

P11;k(a) 0

)
, Z22;k =

(
0 0
0 P12;k(a)

)
,

(3.4)

and where the elements Pi j;k(a) ∈ A are as in Equation (1.4) of Notation 1.1.
On the other hand let us denote:

V11 =

(
I 0
0 0

)
, V12 =

(
0 I
0 0

)
, V21 =

(
0 0
I 0

)
, V22 =

(
0 0
0 I

)
;(3.5)

it is clear that:

{X ∈ M2(CI) | ED(X) = 0} = span {V12,V21}.(3.6)

From (3.3) and (3.6) it follows that Alg({A} ∪D) is free from M2(CI) with amal-
gamation over D if and only if:




ED(U ′Z j ′1 j ′ ′1 ;k1
Vi1 ī1
· · ·Vin−1 īn−1

Z j ′n j ′ ′n ;knU
′ ′) = 0,

∀n ≥ 1, ∀ j ′1, j ′′1 , . . . , j ′n, j ′′n , i1, . . . , in−1 ∈ {1, 2},

∀k1, . . . , kn ≥ 1, ∀U ′,U ′′ ∈ {V11 + V22,V12,V21}.

(3.7)

The matrix product appearing in (3.7) is 0 if it is not true that j ′ ′1 = i1, ī1 =
j ′2, . . . , j ′′n−1 = in−1, īn−1 = j ′n. And consequently, (3.7) is equivalent to:




ED(U ′Zī0i1;k1
Vi1 ī1

Zī1i2;k2
Vi2 ī2
· · ·Vin−1 īn−1

Zīn−1in ;kn
U ′′) = 0,

∀n ≥ 1, ∀i0, i1, . . . , in ∈ {1, 2},

∀k1, . . . , kn ≥ 1, ∀U ′,U ′′ ∈ {V11 + V22,V12,V21}.

(3.8)

But now, by taking (3.4) into account, we see that the matrix product in (3.8) has one
entry equal to Pi0i1;k1 (a)Pi1i2;k2 (a) · · · Pin−1in ;kn (a) (which can appear on any of the four
possible positions, depending on the choices of U ′ and U ′ ′); and has the other three
entries equal to 0. This makes it immediate that the condition (3.8) is equivalent to
the one presented in Equation (1.5) of Theorem 1.2.1o.

4 The Condition in Terms of Non-Crossing Cumulants

In this section we will prove the equivalence 4o⇔ 5o of Theorem 1.2.
It will be convenient that we use a version of the framework considered in the

Introduction, where there is no ∗-operation.
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Definition 4.1 1o By a non-commutative probability space we will understand a pair
(A, ϕ) where A is a unital algebra over C, and ϕ : A → C is a linear functional,
normalized by ϕ(I) = 1. If a1, a2 ∈ A, then the numbers in the family:

{
ϕ(ai1 · · · ain ) | n ≥ 1, i1, . . . , in ∈ {1, 2}

}
,(4.1)

are called the joint moments of the pair a1, a2.
2o If (A, ϕ) and (B, ψ) are non-commutative probability spaces, and if a1, a2 ∈

A, b1, b2 ∈ B, we say that the pairs a1, a2 and b1, b2 are identically distributed if:

ϕ(ai1 · · · ain ) = ψ(bi1 · · · bin ) ∀n ≥ 1, ∀i1, . . . , in ∈ {1, 2}.(4.2)

3o Let (A, ϕ) and (Ak, ϕk), k ≥ 1, be non-commutative probability spaces; and
consider pairs of elements a1, a2 ∈ A and a1,k, a2,k ∈ Ak, k ≥ 1. We say that the pairs
a1,k, a2,k converge in distribution to a1, a2 if

lim
k→∞

ϕk(ai1,k · · · ain,k) = ϕ(ai1 · · · ain ), ∀n ≥ 1, ∀i1, . . . , in ∈ {1, 2}.

The condition described in Theorem 1.2.5o can be adapted to the framework with-
out ∗-operation, as follows.

Definition 4.2 Let (A, ϕ) be a non-commutative probability space. Consider the
unital subalgebras D ⊂ M2(CI) ⊂ M2(A), where:

D :=

{(
αI 0
0 λI

) ∣∣∣∣ α, λ ∈ C

}
, M2(CI) :=

{(
αI βI
γI λI

) ∣∣∣∣ α, β, γ, λ ∈ C

}
;

and consider the conditional expectation E : M2(A)→ D given by the formula:

E

((
a b
c d

))
=

(
ϕ(a)I 0

0 ϕ(d)I

)
, a, b, c, d ∈ A.

