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Further,  must be odd, but then all of ,  and  are even meaning
that solutions of the equation  are obtained from
solutions of  by multiplication by 2. There are no other
solutions.

x x − 1 x + 1 y
a2 + (a + 2)2 = c2

a2 + (a + 1)2 = c2
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108.31 Generalised Thales intercept theorem

According to T. Heath [1, p. 124], [2, p. 128] and C. R. Fletcher
[3, p. 268], Thales (about 624-547 B.C.) is a central figure in the evolution
of geometry, as he was the first scientist to introduce proofs alongside
empirical methods. One of the main results attributed to Thales is the so-
called “intercept theorem”, which the Greek scientist used to measure the
heights of pyramids and distances of ships at sea [1, p. 124]. In [4, p. 9],
John Stillwell underlines the importance of this theorem saying that it “is the
key to using algebra in geometry”. E. Moise, in [5, pp. 136-141], provides
the following simple statement of Thales intercept theorem:

Parallel projections are one-to-one correspondences that preserve
betweenness, congruence and ratio;

moreover, the author shows that the result on ratios and his converse can be
deduced from the fact that parallel projections preserve the midpoint of a
segment. Therefore, we focus our attention on the following statement:

Take two parallel segments  and  and find the midpoints
M and  of the segments  and . Then, the segment  is
parallel to  and .

A1A1′ A2A2′
M′ A1A2 A′1A′2 MM′

A1A1′ A2A2′
Using the technique shown by N. Lord in [6], we can generalise the previous
statement as follows:

Take  parallel segments , ,  and find the centres of
gravity M and  of the sets and .
Then, the segment  is parallel to the segments , ,

.

n A1A′1 A2A′2 … , AnA′n
M′ {A1, A2, … , An} {A′1, A′2, … , A′n}

MM′ A1A′1 A2A′2
… , AnA′n

Indeed, let  and  be the position vectors of
consecutive vertices  and . Then, the position
vectors of the centres of gravity  and  are given by

 and . It follows that

a1, a2, … , an a′1, a′2, … , a′n
A1, A2, … , An A′1, A′2, … , A′n

M M′
m = 1

n (a1 + a2 +… + an) m′ = 1
n (a′1 + a′2 +… + a′n)
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, which is the
sum of  vectors that are parallel to the segments . Thus,  is parallel
to each ; moreover, it equals their average.

m′ − m = 1
n (a′1 − a1) + 1

n (a′2 − a2) +  … +1
n (a′n − an)

n AjA′j MM′
AjA′j

A1

A2

A3

A4

A5

N
M

A′1

A′2

A′3

A′4

A′5

N′

M′

FIGURE 1

Figure 1 shows the situation outlined by the previous statement;
moreover, it suggests that parallel projections also preserve the ratio in
which they divide the corresponding medians. Indeed, let  and  be the
position vectors of points  and  and assume that

. It follows that 

n n′
N N′

AiN : AiM = A′iN′ : A′iM′ = k
n′ − n = ai − n + a′i − ai + n′ − a′i

= −k (m − ai) + a′i − ai + k (m′ − a′i)
= k (m′ − m) − k (a′i − ai) + a′i − ai.

As we saw previously, the segment  is parallel to , thus the vector
 is the sum of three vectors that are parallel to . Therefore,  is

parallel to the segments . In other words, the following statement holds:

MM′ AiA′i
n′ − n AiA′i NN′

AiA′i
Take parallel segments , and find the centres
of gravity and of sets and .
Let be a point on the line  and a point on the line
such that . Then, the segment is
parallel to the segments , .

n A1A′1 A2A′2, … , AnA′n
M M′ {A1, A2, … , An} {A′1, A′2, … , A′n}

N AiM N′ A′iM′
AiN : AiM = A′iN′ : A′iM′ NN′

A1A′1 A2A′2, … , AnA′n

As is well known, we can describe the interior of any convex -sided
polygon  as the set of points  whose position vectors are given by

, where the  are non-negative and sum to 1. The values  are
called the barycentric coordinates of , with respect to the polygon

