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Stall cells are transverse cellular patterns that often appear on the suction side of
airfoils near stalling conditions. Wind-tunnel experiments on a NACA4412 airfoil at
Reynolds number Re = 3.5 × 105 show that they appear for angles of attack larger than
α = 11.5◦ (±0.5◦). Their onset is further investigated based on global stability analyses
of turbulent mean flows computed with the Reynolds-averaged Navier–Stokes (RANS)
equations. Using the classical Spalart–Allmaras turbulence model and following Plante
et al. (J. Fluid Mech., vol. 908, 2021, A16), we first show that a three-dimensional
stationary mode becomes unstable for a critical angle of attack α = 15.5◦ which is
much larger than in the experiments. A data-consistent RANS model is then proposed
to reinvestigate the onset of these stall cells. Through an adjoint-based data-assimilation
approach, several corrections in the turbulence model equation are identified to minimize
the differences between assimilated and reference mean-velocity fields, the latter reference
field being extracted from direct numerical simulations. Linear stability analysis around
the assimilated mean flow obtained with the best correction is performed first using a
perturbed eddy-viscosity approach which requires the linearization of both RANS and
turbulence model equations. The three-dimensional stationary mode becomes unstable for
angle α = 11◦ which is in significantly better agreement with the experimental results.
The interest of this perturbed eddy-viscosity approach is demonstrated by comparing with
results of two frozen eddy-viscosity approaches that neglect the perturbation of the eddy
viscosity. Both approaches predict the primary destabilization of a higher-wavenumber
mode which is not experimentally observed. Uncertainties in the stability results are
quantified through a sensitivity analysis of the stall cell mode’s eigenvalue with respect
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to residual mean-flow velocity errors. The impact of the correction field on the results of
stability analysis is finally assessed.

Key words: aerodynamics, instability, turbulent flows

1. Introduction

The design of lifting surfaces, such as aeroplane wings, helicopter blades and engine
or wind turbine blades, is strongly impacted by the so-called stall phenomenon. It is
classically described as the sudden drop of lift that is experienced by the lifting surface
when the angle of attack goes beyond a critical value. Appearing for airfoil flows that
are characterized by chord-based Reynolds number Re > 104, airfoil stall is associated
with the detachment of the laminar or turbulent boundary layer on the suction side
of the airfoil, resulting in massive flow separation. The numerical simulation of such
high-Reynolds-number flows is still nowadays a challenge when modelling the turbulent
flow with the Reynolds-averaged Navier–Stokes (RANS) equations mainly because they
are known to fail at reproducing massive flow separation (Spalart 1997). From a more
fundamental perspective, there are also complex nonlinear flow phenomena occurring
near stalling conditions such as flow hysteresis (Mueller 1985; Hristov & Ansell 2018),
low-frequency oscillations (Zaman, McKinzie & Rumsey 1989; Broeren & Bragg 2001)
and three-dimensional stall cells (Winkelman & Barlow 1980; Schewe 2001). This paper
aims at investigating the onset of stall cells on an unswept airfoil based on wind-tunnel
experimental results, high- and low-fidelity numerical simulations, their merging through
data assimilation and global stability analyses.

1.1. Experimental and numerical studies and stability analysis of stall cells
Stall cells, also referred to as owl-faced structures, are three-dimensional cellular patterns
that appear on the suction side of airfoils in a narrow range of angles of attack near stalling
conditions. Initiated by the flow separation near the trailing edge, stall cells result in a
spanwise modulation of the separation line, while the three-dimensional separated flow is
organized into counter-rotating vortices concentrating around focal points. Such structures
were first observed by Gregory et al. (1971) and Moss & Murdin (1971) through the use
of oil and smoke visualization. In these early experimental studies, the wingspan occupied
the entire width of the wind tunnel and the authors suggested that the phenomenon
might be caused by the wind tunnel’s sidewalls. Later experimental studies performed
on finite-aspect-ratio wings with free wing tips by Winkelman & Barlow (1980) and
Schewe (2001) also reported the formation of stall cells, thus disproving the sidewall effect
hypothesis. The wing’s aspect ratio still plays a role in the selection of stall cell numbers
since they observed that the latter decreases as the aspect ratio of the model decreases.
The effects of Reynolds number and wing aspect ratio on the formation of stall cells was
investigated by Manolesos & Voutsinas (2013). They showed that the critical angle of
attack at which stall cells appear does not depend on the aspect ratio but rather on the
airfoil’s profile. A linear relationship between the critical angle and the Reynolds number
was also established.