We say that a pair of elements a1, a2 ∈ A satisfy the (RDA) condition2 if the matrix

A :=

(
0 a1

a2 0

)
∈ M2(A)

is free from M2(CI), with amalgamation over D.

Proposition 4.3 Let (A, ϕ) and (B, ψ) be non-commutative probability spaces, and let
a1, a2 ∈ A, b1, b2 ∈ B be such that the pairs a1, a2 and b1, b2 are identically distributed.
If one of the pairs a1, a2 and b1, b2 satisfies (RDA), then the other pair also satisfies
(RDA).

2“RD” and “A” are meant to remind of the words “R-diagonal” and “amalgamation”.
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Proof The statement of the proposition is an immediate consequence of the equality:

E(X0AX1 · · ·AXn) = E(X0BX1 · · ·BXn),(4.3)

for n ≥ 1, X0, . . . ,Xn ∈ M2(CI), and where we denoted:

A :=

(
0 a1

a2 0

)
∈ M2(A), B :=

(
0 b1

b2 0

)
∈ M2(B).

(The notations in (4.3) were slightly abused, in the respect that “M2(CI)” is a subal-
gebra of M2(A) on the left-hand side and is a subalgebra of M2(B) on the right-hand
side; similarly with the meaning of “E”.) On the other hand, (4.3) is in turn an imme-
diate consequence of the fact that the pairs a1, a2 and b1, b2 are identically distributed.

We now turn to the concept of non-crossing cumulants. These were introduced in
[9] by combinatorial methods. We will use here an alternative approach, observed in
[1], and called “modeling on the full Fock space”.

Notation 4.4 We will denote by T the full Fock space over C2, i.e. the Hilbert space

T := C⊕
∞⊕

n=1

(C2 ⊗ · · · ⊗ C2︸ ︷︷ ︸
n

).(4.4)

The number 1 in the first summand C on the right-hand side of (4.4) is denoted by
Ω (∈ T), and is called the “vacuum-vector”. We will denote by ϕvac : B(T) → C the
linear functional defined by

ϕvac (x) := 〈xΩ | Ω〉, x ∈ B(T).

We will denote by l1, l2 ∈ B(T) the “left-creation” operators determined by the for-
mula:

li(ξ1 ⊗ · · · ⊗ ξk) = ei ⊗ ξ1 ⊗ · · · ⊗ ξk, ∀k ≥ 0, ∀ξ1, . . . , ξk ∈ C2,(4.5)

where e1, e2 is the canonical basis of C2. The operators l1, l2 form a family of Cuntz
isometries, i.e. they satisfy the the relations

l∗i l j = δi, j I, i, j ∈ {1, 2}.(4.6)

By using (4.6), it is easily seen that every monomial in l1, l∗1 , l2, l∗2 either is equal to 0
or can be brought to the form—called Wick-ordered form:

li1 · · · li p l∗j1
· · · l∗jq

(for some p, q ≥ 0 and i1, . . . , i p, j1, . . . , jq ∈ {1, 2}).(4.7)

The Wick-ordered monomials listed in (4.7) form a linear basis for the sub–∗–algebra
of B(T) generated by l1 and l2. Note that the action of ϕvac on this ∗-algebra is given
by the formula:

ϕvac (li1 · · · li p l∗j1
· · · l∗jq

) =

{
1, if p = q = 0

0, otherwise.
(4.8)
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4.5 Review of the Non-Crossing Cumulants

Let (A, ϕ) be a non-commutative probability space, and let a1, a2 be a pair of of ele-
ments of A. The non-crossing cumulants of a1, a2 are a family of complex numbers:{

κ(i1,...,in)(a1, a2) | n ≥ 1, i1, . . . , in ∈ {1, 2}
}
,(4.9)

which was defined by Speicher in [9], via a combinatorial recipe involving lattices of
non-crossing partitions. Out of the combinatorial definition for the family in (4.9)
we will only retain the following fact: for every n ≥ 1 and i1, . . . , in ∈ {1, 2} there
exist universal polynomials with integer coefficients, P,Q (depending on i1, . . . , in

but not on (A, ϕ) and a1, a2), such that:



ϕ(ai1 · · · ain ) = κ(i1,...,in)(a1, a2)

+P
({
κ( j1,..., jm)(a1, a2) | m < n, j1, . . . , jm ∈ {1, 2}

})
,

κ(i1,...,in)(a1, a2) = ϕ(ai1 · · · ain )

+Q
({
ϕ(a j1 · · · a jm ) | m < n, j1, . . . , jm ∈ {1, 2}

})
.

