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Abstract
Aiming at the problem of fast and consensus obstacle avoidance of multiple unmanned aerial systems in undirected
network, a multi-quadrotor unmanned aerial vehicles UAVs (QUAVs) finite-time consensus obstacle avoidance
algorithm is proposed. In this paper, multi-QUAVs establish communication through the leader-following method,
and the formation is led by the leader to fly to the target position automatically and avoid obstacles autonomously
through the improved artificial potential field method. The finite-time consensus protocol controls multi-QUAVs
to form a desired formation quickly, considering the existence of communication and input delay, and rigorously
proves the convergence of the proposed protocol. A trajectory segmentation strategy is added to the improved
artificial potential field method to reduce trajectory loss and improve the task execution efficiency. The simulation
results show that multi-QUAVs can be assembled to form the desired formation quickly, and the QUAV formation
can avoid obstacles and maintain the formation unchanged while avoiding obstacles.

Nomenclature
UAV Unmanned Aerial Vehicle
QUAV Quadrotor Unmanned Aerial Vehicle

1.0 Introduction
Unmanned aerial vehicles (UAVs) have the advantages of low cost, high manoeuverability,and ease of
operation [1–4]. When a single UAV completes complex tasks, its application is increasingly limited
due to insufficient payload and sensor performance. Instead, more and more UAVs are working together
to complete tasks, and the application and research of UAVs are beginning to develop towards clusters.
UAV formation can perform tasks such as border patrol, battlefield reconnaissance, pesticide spraying
and forest fire detection [5–8], which are widely used in both military and civil fields. Therefore, studying
the problem of multi-UAV formation has important practical application value.

Categorised by the form of information exchange between individuals, multi-UAVs formation can
be classified into centralised, distributed and decentralised structures [9]. In distributed control method,
all agents act as independent control units and communicate information with neighbours to achieve
state consistency control. Due to its better reliability and flexibility, this paper chooses the distributed
control method. At present, the mainstream cluster formation control algorithms mainly include leader-
following method [10], behaviour-based method [11], and virtual structure method [12]. Among them,
the leader-following method is the most widely used, with the advantages of simple structure, easy imple-
mentation and wide applicability. The leader-following method is usually combined with the consistency
method to design the formation algorithm [13].
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Consistency method was first applied to the distributed control of communication network nodes.
This method can enable the state of multiple nodes in communication network to reach a consistent
state within a certain period of time. Due to its feasibility, this method is widely used in the control of
multi-agent systems. Jadbabaie and Lin [14] applied knowledge of algebraic graph theory to theoretically
prove that when the communication topology of the Vicsek model [15] is an undirected connected graph,
all agents in the system will converge to the same state eventually. Olfati-Saber [16] studied the consensus
problem of second-order continuous multi- agent system, extended the concept of algebraic connectivity
in undirected graphs to directed graphs, and elucidated the important role of equilibrium directed graphs
in solving the average consensus problem. Ni [17] studied the second-order multi-agent consensus prob-
lem under switching topology and proved that when the concatenation set of all the communicating
topologies contains the minimum generation, the system will converge to consensus eventually.

The artificial potential field method is a distance-dominated method [18]. This method has the advan-
tages of short computation time, real-time control, and safe and smooth planned trajectory. However, it
also has disadvantages such as collision with obstacles, unreachable target and falling into local mini-
mum. For these problems, many scholars have improved the artificial potential field method. Lawrence
[19] provided general a technique for constructing guidance fields for UAV, which combines Lyapunov
stability properties to generate simple, globally stable vector fields in 3D. Goncalves [20] proposed a
method for computing artificial vector fields, which allows a UAV to converge to a specified general
curve in n-dimensional space and loop around it. Wilhelm [21] focused on the optimisation of a gradi-
ent vector field UAV trajectory following and obstacle avoidance method, which minimise the deviation
from an original trajectory. Hung [22] conducted an in-depth review of trajectory following control
strategies applicable to a wide range class of marine, ground, and aerial autonomous robotic vehicles.

UAV formation obstacle avoidance not only requires avoiding obstacles, but also ensuring a safe dis-
tance between each UAV and inter-UAV communication. Due to various reasons such as communication
links and devices, the network often experiences communication and input delay during the actual com-
munication processes [23]. Therefore, the design and analysis of consistency method for multi-UAVs
with time delay is more relevant.