Three-dimensional numerical simulations based on RANS models have proven able to
capture stall cells. We refer the reader to Manni, Nishino & Delafin (2016) for a review of
early studies performed on several airfoil geometries at chord-based Reynolds number in
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the range 3 × 104 � Re � 5 × 106. Those authors specifically investigated the formation
of stall cells around a NACA0012 airfoil at Re = 106 using a large computational domain
in the spanwise direction of length Lz = 10 (made non-dimensional with the chord) so
as to minimize the influence of the periodic spanwise boundary conditions. For angles
of attack 17◦ � α � 19◦, they reported the existence of stall cells characterized by
(non-dimensional) spanwise lengths varying in the range 1.4 � λz � 1.8 when changing
the angle of attack. Liu & Nishino (2018) also reported the unsteady behaviour of such
stall cells for some angles of attack for the same airfoil. More recently, Plante et al. (2021)
investigated the formation of stall cells around a NACA4412 airfoil at Re = 350 000 and
at α = 15◦ of size λz = 1.5, considering computational domains with a spanwise extent
of Lz = 6 or Lz = 12. While those studies demonstrated the capability of capturing stall
cells within the RANS framework, none of them carefully investigated the accuracy of the
RANS simulations to determine the onset of stall cells, and in particular the critical angle
of attack for a given Reynolds number. One reason is that comparison with results from
turbulence-resolving simulations such as large-eddy simulations (LES) or direct numerical
simulations (DNS) is still nowadays difficult due to the significant computational cost
of these simulations. Indeed, computational domains extending on several chords in the
spanwise direction are needed to capture large-scale stall cells while fine grid resolutions
are required to resolve the finest flow structures in the turbulent boundary layers. Direct
numerical simulations of the turbulent flow around a NACA4412 airfoil at Reynolds
number 350 000 � Re � 400 000 have been performed by Hosseini et al. (2016) and
Gleize, Costes & Mary (2022) with computational domains of short extent in the spanwise
direction (Lz = 0.1 and Lz = 0.4, respectively), therefore preventing the appearance of
stall cells. More recently, Bouchard et al. (2022) performed hybrid RANS/LES simulations
of the turbulent flow around an OA209 airfoil at Re = 106 using a computational domain
with Lz = c to investigate the dynamics of three-dimensional stall cells. As these studies
are very seldom reported in the literature, limits of RANS models in predicting the
occurrence of stall cells can be mainly discussed by comparison with experimental results.
The first objective of this paper is therefore to identify and characterize deficiencies in
RANS modelling that preclude it from accurately capturing the onset of stall cells on a
NACA4412 airfoil by comparing experimental and simulation results.