(4.10)

In order to compensate for the fact that an explicit characterization for P,Q
of (4.10) is not given, we indicate a concrete construction for a pair a1, a2 in(

B(T), ϕvac

)
, which has a prescribed finitely supported family of non-crossing cu-

mulants. This goes as follows. Let N ≥ 1 and a family of complex numbers{
γ(i1,...,in) | n ≤ N, i1, . . . , in ∈ {1, 2}

}
be given. Consider the operator:

x = I +
N∑

n=1

2∑
i1,...,in=1

γ(i1,...,in)lin · · · li1 ∈ B(T),(4.11)

and set

a1 := l∗1 x, a2 := l∗2 x(4.12)

(where l1, l2 are the left-creation operators from (4.5)). Then the non-crossing cu-
mulants of the pair a1, a2, in

(
B(T), ϕvac

)
, are:

κ(i1,...,in)(a1, a2) =

{
γ(i1,...,in) if n ≤ N

0 if n > N.

It is easy to see that the construction described in (4.11–12) can be used (together
with the general fact stated in (4.10)) in order to provide a consistent definition of the
non-crossing cumulants. The equivalence between this and the original definition of
Speicher was shown in [1].

From (4.10) it is immediate that every family {γ(i1,...,in) | n ≥ 1, i1, . . . , in =
1, 2} can appear as the family of non-crossing cumulants of a pair of elements in
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some non-commutative probability space. Moreover, if the family of γ(i1,...,in)’s has
the additional property that:

γ(īn,...,ī1) = γ(i1,...,in), ∀n ≥ 1, ∀i1, . . . , in ∈ {1, 2}(4.13)

(where we used the convention ī := 3− i, same as in Equation (3.2) of Section 3.2),
then one can find a ∗-probability space (B, ψ) and an element b ∈ B, such that:

κ(i1,...,in)(b, b∗) = γ(i1,...,in), ∀n ≥ 1, ∀i1, . . . , in ∈ {1, 2}.

We conclude this review of non-crossing cumulants by stating a fact which follows
by elementary considerations when the explicit formulas of P,Q in (4.10) (in terms
of non-crossing partitions) are written down—see [5], Section 5.

Proposition 4.6 Let (A, ϕ) and (B, ψ) be non-commutative probability spaces, and
let a1, a2 ∈ A, b1, b2 ∈ B be such that:{

ϕ
(

a1(a2a1)k
)
= ϕ
(

a2(a1a2)k
)
= 0

ψ
(

b1(b2b1)k
)
= ψ
(

b2(b1b2)k
)
= 0,

∀k ≥ 1(4.14)

and such that

κ(1, 2, . . . , 1, 2︸ ︷︷ ︸

2k

)(a1, a2) = κ(1, 2, . . . , 1, 2︸ ︷︷ ︸
2k

)(b1, b2)

κ(2, 1, . . . , 2, 1︸ ︷︷ ︸
2k

)(a1, a2) = κ(2, 1, . . . , 2, 1︸ ︷︷ ︸
2k

)(b1, b2),
∀k ≥ 1.(4.15)

Then we also have: {
ϕ
(

(a1a2)k
)
= ψ
(

(b1b2)k
)

ϕ
(

(a2a1)k
)
= ψ
(

(b2b1)k
)
,

∀k ≥ 1.(4.16)

The condition on non-crossing cumulants which is of interest in this paper is the
following:

Definition 4.7 Let (A, ϕ) be a non-commutative probability space, and let a1, a2

be a pair of elements of A. We say that a1, a2 satisfy the (RDC) condition3 if
κ(i1,...,in)(a1, a2) = 0 whenever (i1, . . . , in) is not of the form (1, 2, 1, 2, . . . , 1, 2) or
(2, 1, 2, 1, . . . , 2, 1).