The traditional consistency control can make the system state converge to the expected value when the
time is infinite, but the finite-time consensus control can make the system state converge to the expected
value within a finite time. Control algorithm in finite-time is proposed in Ref. (24). Adbessameud and
Rtayebi [25] established a formation protocol with time delay for a second-order dynamics model of
a multi-UAV system, and proved the stability of the protocol based on Lyapunov-Krasovskii theory.
Sun [26] studied the finite time consistency problem of multi-UAV systems with leaders under fixed
and switched networks by applying graph theory and Lasalle invariance principle. Ma [27] proposed a
new distributed control law to study the leader-following consensus problem for finite-time linear time-
invariant multi-agent system by assigning different priorities to each agent in the system. Shang [28]
studied a first-order multi- agent system and obtained sufficient conditions for the system to achieve
finite-time consensus under an undirected stationary topology.

Based on the earlier discussion, this paper improves on the Ref. (29) and studies obstacle avoidance
problem of QUAV formation with finite-time consensus and time delay.

The main innovations are as follows:

(1) The traditional finite-time consensus protocol is improved, and considered the existence of time
delay to accelerate the convergence speed of the system.

(2) The traditional artificial potential field method is improved, and the problems of the traditional
artificial potential field method is solved.

(3) The trajectory segmentation strategy is introduced to reduce the complexity of QUAV obstacle
avoidance environment and improve the task execution efficiency.

The rest of the paper is organised as follows. In Section 2, graph theory is given. In Section 3, a
mathematical model of a QUAV is established. In Section 4, an improved finite-time consistency method
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Figure 1. Illustration of QUAV safety radius profile.

is given with considered the existence of time delay. In Section 5, the improved artificial potential field
method is introduced. In Section 6, a finite-time consensus formation obstacle avoidance algorithm with
time delay is proposed based on the leader-following method. In Section 7, MATLAB simulation results
are given. In Section 8, conclusion is given.

2.0 Graph theory
QUAV formation consensus control covers multiple aspects such as formation reconstruction, formation
maintenance, obstacle avoidance and so on, all of which are designed based on graph theory. In graph
theory, a graph is composed of vertexes and edges, where the vertexes represent the QUAVs and the
edges represent the communication between the QUAVs.

Assuming the total number of QUAVs is n. The graph G = (V , E) consists of a vertex set V =
(1, 2, · · · , n) and an edge set E ⊆ V × V . If vertex i and vertex j are connected, then there’s an edge
(vi, vj) ∈ E, and vertex j is called a neighbour of vertex i. Graphs are divided into directed graphs and
undirected graphs, if all the edges in a graph are undirected, it is called an undirected graph; otherwise,
it is called a directed graph.

The relationship between vertex i and vertex j is representedby aij. If vertex i and vertex j are con-
nected by an edge, then aij = 1; otherwise, aij = 0. The adjacency matrix A = [aij](i, j ∈ {1, 2, · · · , n} )
is a method used in graph theory to represent a graph as a two-dimensional array, where the rows and
columns represent the vertexes in the graph, and the elements of the array represent whether there are
edges between the vertices.

The degree matrix D = diag(d1, d2, . . . , dn) is diagonal arrays, and the elements on the diagonal rep-
resent the degrees of a single vertex. In an undirected graph, the degree d(vi) of a vertex is the number
of edges of vertex i. In a directed graph, degree is divided into two concepts: in-degree and out-degree.
The in-degree is the number of directed edges that end at the vertex; the out-degree is the number of
directed edges starting from the vertex.

The Laplace matrix of a graph is related to the degree matrix and the adjacency matrix by L = D − A.

3.0 Mathematical models
The UAV model used in this paper is a QUAV, assuming that the safety radius of the centre of the QUAV
is RS and the communication radius is RC. The distance between the centre of the QUAV and the surface
of the obstacle needs to be greater than the safety radius; otherwise, a collision may occur, resulting in
a crash. The distance between any two QUAV centres needs to be less than the communication radius;
otherwise it will cause the QUAV to lose contact. The safety radius and communication radius are
illustrated in Fig. 1.
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Figure 2. Illustration of obstacle safety radius profile.

The continuous-time multi-QUAVs linear model used in this paper is:

ẋi(t) = ui(t), i ∈ N (1)

where, xi(t) ∈ R and ui(t) ∈ R denote the state and control input of QUAV i at moment t, respectively.
Due to the fact that QUAV is a linear model, it is treated as a mass point in the artificial potential

field method, which contradicts the safety radius that the QUAV needs to maintain. It is necessary to
attach the safety radius of the QUAV to the obstacle, which the QUAV is treated as a mass point and
no longer requires a safety radius. Assuming the actual radius of the spherical obstacle is RO, the total
radius R = RO + RS. The radius of the obstacle is shown in Fig. 2.