Aside from experimental and direct numerical analyses, the onset of stall has also been
investigated through stability analyses. Early theoretical investigations on the physical
mechanism for the appearance of stall cells are based on inviscid theory. Weihs &
Katz (1983) proposed that a Crow instability is responsible for the three-dimensional
modulation of the vortex filament associated with the recirculation region on the suction
side of the airfoil. Later, Spalart (2014) derived a simple criterion based on the lifting line
theory stating that stall cells appear when the lift curve CL(α) exhibits a negative slope.
Gross, Fasel & Gaster (2015) also derived a simple formula to determine the wavelength
of such stall cells. More recently, Plante, Laurendeau & Dandois (2022) extended such an
inviscid analysis using a lifting surface model. At the same time, global stability analyses
of two-dimensional steady flows, that are solutions of the Navier–Stokes equations, were
successfully applied to identify the existence of three-dimensional stationary global modes
in laminar recirculation flows (Theofilis 2003). Such three-dimensional modes were found
to be the primary instability in laminar recirculation flows behind a backward-facing step
(Barkley, Gomes & Henderson 2000; Lanzerstorfer & Kuhlmann 2012), a bump (Gallaire,
Marquillie & Ehrenstein 2007), a curved duct (Marquet et al. 2009) or on a flat plate
(Rodriguez & Theofilis 2010). Based on such encouraging results, Rodríguez & Theofilis
(2011) performed a global stability analysis of the flow around a Joukowski airfoil at
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Re = 200 and identified a three-dimensional stationary mode that, once superimposed
to the steady flow, gives surface streamlines that are similar to stall cells observed at
higher Reynolds numbers. This motivated other studies (Zhang & Samtaney 2016; He et al.
2017; Nastro et al. 2023) on the global stability analysis of airfoil flows at low Reynolds
numbers (Re � 1000). They all showed that this mode is not the primary instability, which
is rather a two-dimensional oscillatory mode that leads to the classical von Kármán vortex
shedding in the airfoil’s wake. To tackle the linear stability analysis of turbulent mean
flows for typical values of the Reynolds number Re ∼ 105 where stall cells are observed
experimentally, Plante et al. (2021) recently performed a global stability analysis in the
framework of the RANS equations. Investigating the turbulent flow around a NACA4412
airfoil at Re = 350 000, they showed not only that a three-dimensional stationary mode is
the primary instability appearing for α ∼ 15◦, but also that its nonlinear evolution leads to
the formation of stall cells around the wing. However, global stability analysis performed
with RANS equations is likely to suffer from well-known deficiencies of turbulent models
in accurately simulating massive flow separation (Spalart 1997), as further discussed in
the following.

1.2. Frozen and perturbed eddy-viscosity approaches in linear mean-flow analyses
The reconstruction of coherent fluctuations from linear analysis around a turbulent mean
flow has received a lot of attention in the past decade. Most of the recent studies can be
classified into three different approaches depending on the considered linearized operator.
In the no eddy-viscosity approach (or ν-model according to Morra et al. (2019)), the flow
variables are simply decomposed into time-averaged and fluctuating components. The
exact governing equations for the latter are the linearized Navier–Stokes equations forced
by nonlinear terms. In the quasi-laminar stability approach proposed by Mettot, Sipp &
Bézard (2014), the nonlinear terms are simply neglected and an eigenvalue analysis of
the Navier–Stokes operator linearized around the turbulent mean flow is performed to
retrieve the turbulent fluctuations. The authors applied such an analysis to reconstruct
the low-frequency oscillations in the turbulent wake of a D-shaped cylinder. Instead of
neglecting the nonlinear terms, McKeon & Sharma (2010) first proposed to treat them
as an exogenous forcing leading to the classical resolvent analysis of the mean flow. The
conditions for validity of this linear mean-flow analysis have been discussed by Beneddine
et al. (2016) in the case of broadband-frequency turbulent fluctuations developing over
a high-Reynolds-number backward-facing step flow. This simple approach is appealing
since it is based on the linearized Navier–Stokes operator based solely on the molecular
viscosity that can be constructed using mean-flow velocity fields obtained from various
numerical simulations (DNS, LES, RANS, etc.). However, it does not discriminate the
effects of coherent and non-coherent fluctuations, unlike the two following approaches that
are derived from a triple decomposition of the flow variables (Reynolds & Hussain 1972),
where fluctuations are further decomposed into the sum of coherent and non-coherent
components.

The frozen eddy-viscosity approach is usually derived by considering the exact
(but non-closed) governing equations for the coherent fluctuations. While nonlinear
interactions between coherent fluctuations are neglected, the effect of the non-coherent
fluctuations on the dynamics of the coherent ones is retained by modelling the
corresponding Reynolds stress tensor using linear eddy-viscosity models. Such an
assumption allows one to simply replace the molecular viscosity of the linearized
Navier–Stokes operator with an effective eddy-viscosity field that is the sum of the
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molecular and turbulent eddy viscosity, hence the name νT -model proposed by Morra
et al. (2019). In this approach, the eddy-viscosity field is time-independent, hence the name
frozen eddy-viscosity approach. This field may be obtained through several means, such
as algebraic models (Reau & Tumin 2002), more elaborate turbulence models that involve
transport equations (Rukes, Paschereit & Oberleithner 2016), from Reynolds-stress data
(Tammisola & Juniper 2016) or through optimization techniques that allow one to retrieve
an eddy viscosity that is consistent with the RANS equations (Pickering et al. 2021).