Remark 4.8 Our next goal is to prove the implication “(RDC) ⇒ (RDA)”, with
(RDC) and (RDA) defined as in 4.7 and 4.2. It turns out that the proof can be made
by putting together two facts about the left-creation operators l1, l2 ∈ B(T) consid-
ered in the Notation 4.4. Roughly speaking, the two facts in question are that: (a) the

3“RD” and “C” are meant to remind of the words “R-diagonal” and “cumulants”.
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pair l2, l1 satisfies a strengthened form of (RDA); and (b) the pair l2, l1 generates, in a
certain sense, all the pairs which satisfy (RDC). The precise statement of the fact (a)
will be given in the next Proposition 4.9, while the fact (b) will appear in the proof
of Proposition 4.10. The idea for this line of proof comes from the general theory of
free creation operators developed in [8].

Proposition 4.9 Consider the non-commutative probability space
(

B(T), ϕvac

)
de-

scribed in the Notation 4.4. For this particular space, consider the subalgebras D ⊂
M2(CI) ⊂ M2

(
B(T)
)

and the expectation E : M2

(
B(T)
)
→ D, as described in Defi-

nition 4.2. Consider moreover the left-creation operators l1, l2 ∈ B(T) (as in (4.5)), and
form the matrix:

L :=

(
0 l2
l1 0

)
∈ M2

(
B(T)
)
.

Then {L, L∗} is free from M2(CI), with amalgamation over D.

Proof Let η : D→ D be the automorphism defined by:

η

((
αI 0
0 λI

))
=

((
λI 0
0 αI

))
, α, λ ∈ C.(4.17)

It is immediately verified that:

L∗AL = η
(

E(A)
)
, ∀A ∈ M2(CI).(4.18)

The desired freeness with amalgamation follows from (4.18), by the virtue of Theo-
rem 2.3 in [8]. For the reader’s convenience, the next two paragraphs show how this
argument goes.

By using the relation L∗DL = η(D), D ∈ D (which is a particular case of (4.18)),
we see that Alg({L, L∗} ∪D) is the linear span of the elements of the form:

W = D0LD1 · · · LDpL∗D ′1 · · · L
∗D ′q,(4.19)

where D0,D1, . . . ,Dp,D ′1, . . . ,D
′
q ∈ D. Moreover, by also using (4.8) and the for-

mula for the expectation E, it is easily seen that Alg({L, L∗} ∪ D) ∩ Ker(E) is the
linear span of those words W as in (4.19) for which the non-negative integers p, q
(appearing in (4.19)) are not both equal to zero. In view of this description of
Alg({L, L∗} ∪ D) ∩ Ker(E), the statement of the proposition amounts to showing
that:

E(A0W1A1 · · ·WrAr) = 0(4.20)

whenever r ≥ 1, A1, . . . ,Ar−1 ∈ M2(CI)∩Ker(E), each of A0,Ar is either in M2(CI)∩

Ker(E) or is

(
I 0
0 I

)
, and each of W1, . . . ,Wr is as in (4.19), with the corresponding

p, q satisfying p + q > 0.
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Finally, (4.20) is proved as follows. Let us denote A0W1A1 · · ·WrAr =: X. When
each of W1, . . . ,Wr is replaced (in X) by its form as in (4.19), X gets the expression:

X = B0Li1 B1 · · · Lis Bs,(4.21)

where s ≥ 1, Li1 , . . . , Lis ∈ {L, L
∗}, B0,B1, . . . ,Bs ∈ M2(CI). If in the sequence

Li1 , . . . , Lis there is no L∗ followed by an L, then the fact that E(X) = 0 is an immedi-
ate consequence of (4.8). In the opposite case, let us pick an m, 1 ≤ m ≤ s− 1, such
that Lim = L∗, Lim+1 = L. It is then immediately checked that the matrix Bm appear-
ing in (4.21) has E(Bm) = 0. (Indeed, Bm must be of the form Bm = D ′AkD ′′, with
1 ≤ k ≤ r − 1, and where Ak is taken from (4.20); hence E(Bm) = D ′E(Ak)D ′ ′ = 0.)
But then (4.18) gives us:

L∗BmL = η
(

E(Bm)
)
= 0,

and it follows that X itself is equal to zero.

Proposition 4.10 Let (A, ϕ) be a non-commutative probability space and let a1, a2 be
a pair of elements of A, which satisfies the condition (RDC). Then the pair a1, a2 also
satisfies the condition (RDA).