4.0 Finite-time consensus with time delay
The consensus protocol with equal communication delay, input delay and undirected connected graph
network topology is as follows:

ui(t) =
∑
Vj∈Ni

aij

(
xj(t − τ ) − xi(t − τ )

)
(2)

where, τ denotes the time delay; when τ ∈ [0, π/2λn) the system can achieve consistent; λn is the
maximum eigenvalue of the Laplace matrix of the system.
Definition 1 [30] If there exists an expected time T0 ∈ [0, +∞), such that for any initial state, the multi-
QUAVs satisfy lim

t→T0

‖xi(t) − x0(t)‖ = 0 and xi(t) = x0(t), ∀t � T0, i ∈ I, then it can be said that finite-time
consensus control has been achieved.

In Ref. (31), Sun and Guan proposed the following finite-time consensus protocol:

ui(t) =
∑
j∈Ni

aijsigα
(
xj(t) − xi(t)

)+ ai0sigα
(
x0(t) − xi(t)

)
(3)

where 0 < α < 1.

Definition 2 sigα(xi) = |xi|αsgn (xi), sgn() is a symbolic function, defined as sgn(r) =

⎧⎪⎨
⎪⎩

1, r > 0

0, r = 0

−1, r < 0

.

Considering the existence of time delay based on protocol (3), protocol (4) is obtained:

ui(t) =
∑
j∈Ni

aijsig
(
xj(t − τ ) − xi(t − τ )

)α + ai0sig
(
x0(t − τ ) − xi(t − τ )

)α (4)

In order to accelerate the convergence speed of protocol (4), this paper has made improvements and
proposed protocol (5):
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ui(t) =
∑
j∈Ni

aijsig
(
xj(t − τ ) − xi(t − τ )

)α + ai0sig
(
x0(t − τ ) − xi(t − τ )

)α (5)

+ β
∑
j∈Ni

aij

(
xj(t − τ ) − xi(t − τ )

)+ βai0

(
x0(t − τ ) − xi(t − τ )

)

where, β > 0, the larger β is, the faster system converges.
Next, it will be proven that protocol (5) can achieve finite-time consensus and has a faster convergence

speed than protocol (4). Before that, the following lemmas need to be introduced.

Lemma 1: [32] Suppose that the function ϕ : R2 → R satisfies the condition ϕ
(
xi, xj

)= −ϕ
(
xj, xi

)
,

∀i, j ∈ I, i 	= j, and then
N∑

i=1

∑
j∈Ni

aijyiϕ
(
xj, xi

)= − 1
2

∑
(vi ,vj)∈E

aij

(
yj − yi

)
ϕ
(
xj, xi

)
is satisfied for any undi-

rected graph and series y1, y2, . . . , yn.

Lemma 2: [33] If y1, y2, . . . , yn > 0 and 0 < p ≤ 1, then
n∑

i=1

yp
i �

(
n∑

i=1

yi

)p

.

Lemma 3: (34) L(A) = [
lij

] ∈ Rn×n denotes the Laplace matrix of graph G(A), which has the following
properties:

(1) xTL(A)x = 1
2

n∑
i,j=1

aij

(
xj − xi

)2, the semi positive characterisation of L(A) indicates that all its

eigenvalues are real numbers and not less than zero.
(2) If the graph G(A) is connected, the second smallest eigenvalue of L(A) is greater than zero,

denoted by λ2 (LA), which is called as the algebraic connectivity of the graph G(A).
(3) The algebraic connectivity of the graph G(A) is equal to min

x 	=0n ,1T
n x=0

xTL(A)x/xTx, and if 1T
n x = 0,

then xTL(A)x � λ2 (LA) xTx.
(4) If graph G(A) is an undirected connected graph, then L(A) + Diag (b1, . . . , bn) is positive

definite, where bi � 0, ∀i ∈ I and there exists at least one bi > 0.

Lemma 4: [35] Consider the non-Lipschitz continuous nonlinear systems ẋ = f (x) and f (0) = 0, sup-
pose there is a differential function V(x) defined in the neighbourhood of the origin, and there exist
c > 0 and 0 < α < 1 such that V(x) is positive definite and V̇(x) + cVα ≤ 0, and then the origin is con-
sidered locally finite-time stable. The finite-time Tdepends on the initial state x0, and satisfy T(x0) ≤
V(x0)1−α

/c(1 − α).

Next, using the Lyapunov function method, it is shown that the control of multi-QUAVs through
protocol (5) can achieve state consensus within a finite-time.