The last and more complex perturbed eddy-viscosity approach is also derived
by considering the equations governing the phase-averaged (or ensemble-averaged)
component of the flow (defined as the sum of the mean and coherent fluctuations).
A phase-averaged eddy-viscosity field can be introduced to express the Reynolds
stress tensor as a function of the phase-averaged strain velocity tensor, leading to the
(unsteady) RANS equations, which are finally closed by introducing a model for this
phase-averaged turbulent eddy viscosity. In this approach, the phase-averaged eddy
viscosity is thus decomposed as the sum of time-averaged and infinitesimal coherent
fluctuating components, leading to the so-called perturbed eddy-viscosity approach.
Crouch, Garbaruk & Magidov (2007) and Crouch et al. (2009) first proposed this
approach to predict the onset of transonic buffet on airfoils. Meliga, Pujals & Serre (2012)
considered it to identify the low-frequency oscillations behind a D-shaped cylinder. In
both cases, they considered the RANS equations supplemented with the Spalart–Allmaras
model (Spalart & Allmaras 1992) to determine the turbulent eddy-viscosity field. The
complexity of this perturbed eddy-viscosity approach strongly depends on the complexity
of the considered turbulence model. A single supplementary transport equation arises in
the linearized operator when considering the one-equation Spalart–Allmaras model, but
additional equations would arise if other models were considered such as the k–ω model
(Wilcox 1988). Note that algebraic linear eddy-viscosity models have been considered by
Viola et al. (2014) to investigate the coherent fluctuations developing in a wind turbine
wake. Such simpler models allow one to reduce the complexity of this approach since
the perturbed eddy viscosity can be simply replaced by its analytical expression. The
global stability analysis performed by Plante et al. (2021) to determine the onset of stall
cells around a NACA4412 airfoil belongs to the perturbed eddy-viscosity approach. Not
to mention its added complexity, the main drawback of this perturbed eddy-viscosity
approach comes from its accuracy. Indeed, as mentioned above, turbulence models are
known to have deficiencies in accurately simulating massive flow separation that occurs in
particular near stall. As a striking example previously investigated by one of the authors
(Busquet et al. 2021), the global stability analysis of the turbulent flow around an OA209
airfoil near stalling conditions at Re ∼ 106 reveals the destabilization of a two-dimensional
low-frequency mode at the origin of low-frequency lift oscillation. However, a comparison
of the lift coefficient with experimental data showed that the stall angle is overpredicted
by a few degrees. Such deficiency in the mean-flow estimation prevents the global stability
analysis of baseline RANS equations to quantitatively predict the onset of low-frequency
oscillations. For this reason, the no eddy-viscosity and frozen eddy-viscosity approaches
are often favoured when mean-flow velocity fields obtained from high-fidelity simulations
are available. In the present study, it is shown by comparison with experimental results
that the approach of Plante et al. (2021) similarly suffers from deficiencies in the
underlying turbulence model that prevent it from accurately simulating the mean-flow
solution and therefore the onset of stall cells at the correct angle through stability
analysis.
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1.3. Data assimilation in the RANS framework
The main novelty of the present paper is to propose a systematic method allowing the
improvement of the perturbed eddy-viscosity approach. It relies on a better estimation
of the mean-flow velocity obtained with a data-consistent RANS model. The latter is
defined by introducing a corrective term in the turbulence model that is determined
with a data-assimilation method. While data-assimilation methods have a long history
of development and application in meteorology and oceanography for reconstructing
unsteady flows based on sparse measurements (Kalnay 2003), such methods have only
been recently applied to the reconstruction of time-averaged or (and) spatially averaged
flows, also called mean flows. Foures et al. (2014) used a variational method for
estimating the laminar mean flow around a cylinder at Reynolds number Re = 150. In
their approach, a forcing is introduced in the momentum Navier–Stokes equations to
mimic the effect of the Reynolds stress tensor induced by the periodic flow fluctuation.
This forcing is then determined with an adjoint-based gradient-descent method that
aims to minimize the differences between the modelled mean-flow velocity and full (or
partial) measurements of a reference mean-flow velocity field. Symon et al. (2017) used
a similar methodology to reconstruct the turbulent mean flow around an idealized airfoil
at Re = 13 500 using velocity measurements obtained with particle image velocimetry. To
overcome the numerical difficulties in solving the time-averaged Navier–Stokes equations
at high Reynolds number, Franceschini, Sipp & Marquet (2020) performed the data
assimilation of turbulent mean flow modelled with RANS equations. They investigated
corrections of the turbulence model (Spalart & Allmaras 1992) as well as corrections of
the Boussinesq assumption to estimate the turbulent mean flow behind a backward-facing
step at Re ∼ 30 000. Recently, this variational approach was used by Brenner, Piroozmand
& Jenny (2022) to determine a correction of the eddy-viscosity field deduced from the
k–ε turbulence model. Cato et al. (2023) investigated and compared several correction
strategies for the reconstruction of turbulent mean flows around a periodic hill and in the
wake of a square cylinder.