Proof We denote:

κ(1, 2, . . . , 1, 2︸ ︷︷ ︸
2n

)(a1, a2) =: αn, κ(2, 1, . . . , 2, 1︸ ︷︷ ︸
2n

)(a1, a2) =: βn, ∀n ≥ 1.

It is easily verified that both the conditions (RDC) and (RDA) are preserved under
convergence in distribution (as defined in 4.1.3o). Due to this fact (and since pairs of
elements can be constructed with truncated families of non-crossing cumulants–cf.
Section 4.5) we may assume that there exists N ≥ 1 such that αn = 0 = βn for
n > N .

Furthermore, since (RDC) and (RDA) depend only on the joint moments of a1

and a2, we may (and will) assume that (A, ϕ) =
(

B(T), ϕvac

)
and that a1, a2 are as

described in the Equations (4.11–12) of Section 4.5:

ai = l∗i

(
I +

N∑
n=1

βn(l1l2)n + αn(l2l1)n
)
, i = 1, 2.(4.22)

We can rewrite (4.22) as {
a1 = l∗1 +

∑N
n=1 βnl2(l1l2)n−1

a2 = l∗2 +
∑N

n=1 αnl1(l2l1)n−1;

or in matrix form:

A = L∗ +
N∑

n=1

(
βn 0
0 αn

)
L2n−1,(4.23)
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with

A :=

(
0 a1

a2 0

)
, L :=

(
0 l2
l1 0

)
.(4.24)

From (4.23) it follows that A ∈ Alg({L, L∗} ∪ D), hence that Alg({A} ∪ D) ⊂
Alg({L, L∗}∪D). The latter algebra is free from M2(CI), with amalgamation over D

(by Proposition 4.9); hence Alg({A} ∪D) is also free from M2(CI), with amalgama-
tion over D.

4.11 Proof of Part of Theorem 1.2 (The Equivalence 4o ⇔ 5o)

The particularization of Proposition 4.10 to the case of a ∗-probability space gives the
implication 4o ⇒ 5o, so we only need to discuss 5o ⇒ 4o. We will show that 5o ⇒ 4o

actually follows from the combination of 4o⇒ 5o with an exhaustion argument.
So, let (A, ϕ) be a tracial ∗-probability space and let a ∈ A be an element which

satisfies the condition 5o. By what was proved in Section 3, we know that a also
satisfies the condition 1o of Theorem 1.2.

We denote:

αn := κ(1, 2, . . . , 1, 2︸ ︷︷ ︸
2n

)(a, a∗), βn := κ(2, 1, . . . , 2, 1︸ ︷︷ ︸
2n

)(a, a∗), ∀n ≥ 1.(4.25)

Remark that αn, βn ∈ R, for every n ≥ 1. Indeed, all the ∗-moments of a are real
numbers (Remark 2.2); hence the non-crossing cumulants of a, a∗ must also be real
numbers, since the polynomials P, Q of (4.10) have integer (in particular real) coef-
ficients.

Consider the family of real numbers {γ(i1,...,in) | n ≥ 1, i1, . . . , in = 1, 2} defined
as follows:

γ(i1,...,in) =




αk if (i1, . . . , in) = (1, 2, . . . , 1, 2︸ ︷︷ ︸
2k

)

βk if (i1, . . . , in) = (2, 1, . . . , 2, 1︸ ︷︷ ︸
2k

)

0 otherwise.

These γ(i1,...,in)’s clearly satisfy the Equation (4.13) in Section 4.5. Consequently (by
the remark made there) one can find a ∗-probability space (B, ψ) and an element
b ∈ B such that:

κ(i1,...,in)(b, b∗) = γ(i1,...,in), ∀n ≥ 1, ∀i1, . . . , in ∈ {1, 2}.

By construction, the element b ∈ B satisfies the condition 4o of Theorem 1.2;
hence b also satisfies 1o of 1.2—because 4o⇒ 5o⇔ 1o were proved above.
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We show that a ∈ A and b ∈ B are identically ∗-distributed. We first observe that,
by the construction of b, we have:



κ(1, 2, . . . , 1, 2︸ ︷︷ ︸

2k

)(a, a∗) = κ(1, 2, . . . , 1, 2︸ ︷︷ ︸
2k

)(b, b∗)

κ(2, 1, . . . , 2, 1︸ ︷︷ ︸
2k

)(a, a∗) = κ(2, 1, . . . , 2, 1︸ ︷︷ ︸
2k

)(b, b∗)
∀k ≥ 1.