Proof: Define the position error

ei(t) = xi(t − τ ) − x0(t − τ ), ∀i ∈ I (6)

This is obtained through Equations (1) and (6):

ėi(t) =
∑
j∈Ni

aijsig
(
ej(t) − ei(t)

)α − ai0sig(ei(t))
α + β

∑
j∈Ni

aij

(
ej(t) − ei(t)

)− βai0ei(t) (7)

=
n∑

j=0

aijsig
(
ej(t) − ei(t)

)α + β

n∑
j=0

aij

(
ej(t) − ei(t)

)
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The Lyapunov function V1(t) =
n∑

i=0

e2
i (t) chosen according to Lemma 1 is given by Equation (7):

V̇1(t) = 2
n∑

i=0

ei(t)ėi(t)

= 2
n∑

i=0

ei(t)

[
n∑

j=0

aijsig
(
ej(t) − ei(t)

)α + β

n∑
j=0

aij

(
ej(t) − ei(t)

)]

= 2
n∑

i=0

ei(t)
n∑

j=0

aijsig
(
ej(t) − ei(t)

)α + 2β

n∑
i=0

ei(t)
n∑

j=0

aij

(
ej(t) − ei(t)

)

= −
n∑

i=0

n∑
j=0

aijsig
(
ej(t) − ei(t)

)α (
ej(t) − ei(t)

)− β

n∑
i=0

n∑
j=0

aij

(
ej(t) − ei(t)

)2 (8)

= −
n∑

i=0

n∑
j=0

aij

(
ej(t) − ei(t)

)1+α − β

n∑
i=0

n∑
j=0

aij

(
ej(t) − ei(t)

)2

< −
n∑

i=0

n∑
j=0

aij

(
ej(t) − ei(t)

)1+α

= −
n∑

i=0

n∑
j=0

[
a

2
1+α

ij

(
ej(t) − ei(t)

)] 1+α
2

From Lemma 2, it can be concluded that:

V̇1(t) ≤ −
⎡
⎣ n∑

i=0

(
n∑

j=0

a
2

1+α

ij

(
ej(t) − ei(t)

))2
⎤
⎦

1+α
2

(9)

Let B = L(A) + Diag(a10, . . . , an0), from Lemma 3, we can conclude that:

n∑
i=0

[
n∑

j=0

a
2

1+α

ij

(
ej(t) − ei(t)

)]2

V1(t)
= 2eT

i (t)Bei(t)

eT
i (t)ei(t)

� 2λ2 (LB) (10)

Combining Equations (9) and (10) yields V̇1(t) ≤ −[2λ2 (LB)]
1+α

2 V(t)
1+α

2 , and by Lemma 4 T(x(0)) ≤
2V1(0)

1−α
2

(1+α)[2λ2(LB)]
1+α

2
. And that’s the end of the proof.

In the following, by choosing the same Lyapunov function V2(t) =
n∑

i=0

e2
i (t), it is shown that the con-

vergence of the multi-QUAV formation under protocol (5) is faster than that under protocol (4) in the
same way as described earlier.

V̇2(t) = 2
n∑

i=0

ei(t)ėi(t)

= 2
n∑

i=0

ei(t)

[
n∑

j=0

aijsig
(
ej(t) − ei(t)

)α]
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Figure 3. Illustration of artificial potential field method.

= 2
n∑

i=0

ei(t)
n∑

j=0

aijsig
(
ej(t) − ei(t)

)α

= −
n∑

i=0

n∑
j=0

aijsig
(
ej(t) − ei(t)

)α (
ej(t) − ei(t)

)
(11)

= −
n∑

i=0

n∑
j=0

aij

(
ej(t) − ei(t)

)1+α

From Equation (8), we can obtain V̇1(t) = −
n∑

i=0

n∑
j=0

aij

(
ej(t) − ei(t)

)1+α − β
n∑

i=0

n∑
j=0

aij

(
ej(t) − ei(t)

)2,

and from β > 0 easily know V̇2(t) < V̇1(t). Therefore, the convergence speed of protocol (5) is faster
than that of protocol (4).

5.0 Artificial potential field method
5.1 Traditional artificial potential field method
The traditional artificial potential field method is created based on the principle of force in physics. It
regards the controlled object as a particle and studies its motion in a virtual potential field. The QUAV
moves towards the target position under the influence of potential field and avoids obstacles during
this process. The whole potential field consists of two parts: gravitational potential field and repulsive
potential field. By calculating the negative gradient of the gravitational potential field and repulsive
potential field acting on the QUAV, gravity and repulsive force are obtained, where the force at the target
point is gravity and the force at the obstacle is repulsive force. Under the combined action of gravity
and repulsion, the QUAV can move toward the target point while avoiding obstacles, and a smooth and
continuous motion trajectory can be generated during the whole movement process. The principle of
artificial potential field method is shown in Fig. 3.