The idea of using data assimilation to infer a mean-flow velocity field and applying
a linear analysis around the mean flow to reconstruct flow fluctuations has already been
proposed by a few authors in the past, mainly using partial experimental measurements
to reconstruct the full mean-flow velocity. To investigate the control of vortex shedding
in the wake of a thick plate at Reynolds number Re ∼ 104, Camarri, Trip & Fransson
(2017) used the Navier–Stokes equations including a frozen eddy-viscosity field that was
calibrated with time-averaged velocity data from particle image velocimetry. The stability
analysis of the reconstructed full mean-flow velocity was then performed with the frozen
eddy-viscosity approach and substantially improved the estimation of the frequency of the
vortex-shedding mode. Symon, Sipp & McKeon (2019) investigated the flow fluctuations
around a NACA0018 airfoil at Reynolds number Re = 104 and two angles of attack α = 0◦
and α = 10◦. The approach was similar to that proposed by Camarri et al. (2017) but
a forcing vector representing the effect of the Reynolds stress tensor on the mean flow
was inferred by data assimilation. A resolvent analysis (McKeon & Sharma 2010; Sipp &
Marquet 2013) of the mean flow with the no eddy-viscosity approach was then performed
to retrieve the flow fluctuations. None of these studies described the turbulent mean
flow with the RANS equations supplemented with a turbulence model. Very recently,
Mons, Vervynck & Marquet (2024) used particle image velocimetry data to calibrate a
correction of the turbulence model supplementing the RANS equations. With a resolvent
analysis performed around the assimilated mean flow in the perturbed eddy-viscosity
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approach, they successfully predicted the two-dimensional low-frequency oscillation that
was observed experimentally around an airfoil at Re � 5 × 104 near stalling conditions.

1.4. Objectives and outline
In this paper, we develop a similar two-fold strategy that is applied to the prediction
of stall cells around a NACA4412 airfoil at Reynolds number Re = 3.5 × 105 (Plante,
Dandois & Laurendeau 2020). Firstly, an adjoint-based data-assimilation method is
proposed to correct the baseline RANS model and improve the estimation of mean
flows using high-fidelity data that are extracted from DNS (Gleize et al. 2022). Several
corrections to the turbulence model are considered to improve the mean-flow estimation.
Secondly, the temporal evolution of three-dimensional coherent perturbations around the
thus-obtained improved mean flows and model is investigated based on global stability
analysis and considering frozen and perturbed eddy-viscosity approaches. Results of
these stability analyses are assessed through comparison with results of wind-tunnel
experiments that are also described in this paper. The paper is organized as follows. The
theoretical formulation is detailed in § 2 where we introduce the baseline RANS model,
the data-assimilation method with the investigated corrections to the turbulence model and
the various approaches (frozen and perturbed eddy viscosity) for global stability analysis
around turbulent mean flows. The experimental characterization is described in § 3 where
experimental results are compared with those obtained with the baseline RANS model
and DNS. Finally, results of mean-flow data assimilation and stability analyses around
assimilated mean flows are detailed in § 4. This section includes an assessment of the
residual error in the mean-flow velocity obtained with data assimilation and its impact
on the stability analysis results based on sensitivity analysis to base flow modifications. It
ends with a discussion on the effect of the various corrections of the turbulence model on
the results of the stability analysis.