 [7, p. 216], [8]. If the barycentric coordinates of a point  with
respect to  coincide with the barycentric coordinates of the point
with respect to , that is, if  is the position vector of
the point , it follows that . Then,  is parallel
to the segments . Therefore, although such coordinates for  are
not unique [8], we can say that

n
A1A2… An A

a = ∑n
i = 1 λiai λi λi

A
A1A2… An A′

A′1A′2… A′n A
A1A2… An a′ = ∑n

i = 1 λia′i
A′ a′ − a = ∑n

i = 1 λi (a′i − ai) AA′
AiAi′ n > 3

   Parallel projections preserve barycentric coordinates.
More precisely, the following statement holds:

Take parallel segments . Letn A1A′1, A2A′2, … , AnA′n a = ∑n
i = 1 λiai
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and be the position vectors of points and , where
the are non-negative and sum to 1. Then, the segment is
parallel to the segments .

a′ = ∑n
i = 1 λia′i A A′

λi AA′
A1A′1, A2A′2, … , AnA′n

We can note that the barycentric coordinates of the points  and  (to the
respective polygons) coincide since they are all zero except for the -th,
which is equal to 1. The barycentric coordinates of the centres of gravity
and  also coincide since they are all equal to . Moreover, the position
vectors of the points  and  in Figure 1 can be obtained from the formulas

 and , which act equally on the
points  and . Hence,  and  have equal barycentric coordinates
(to their respective polygons). Therefore, the result for the points  and  is
a special case of the last statement.

Ai A′i
i

M
M′ 1

n
N N′

n = ai + k (m − ai) n′ = a′i + k (m′ − a′i)
Ai, M A′i, M′ N N′

N N′

At this point, we can further extend Thales intercept theorem. Indeed, as
shown in [9], given an -sided polygon  putting  for

, we can consider the -sided polygons
whose vertex , for , is the centre of gravity of the set

. For example, the derived polygon  of a
given quadrilateral , is the well-known Varignon parallelogram
that joins the midpoints of the sides of . In [10] the author calls
such polygons  the “ -Varignon polygons of ” and
notes that the centre of gravity of  can be seen as the -Varignon
polygon  of . Thus, in a certain sense, the -
Varignon polygons generalise the concept of centre of gravity. Then, it
might be interesting to note that

n A1A2… An An + j = Aj
1 ≤ j ≤ n − 1 n Bh,1Bh,2… Bh,n

Bh,i i = 1,  2,  … , n − 1
{Ai, Ai +1, … , Ai +h −1} B2,1B2,2B2,3, B2,4

A1A2A3A4
A1A2A3A4

Bh,1Bh,2… Bh,n h A1A2… An
A1A2… An n

Bn,1Bn,2… Bn,n A1A2… An n

   Parallel projections preserve the h-Varignon polygons.
In other words, Thales intercept Theorem can be extended to the -Varignon
polygons as follows:

h

Take parallel segments and find the -
Varignon polygons and of the -sided
polygons and . Then, each segment is
parallel to the segments .

n A1A′1, A2A′2, … , AnA′n h
Bh,1Bh,2… Bh,n B′h,1B′h,2… B′h,n n

A1A2… An A′1A′2… A′n Bh,iB′h,i
A1A′1, A2A′2, … , AnA′n

Indeed, for each , the position vectors of the vertices
and  are respectively given by  and

. It follows that 

h, k = 1,  2, … , n Bh,k
B′h,k bh,k = 1

h (ak + ak + 1 +  … +ak + h − 1)
b′h,k = 1

h (a′k + a′k + 1 +  … +a′k + h − 1)
b′h,k − bh,k = 1

h (a′k − ak) + 1
h (a′k +1 − ak +1) +  … +1

h (a′k +h+ 1 − ak +h+ 1).
Thus, the segment  is parallel to each segment . Moreover,

 equals the average of segments . In
Figure 2 we show two 7-sided polygons whose vertices are in a parallel
projection. As we can see, their 4-Varignon polygons are in the same
parallel projection.

Bh,kB′h,k AjA′j
Bh,kB′h.k AkA′k, Ak + 1A′k + 1, … , Ak + h− 1A′k + h− 1

We can, finally, observe that all the previous results were obtained by
proving parallelism between segments through the proportionality of the
position vectors that join their extremes. Since this condition of parallelism
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FIGURE 2

continues to hold in the Euclidean space  and, more generally, in , the
previous results can be generalised to any polytope in every space
dimension.
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