The traditional artificial potential field method has the following shortcomings [36]:

(1) Collision with obstacles. When the distance between the QUAV and the target point is too far,
the attractive force on it will be much greater than the repulsive force, and it may collide with
obstacles during flight.

(2) Target unreachability. When the target point is located near an obstacle and the QUAV approaches
the target point, the repulsive force applied to the QUAV is too strong relative to the attractive
force, causing the QUAV to hover or remain stationary in a certain area.
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(3) Falling into a local minimum. When the QUAV moves to a non-target point location, it will fall
into a local minimum due to force equilibrium, causing it to oscillate or come to rest repeatedly
near the local minimum point.

5.2 Improved artificial potential field method
The attractive potential field function is improved to address the problem of excessive attractive force
caused by the QUAV being too far away from the target. Set the attraction action threshold for segment to
avoid the problem of excessive attraction force. The modified attractive potential field function is shown
in Equation (12):

Uatt(q) =
{

1
2
kattdgoal

2, dgoal ≤ d0

d0kattdgoal − 1
2
kattd2

0, dgoal > d0

(12)

where, katt is the attractive coefficient, d0 is the impact distance threshold of the target point, q is the
spatial position of the QUAV, and dgoal =

∥∥q − qgoal

∥∥
2

is the Euclidean distance between the QUAV and
the target point.

The attraction force is the negative gradient of the attractive potential field, as shown in Equation
(13):

Fatt(q) = −∇Uatt(q) =
{

katt

(
qgoal − q

)
, dgoal ≤ d0

d0
dgoal

katt

(
qgoal − q

)
, dgoal > d0

(13)

For the target unreachability problem, an improved repulsive potential field function is introduced,
which combines the distance between the target point and the QUAV to ensure that the potential field is
globally minimised at the target point only. The improved repulsive potential field function is shown in
Equation (14):

Urep(q) =
{

1
2
krep( 1

dobs
− 1

dmax
)

2
d2

goal, dobs ≤ dmax

0, dobs > dmax

(14)

where, Krep is the repulsive coefficient, d0 is the maximum impact distance of an obstacle, and dobs =
‖q − qobs‖2 is the Euclidean distance between the QUAV and the obstacle.

The repulsive force is the negative gradient of the repulsive potential field, as shown in Equation (15):

Frep(q) = −∇Urep(q) =
{

Frep1n1 + Frep2n2, dobs ≤ dmax

0, dobs > dmax

(15)

where, n1and n2 denote the unit direction vectors along the directions Frep1 and Frep2. The expressions
for Frep1 and Frep2 are shown in Equation (16):⎧⎨

⎩
Frep1 = krep

(
1

dobs
− 1

dmax

)
d2

goal

d2
obs

Frep2 = n
2
krep

(
1

dobs
− 1

dmax

)2

dgoal

(16)

where Frep1 and Frep2 are the components of the repulsive force in two different directions, respectively.
The direction of vector points from the obstacle to the QUAV, which is the repulsive force component;

the direction of vector points from the QUAV to the target point and is the attractive force component.
As shown in Fig. 4.

It is important to note that the QUAVs in the formation also need to avoid collisions with each other.
QUAVs can consider each other as dynamic obstacles, obtain the positions of other QUAVs, and avoid
collisions through artificial potential field methods.
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Figure 4. Illustration of repulsive force calculation method.

The total potential field consists of attractive potential field and repulsive potential field, as shown in
Equation (17):

U(q) = Uatt(q) + Urep(q) (17)

The combined force is equal to the negative gradient of the total potential field, as shown in Equation
(18):

F(q) = −∇U(q) (18)

For the local minimum problem, introduce a random perturbation and set the minimum velocity as
the condition for triggering the random perturbation. If the velocity components vx, vy, vz of the QUAV
in all three directions of x, y, z are less than the minimum velocity, the random perturbation is triggered,
as shown in Equation (19):

vrand =
⎡
⎢⎣

vx

vy

vz

⎤
⎥⎦=

⎡
⎢⎣

λ(2rand − 1)

λ(2rand − 1)

λ(2rand − 1)

⎤
⎥⎦ , vx < vmin vy < vmin vz < vmin (19)

where, is a random function, is the minimum velocity, λ is a coefficient with a small absolute value, and
2rand is a random number in the range of 0 to 1.

5.3 Constraint conditions
In order to avoid collision between QUAVs and obstacles due to excessive speed, a maximum speed
constraint is introduced and the constraints are vx, vy, vz.