2. Theoretical formulation

2.1. Triple decomposition and closed equations governing the coherent flow
The flow is described by the three-dimensional instantaneous velocity u = (u, v, w)T and
pressure p fields that satisfy the non-dimensional incompressible Navier–Stokes equations:

∂tu + ∇ · (u ⊗ u) + ∇p − 2
Re

∇ · S(u) = 0, ∇ · u = 0, (2.1a,b)

where ∇ = (∂x, ∂y, ∂z)
T and S(u) is the strain rate tensor. The Reynolds number is here

defined as Re = u∞c/ν, where c and u∞ are characteristic length and velocity for the
specific configuration considered. They are used to make the above velocity and pressure
fields non-dimensional. Equations (2.1a,b) are exact but computing their solution requires
heavy computational resources when considering turbulent flow configurations. As an
alternative to directly solving (2.1a,b), the flow variables can be decomposed according
to the triple decomposition (Reynolds & Hussain 1972), which is written for the velocity
field as

u = 〈u〉 + u′′, 〈u〉 = ū + u′, (2.2a,b)

where 〈·〉 refers to a phase or ensemble average that allows one to extract the coherent part
of the flow, while (·)′′ denotes the remaining non-coherent, turbulent part. The coherent
part may be further decomposed as the sum of a steady component that is obtained by

1001 A41-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
09

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1009


K. Sarras, C. Tayeh, V. Mons and O. Marquet

time-averaging ·̄ and an unsteady coherent fluctuation denoted by u′. By introducing the
above decomposition into the Navier–Stokes equations (2.1a,b) and taking the ensemble
average of the latter, we obtain the following exact governing equations for the coherent
component of the flow:

∂t 〈u〉 + ∇ · (〈u〉 ⊗ 〈u〉) + ∇ 〈p〉 − 2
Re

∇ · S(〈u〉) = −∇ · 〈
u′′ ⊗ u′′〉 ,

∇ · 〈u〉 = 0,

⎫⎬
⎭ (2.3)

where
〈
u′′ ⊗ u′′〉 refers to the Reynolds stress tensor. To obtain a closed set of equations

for the coherent part of the flow, we first assume that the anisotropic part of the Reynolds
stress tensor Ra is linearly proportional to the mean strain rate tensor according to

Ra = 〈
u′′ ⊗ u′′〉 − 2

3 kI = −2 〈νt〉 S(〈u〉), (2.4)

where k and 〈νt〉 are the turbulent kinetic energy and eddy-viscosity fields, respectively.
Introducing the Boussinesq approximation into the exact equations (2.3), we obtain

∂t 〈u〉 + Ru(〈u〉 , 〈P〉 , 〈νt〉) = 0, ∇ · 〈u〉 = 0, (2.5a,b)

where the momentum residual Ru of the RANS equations is defined as

Ru(〈u〉 , 〈P〉 , 〈νt〉) = ∇ · (〈u〉 ⊗ 〈u〉) + ∇ 〈P〉 − ∇ ·
[

2
(

1
Re

+ 〈νt〉
)

S(〈u〉)
]

. (2.6)

This residual vector is similar to the Navier–Stokes one, except for the molecular viscosity
1/Re which is replaced by the effective eddy-viscosity field (1/Re + 〈νt〉). Note that the
definition of the pressure is also modified as 〈P〉 = 〈p〉 + 2

3 k. The turbulent eddy viscosity
〈νt〉 is then determined with a turbulence model. In previous studies about linear analysis
around turbulent flows such as that of Viola et al. (2014), algebraic turbulence models
(Prandtl’s mixing length) have been considered, allowing easy computation of the eddy
viscosity from the flow variables. However, such models do not account for history effects
on the turbulence, such as convection and diffusion of turbulence kinetic energy. More
elaborate models relying on the transport of one or several turbulent variables have been
proposed to account for such effects in turbulent flows around airfoils. In the following,
we derive the formalism for any one-equation turbulence model (Spalart & Allmaras 1992;
Fares & Schröder 2005; Han, Rahman & Agarwal 2018). We use in §§ 3 and 4 the classical
Spalart–Allmaras turbulence model (Spalart & Allmaras 1992) to compute the turbulent
eddy viscosity around the present airfoil flow configuration. Note that the methodology
is not restricted to one-equation turbulent models. Considering two-equation turbulence
models such as the k–ω model (Wilcox 1988) is feasible but more tedious and out of
the scope of the present paper. Now, any one-equation turbulence model is based on the
transport of a turbulent quantity, denoted here ν̃, that is a scalar field related to the turbulent
eddy viscosity 〈νt〉 by an analytical relation of the form