But then the Proposition 4.6 implies that:

ϕ
(

(a∗a)k
)
= ψ
(

(b∗b)k
)
, ϕ
(

(aa∗)k
)
= ψ
(

(bb∗)k
)
, ∀k ≥ 1

(note that the condition (4.14) required in the hypothesis of Proposition 4.6 is auto-
matically fulfilled, due to the fact that both a and b satisfy 1o of Theorem 1.2). It only
remains to invoke Proposition 2.1; this can be done, again because a and b satisfy 1o

of Theorem 1.2, and gives us that a and b are identically ∗-distributed.
But from Equation (4.10) it is clear that if a and b are identically ∗-distributed,

then a, a∗ and b, b∗ must have identical non-crossing cumulants. Hence for every
n ≥ 1 and every (i1, . . . , in) ∈ {1, 2}n which is not of the form (1, 2, 1, 2, . . . , 1, 2)
or (2, 1, 2, 1, . . . , 2, 1) we obtain:

κ(i1,...,in)(a, a∗) = κ(i1,...,in)(b, b∗) = 0.

This means that a satisfies the condition 4o of Theorem 1.2.

5 Conjectured Formulas for the Determining Series of a Product

5.1 Review of the Operation
�


LetΘ denote the set of all formal power series of the form f (z) =
∑∞

n=1 αnzn, where
α1, α2, α3, · · · ∈ C. Then
�
 is a binary operation onΘ, determined by the formula:

R(a)
�
 R(b) = R(ab),(5.1)

holding whenever a and b are free elements in some non-commutative probability
space (A, ϕ). The Equation (5.1) does really define
�
 , in a coherent way, because:

(a) given f , g ∈ Θ, one can always construct a non-commutative probability
space (A, ϕ) and two free elements a, b in A, with R-transforms R(a) = f , R(b) = g;

(b) if a and b are free in (A, ϕ), then the moments of ab (and hence R(ab)) are
completely determined by the moments of a and of b (hence by R(a) and R(b))—see
[13], Proposition 2.5.5.

The operation 
�
 can also be given a direct combinatorial definition. That is: if
f (z) =

∑∞
n=1 αnzn, g(z) =

∑∞
n=1 βnzn, then the coefficient of order n of f 
�
 g can

be defined via a certain summation formula over non-crossing partitions of the set
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{1, . . . , n}, which involves α1, . . . , αn, β1, . . . , βn. For instance, the formulas for the
first three coefficients γ1, γ2, γ3 of f 
�
 g come out as:


γ1 = α1β1,

γ2 = α2β
2
1 + α2

1β2,

γ3 = α3β
3
1 + 3α1α2β1β2 + α3

1β3.

We do not insist here on the combinatorics of 
�
 , the interested reader can find a
detailed presentation in [4].

It is immediate from (5.1) that the operation
�
 is associative. Less obvious, but
nevertheless true is that
�
 is also commutative (see [13], Remark 3.6.2; or Proposi-
tion 1.4.2 of [4], in the combinatorial approach to
�
 ). The series:

id(z) := z(5.2)

is the unit for 
�
 . Two other important series which appear in the considerations
about
�
 are the Zeta and the Moebius series:{

Zeta (z) =
∑∞

n=1 zn

Moeb(z) =
∑∞

n=1[(−1)n+1(2n− 2)!/n! (n− 1)!]zn.
(5.3)

Moeb and Zeta are inverse to each other with respect to 
�
 (i.e., Moeb 
�
 Zeta =
id = Zeta 
�
 Moeb).

5.2 Review of a Result From [5]

Let (A, ϕ) be a tracial ∗-probability space. If a ∈ A is R-diagonal, then the determin-
ing series fa can be calculated as:

fa = R(a∗a)
�
 Moeb(5.4)

(see [5], Proposition 1.7). An equivalent way of writing (5.4) is:

R(a∗a) = fa 
�
 Zeta(5.5)

(since Zeta is the inverse of Moeb with respect to
�
 ).
From (5.4), (5.5), one can easily obtain a formula for fab, where a, b are R-diagonal

elements in a tracial ∗-probability space (A, ϕ), such that {a, a∗} is free from {b, b∗}.
Indeed, note first that:

R
(

(ab)∗(ab)
)
= R(b∗a∗ab)

= R(a∗abb∗) (because (A, ϕ) is tracial)

= R(a∗a)
�
 R(bb∗) (by (5.1))

= R(a∗a)
�
 R(b∗b) (because (A, ϕ) is tracial).
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Therefore one has:

fab = R
(

(ab)∗(ab)
)

�
 Moeb (by (5.4))

= R(a∗a)
�
 R(b∗b)
�
 Moeb

= ( fa 
�
 Zeta )
�
 ( fb 
�
 Zeta )
�
 Moeb (by (5.5))

= fa 
�
 fb 
�
 Zeta .(5.6)

We believe that the Equations (5.5) and (5.6) have the following generalizations to
the situation of an arbitrary (not necessarily tracial) ∗-probability space.

5.3 Conjectured Formulas

Let (A, ϕ) be a ∗-probability space.

1o Let a ∈ A be an R-diagonal element, and assume that ϕ(a∗a) �= 0 �= ϕ(aa∗).
The determining series fa and ga are then invertible under the operation of composi-
tion, “◦”, for power series; we denote the inverses of fa and ga (with respect to ◦) by

f 〈−1〉
a and g〈−1〉

a , respectively. Then we have:

{
R(aa∗) = fa ◦ g〈−1〉

a ◦ (ga 
�
 Zeta )

R(a∗a) = ga ◦ f 〈−1〉
a ◦ ( fa 
�
 Zeta ).

(5.7)

2o Let a, b ∈ A be R-diagonal elements, such that {a, a∗} is free from {b, b∗}, and
such that ϕ(a∗a) �= 0 �= ϕ(aa∗), ϕ(b∗b) �= 0 �= ϕ(bb∗). Then we have:

{
fab = fa ◦ g〈−1〉

a ◦ (ga 
�
 fb 
�
 Zeta )

gab = gb ◦ f 〈−1〉
b ◦ ( fb 
�
 ga 
�
 Zeta ).

(5.8)

Remarks 5.4 1o If one wants a version of the Equations (5.8) where the operation

�
 does not appear in an explicit way, then the following can be used. Let (A, ϕ) be a
∗-probability space, and let a, b ∈ A be R-diagonal elements such that {a, a∗} is free
from {b, b∗}. In an enlargement of (A, ϕ) construct selfadjoint elements p, q such
that: {p} is free from {a, a∗} and R(p) = fb; {q} is free from {b, b∗} and R(q) = ga

(finding such p and q is always possible). Then:

fab = R(apa∗), gab = R(b∗qb).(5.9)
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The Equation (5.9) can be derived from the conjectures made in 5.3. While less
precise than (5.8), this equation would still provide a “concrete” way of calculating
the determining series of ab, which only uses the 1-dimensional R-transform.

2o Let (A, ϕ) be a ∗-probability space, and let a ∈ A be an R-diagonal element,

such that ϕ(a∗a) �= 0 �= ϕ(aa∗). The series fa ◦ g〈−1〉
a can be used for measuring

“how far is ϕ from being a trace” on the unital ∗-algebra Alg(I, a, a∗) generated by

a (at least in the sense that ϕ|Alg(I, a, a∗) is a trace⇔ fa = ga ⇔ fa ◦ g〈−1〉
a = id).

The Equations (5.8) would imply a “multiplicativity property” for fa ◦g〈−1〉
a , or more

precisely that:

fab ◦ g〈−1〉
ab = ( fa ◦ g〈−1〉

a ) ◦ ( fb ◦ g〈−1〉
b ),(5.10)

whenever a, b are R-diagonal, with ϕ(a∗a) �= 0 �= ϕ(aa∗), ϕ(b∗b) �= 0 �= ϕ(bb∗),
and such that {a, a∗} is free from {b, b∗}. The Equation (5.10) is a direct conse-
quence of (5.8) and of the fact that
�
 is commutative.

Note added in proof The formulae conjectured in Section 5.3 were proved by
B. Krawczyk and R. Speicher, in the paper Combinatorics of free cumulants, Journal
of Combinatorial Theory Series A, 90(2000), 267–292. An alternative proof for these
formulae was also found by U. Haagerup and F. Larsen (paper in preparation; see
also Chapter 5 in PhD Thesis of F. Larsen, University of Odense, Denmark, October
1999).
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