Taking the velocity component of the X-axis as an example,and calculate the velocity change at each
sampling time, as shown in Equation (20):

�vx(t) = vx(t) − vx(t − 1) (20)

where, vx(t) is the speed of the QUAV at the current sampling time, vx(t − 1) is the speed of the QUAV
at the last sampling time, and �vx(t) is the amount of change in the velocity component.

Then, the velocity component of the QUAV at the next sampling time is calculated, as shown in
Equation (21):
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v0x(t + 1) =
{

min {v(t) + �v(t), v(t) + ax · dt} , �v(t) > 0

max {v(t) + �v(t), v(t) − ax · dt} , �v(t) < 0

vx(t + 1) =
{

min {v0x(t + 1), +vx max} , v0x(t + 1) > 0

max {v0x(t + 1), −vx max} , v0x(t + 1) < 0

(21)

where, vx max is the maximum velocity component of the QUAV, ax is the acceleration component. The
values of vx max and ax need to meet the requirement that the QUAV can avoid collision by decelerat-
ing when encountering obstacles. v0x(t + 1) plays a transitional role in determining the vx(t + 1) of the
velocity component of the QUAV at the next sampling time.

5.4 Trajectory segmentation strategy
Collision detection and avoidance are important components of the trajectory strategy, and in environ-
ments with long total paths or many obstacles, the artificial potential field method has some randomness
in trajectory planning, and the result may not be the optimal trajectory. This section improves the artificial
potential field method by segmenting the total path to reduce the complexity of the obstacle environment.

The obstacles encountered by QUAVs during actual flight are mostly irregular three-dimensional
objects. If the repulsive potential field is calculated at each trajectory point of the obstacle boundary
points, it will result in a strategic trajectory with frequent turning and easy to oscillate, which does
not satisfy the QUAV shortest trajectory segment constraint. For irregular concave and convex body
obstacles, the general solution is to create a complete envelope of an outer jointed sphere for them and
use the outer jointed sphere as a new obstacle to be avoided.

The following is an example of a spherical obstacle to introduce the calculation method of trajectory
segmentation strategy:

(1) If the starting point S(xS, yS, zS) and the ending point G(xG, yG, zG) are known, draw a line LSG

through these two points. Let its direction vector be (dx, dy, dz). The parametric equation of LSG

is given in Equation (22): ⎧⎪⎨
⎪⎩

x = xS + dx · t

y = yS + dy · t

z = zS + dz · t

(22)

(2) Judgement whether the line LSG intersects with an obstacle. If LSG does not intersect with any
obstacle, LSG is the target trajectory; otherwise, judgement the spherical centre C(xC, yC,zC) of
the obstacle and its safe radius rC that intersects with LSG and is closest to the starting point. The
spherical expression of the obstacle is shown in Equation (23):

(x − xC)
2 + (y − yC)

2 + (z − zC)
2 = r2

C (23)

(3) Find the value of the parameter t by combining Equations (22) and (23), and substitute it into
Equation (22) to obtain the two intersection points A and B between the line and the sphere.
Calculate the coordinates of the midpoint M of the line segment AB.

(4) Connect the centre of the sphere C and the point M to obtain the line LCM. Calculate the other
two intersections E and F of LCM of the sphere in the same way as above.

(5) Calculate and compare the distances between point E and point F from the starting point S
respectively. Use the point closer to the starting point S as the new target point.

(6) Execute the formation consensus obstacle avoidance algorithm, when the leader reaches a new
target position, use this position as a new starting point. Repeat steps (1)–(5) to find the next new
target point until the QUAV reaches the desired target point.
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Figure 5. Illustration of leader-following method.

Figure 6. Illustration of QUAV formation control structure.

The trajectory segmentation strategy can reduce the complexity of the QUAV flight environment. By
calculating the sub-target points, the planned trajectory is guaranteed to be the optimal solution, which
reduces the flight cost and improves the task execution efficiency.

6.0 Mutli-quavs formation consensus obstacle avoidance algorithm
The formation control adopts the leader-following method in distributed control, and its basic idea is
that: the leader receives commands and controls the entire formation to perform the expected task. The
followers follow the leader based on their expected positions relative to the leader. The leader-following
method is illustrated in Fig. 5:

The control protocol of the leader is shown in Equation (24):

u0(t) =
∑
i∈Ni

ai0�xi0(t) + F0(t) + vrand (24)

where �xi0(t) is the relative position of the leader and the follower i at moment t, F0(t) is the combined
force on the leader at moment t.