〈νt〉 = fνt(〈ν̃〉), (2.7)

where the definition of the function fνt depends on the considered one-equation model.
The latter can be generally written as a transport equation for the turbulent field ν̃ as

∂t 〈ν̃〉 + T (〈u〉 , 〈ν̃〉) = 〈 fn〉 , (2.8)

where the nonlinear operator T(〈u〉 , 〈ν̃〉) defines the one-equation turbulence model.
The latter is specified for the employed Spalart–Allmaras model in Appendix A.
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Linear stability analysis of turbulent mean flows

All of the existing one-equation turbulence models suffer from deficiencies leading to poor
estimation of the coherent velocity 〈u〉, in particular for massively separated turbulent
flows. To address the limitations of the turbulence model and improve the estimation
of the coherent component, we follow Parish & Duraisamy (2016), Singh & Duraisamy
(2016) and Franceschini et al. (2020) by introducing a corrective term in the turbulence
model. Several corrections have been proposed in the literature and we refer the reader
to Cato et al. (2023) for a comparison between these different corrections. For the flow
configuration investigated in the present study, the laminar–turbulence flow transition is
triggered at some specific locations on the pressure and suction sides of the airfoil. The
correction field 〈 fn〉 is chosen as a multiplicative correction term to prevent the appearance
of non-zero corrections in the laminar flow regions. The determination of this spatially
dependent correction is explained in § 2.3.

2.2. Three-dimensional perturbation of two-dimensional mean flow
The coherent part of the turbulent flow is governed by the closed set of (2.5a,b), (2.6), (2.7)
and (2.8). For the three-dimensional turbulent flow around the two-dimensional airfoil
considered in the present study, Plante et al. (2021) showed that cellular patterns exhibiting
a modulation in transverse direction z are visible in time-independent three-dimensional
solutions of this closed set of equations, considering the uncorrected Spalart–Allmaras
model (〈g〉 = 0). Rather than solving these three-dimensional equations, we rely on a
linearized approach that is more computationally tractable. Since the transverse direction
z is a homogeneous direction, the average operator ·̄ can be here defined as

(·)(x) = 1
T

1
Lz

∫ Lz

0

∫ t0+T

t0
(·)(x, z, t) dz dt, (2.9)

where x = (x, y)T corresponds to the two-dimensional coordinate while the length Lz and
time T that are used for averaging are specified later. The decomposition (2.1a,b) of the
coherent part as the sum of steady and coherent fluctuations can thus be more specifically
written as

〈u〉 (x, z, t) = ū(x) + εu′(x, z, t), 〈P〉 (x, z, t) = P̄(x) + εp′(x, z, t),

〈ν̃〉 (x, z, t) = ν̄(x) + εν′(x, z, t),

}
(2.10)

where ū = (ū, v̄, 0)T, P̄ and ν̄ are the velocity, pressure and eddy viscosity of
the two-dimensional mean flow, while u′(x, z, t), p′(x, z, t) and ν′(x, z, t) denote the
three-dimensional perturbations of the velocity, pressure and eddy-viscosity fields.
Moreover, we assume that the amplitude of these perturbations is infinitesimally small,
i.e. ε 
 1. By introducing the above decomposition (2.10) into the three-dimensional
equations (2.5a,b), (2.6), (2.7) and (2.8), we obtain at leading order the time-independent
two-dimensional mean-flow equations where the correction is found by a data-assimilation
method as explained in § 2.3. At order ε, we obtain the linearized equations governing the
temporal evolution of the three-dimensional perturbations, which are detailed in § 2.4.