The control protocol of the follower is shown in Equation (25):

ui(t) =
∑
j∈Ni

aij

(
xj(t − τ ) − xi(t − τ ) − �xij(t)

)+ Frep(i)(t) (25)

where �xij(t) denotes the relative position of QUAV i and QUAV j at moment t, and Frep(i)(t) the obstacle
repulsive force on QUAV i at moment t.
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Table 1. Position coordinates of six QUAVs

Name Initial position Desired position
Follower 1 (2, 6, 0) (−2, 0, 0)
Follower 2 (6, 2, 0) (0, −2, 0)
Follower 3 (2, 4, 0) (−4, 0, 0)
Follower 4 (2, 2, 0) (−2, −2, 0)
Follower 5 (4, 2, 0) (0, −4, 0)
Leader (4, 4, 0) (0, 0, 0)

Figure 7. Formation consensus of six QUAVs.

After receiving the command signal, the leader QUAV sends control command to the follow-
ers through the formation consensus obstacle avoidance algorithm. The followers enter the range of
influence of obstacles and avoid them autonomously, thus realising a consistent state throughout the
formation. The QUAV formation control structure is shown in Fig. 6.
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Table 2. Position coordinates of four QUAVs

Name Initial position Desired position
Follower 1 (1, 2, 1) (−2, 0, 0)
Follower 2 (1, 1, 0.7) (−1, −1, 0)
Follower 3 (2, 1, 0.3) (0, −2, 0)
Leader (2, 2, 0) (0, 0, 0)

Figure 8. Formation consensus of four QUAVs.

In order to realise the QUAV formation to maintain formation and avoid obstacles autonomously,
adaptive inter-QUAV communication weights are considered in this paper. Add a weight to the algorithm
ωij(t) that varies with the position of QUAV i and QUAV j, and the system reaches state consensus when∥∥xi(t) − xj(t)

∥∥→ 0. The designed multi-QUAVs finite-time consensus obstacle avoidance protocol is
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Figure 8. (Continued)

shown in Equation (26):

ui(t) = ωij(t)[
∑
j∈Ni

aijsig(xj(t − τ ) − xi(t − τ ))α + ai0sig(x0(t − τ ) − xi(t − τ ))α

+ γ
∑
j∈Ni

aij(xj(t − τ ) − xi(t − τ )) + γ ai0(x0(t − τ ) − xi(t − τ ))] + Fi(t)
(26)

where ωij(t) = 2 − e−(xj(t−τ )−xi(t−τ ))2 , Fi(t) denotes the combined force of the artificial potential field on the
QUAV i at moment t.

7.0 Numerical simulation
The effectiveness of the algorithm in an environment without obstacles is verified by MATLAB simu-
lation. QUAVs have a safety radius of RS = 0.25m and a communication radius of RC = 3.5m, and the
safety radius between two QUAVs is R = 2 × RS = 0.5m. The desired positions in Table 1 indicate the
position of each QUAV in the desired formation. Based on the position of the leader as a reference, the
followers move towards the desired position to form the desired formation.

Each QUAV quickly forms the desired formation under the control of the finite-time consensus proto-
col. The leader autonomously plans the flight trajectory, and the followers maintain the desired formation
and follow the movement of the leader under the control of the consensus agreement. The simulation
results of QUAV formation consensus are shown in Fig. 7.

Then, the effectiveness of the algorithm(26) is verified by MATLAB simulation, and both the
network topology and the desired formation of the QUAV formation are shown in Fig. 4. The
radius of the spherical obstacle RO = 0.25m. The safe radius between the QUAV and the obstacle
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Figure 9. Distance of multi-QUAVs from obstacles.

R = RO + RS = 0.5m. The attraction gain coefficient Katt = 2, repulsion gain coefficient Krep = 0.0002,
target influence distance threshold d0 = 2m, maximum obstacle influence distance dmax = 1m, and the
coordinates of the target point are (20, 20, 10). Several spherical obstacles are randomly generated on
the flight trajectory of QUAV formation, with the spherical centre coordinates are (683), (863), (984),
(9105), (1185), (1195), (11116), (12116), (12137), (13117), (13148). Maximum velocity constraint is
vx max = vy max = vz max = 3m/s, vmax = 3

√
3m/s, acceleration ax = ay = az = 1m/s2. The sampling time is

�t = 1ms, time delay τ = 10ms, finite-time coefficient α = 0.5, finite-time coefficient γ = 4. The initial
and desired position coordinates of each UAV are shown in Table 2.

The algorithm requires that multi-QUAVs to quickly assemble to form a desired formation, and the
QUAV formation should avoid obstacles in the airspace and reach the target position while maintaining
the desired formation. The simulation results are shown in Fig. 8. The spherical shape in Fig. 8 represents
an obstacle, and its radius is equal to the sum of the actual radius of the obstacle and the safety radius.
Multi-QUAVs fly to the target position under the guidance of the leader, and the end of the mission is
signaled when the leader reaches the target position. From the four angles of Fig. 8, it can be clearly seen
that the multi-QUAVs can quickly assemble to form the desired formation. The QUAV formation can
autonomously avoid obstacles while flying to the target position, and the formation is well maintained.

Figure 9 shows the distance between the QUAVs and the obstacles. Observe the minimum value of
the Y-axis in the figure. If it is greater than the total radius of the obstacle, it indicates that there is no
collision with the obstacle. The distance between the centres of the 4 QUAVs and the centres of the 11
obstacles is always greater than 0.5m, indicating that each QUAV can avoid obstacles.

Figure 10 shows a comparative simulation of QUAV formation consistency obstacle avoidance under
the action of traditional artificial potential field method, with the same other conditions. The results indi-
cate that multi-QUAVs cannot maintain the desired formation during obstacle avoidance, demonstrating
the effectiveness of the algorithm proposed in this paper.

Figure 11 shows the adjacent distance between any two QUAVs, where D12 denotes the distance
between follower 1 and follower 2; D10 denotes the distance between follower 1 and the leader, and so
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Figure 10. Comparison of QUAV formation consistency obstacle avoidance.

Figure 11. Position error of multi-QUAVs.

on. The distance between any two QUAVs is greater than the safe radius and less than the communica-
tion radius. This indicates that QUAVs do not collide with each other and are always able to establish
communication. After about 1.6s, the distance between any two QUAVs remains unchanged, indicating
that the formation is well maintained.
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Figure 12. Position consensus of multi-QUAVs.

To reflect the QUAV formation consensus motion under this algorithm more clearly, the convergence
of the formation’s positions on X-axis, Y-axis and Z-axis are simulated by MATLAB. The simulation
results are shown in Fig. 12. The leader arrives at the target position at about 11.3s. From Fig. 12(c),
it can be seen that the multi-QUAVs complete desired formation at about 1.6s, and the heights of each
QUAV on the Z-axis are always synchronised during the subsequent flight.

Simulation of position error curves of each follower and leader, the spacing between the follower
and the leader in the desired formation on the axis is �x = [−2, −1, 0, 0], �y = [0, −1, −2, 0], �z =
[0, 0, 0, 0], respectively, and the QUAV position error � = [−2, −√

2, −2, 0]. In Fig. 13, the position
error of each follower and leader is the same as the predetermined position, which indicates that the
multi-QUAVs can form and maintain the desired formation.

Figure 14 shows a simulation comparison of the Z-axis position error without trajectory segmentation
strategy and improved finite-time consensus control, with the same other conditions. The Z-axis position
error are selected for comparison, as the positions of each QUAV in the required formation are different
on the X-axis and Y-axis, while and the required heights for the Z-axis are the same, but the initial heights
are different. The multi-QUAVs can only form the desired formation at about 8s, and the leader reaches
the target position at about 12.3s. It is verified that the multi-QUAV finite-time consensus protocol
enables multi-QUAVs to quickly assemble to form a desired formation, and the trajectory segmentation
strategy can improve task execution efficiency.

Figure 15(a)–(c) show the velocity components of the QUAVs with the maximum constraint of 3m/s,
and Fig. 15(d) shows the velocity of the QUAVs with the maximum constraint of 3

√
3m/s. None of the
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Figure 13. Positional errors of leader and followers.

Figure 14. Comparison of position errors of Z-axis.
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Figure 15. Speeds of multi-QUAVs.

QUAVs exceeded the maximum velocity constraint and converged uniformly in approximately 1.6s.
Afterwards, each QUAV has the same speed, indicating that the formation is well maintained.

8.0 Conclusion
A finite time consensus obstacle avoidance algorithm for QUAV formation with time delay was designed
by combining an improved finite time consensus protocol with an improved artificial potential field
method. The multi-QUAVs can be quickly assembled to form the desired formation through the improved
finite-time consensus protocol. Under the improved artificial potential field method, the QUAV forma-
tion flies towards the target position and avoids obstacles. The trajectory segmentation strategy reduces
the complexity of obstacle avoidance environments. The effectiveness of the proposed method is ver-
ified by MATLAB simulation. The state convergence time for multi-QUAVs is much faster than the
traditional finite-time consensus control method. QUAV formation can successfully avoid obstacles and
reach the target position faster than without trajectory segmentation strategy. Multi-QUAVs can form the
desired formation and fly to the target position faster, maintain the formation during obstacle avoidance
and improve task execution efficiency.
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