2.3. Data-consistent two-dimensional mean-flow equations
The steady two-dimensional equations governing the turbulent mean flow are

R0
u(ū, P̄, ν̄t) = 0, ∇ · ū = 0, ν̄t = fνt(ν̄), T0 (ū, ν̄) = f̄n, (2.11a–d)
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where the two-dimensional residual RANS R0
u and Spalart–Allmaras turbulent model T0

are defined in (B1) of Appendix B. The effective correction field f̄n(x) introduced in the
turbulence model is defined as a multiplicative source term, i.e.

f̄n(x) = ν̄nḡn, (2.12)

where ḡn(x) is the corrective field determined by data assimilation and n is here a positive
integer. For n = 0, we retrieve the correction f̄0 = ḡ0 introduced by Franceschini et al.
(2020) to correct the fully turbulent mean flow over a backward-facing step. For n > 0, the
effective correction f̄n will tend to vanish in laminar flow regions since the eddy-viscosity
variable ν̄ tends towards zero in those regions. More specifically, the correction f̄2 =
ν̄2ḡ2 was recently proposed by Mons et al. (2024) to correct the mean-flow velocity
around an airfoil near stalling conditions at Reynolds number Re � 5 × 104. For such
a flow configuration, the laminar–turbulent flow transition occurs naturally in a laminar
separation bubble. To avoid introducing correction of the turbulence model in laminar or
transitional flow regions, they introduced the multiplicative correction f̄2. In the present
study dedicated to the turbulent flow around an airfoil where the laminar–turbulence
transition is triggered at some specific locations, we additionally investigate the effective
corrective field f̄1 = ν̄ḡ1 and compare results obtained with these different corrections.

The objective of the data-assimilation method is to determine the two-dimensional
correction ḡn(x) that allows one to minimize the differences between the solution of
the RANS equations (2.11a–d) and reference data. In the present study, these reference
data are time-independent two-dimensional velocity fields ūd(x). They are obtained by
applying first the average operator (2.9) to three-dimensional instantaneous velocity fields
uDNS(x, z, t) that are computed with DNS (Gleize et al. 2022) and, in a second step, a
projection operator P , further detailed in § 3.3, that maps the space of the DNS to the space
of the RANS model. The reference data ūd = PuDNS are thus defined in the model space.
In a least-squares variational framework, the correction ḡn is determined by minimizing
the following objective function J , which is defined as the sum of a data term J u and a
penalization term J gn :

J (ū(ḡn)) =
∫

Ωm

(ū(ḡn) − ūd) · (ū(ḡn) − ūd) dΩ︸ ︷︷ ︸
J u

+m
∫

Ω

ḡ2
n dΩ︸ ︷︷ ︸

J gn

, (2.13)

where ū(ḡn) is a short notation used to indicate that the mean-flow velocity is a solution
of the corrected mean-flow equations (2.11a–d). The data term J u is thus the primary
objective to minimize in the data-assimilation procedure. It quantifies the discrepancies
between the velocity field ū(ḡn) and the reference one ūd in the restricted domain Ωm
that is part of the computation domain Ω where (2.11a–d) are satisfied. These domains
are specified in §§ 3.2 and 4.1. Note that, since the reference data are in the model space
as explained above, we do not introduce a measurement operator in the definition of J u

as classically done when the dimensions of the data and model spaces are different. In
order to avoid overfitting and restrict the intensity of the corrective field ḡn, we also
consider the addition of the penalty term, denoted J gn in (2.13), which is weighted by
the positive real number m. A penalization of the effective correction f̄n = ν̄nḡn may also
be considered. In the present study, it did not lead to corrections that are so different
from those obtained with the penalization of the correction ḡn. The latter is thus favoured
hereinafter. The benefits of penalization along with the identification of an appropriate
value for m are illustrated in § 4.1. The minimization of the objective function (2.13) under
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Linear stability analysis of turbulent mean flows

the constraint (2.11a–d) is performed with an adjoint-based gradient-descent method. The
descent direction is the opposite of the gradient of the objective function with respect to
the correction ḡn. The latter is defined as

dJ
dḡn

= ν̄†ν̄n + 2mḡn, (2.14)

where ν̄† is the turbulent component of the adjoint variable. The latter is a solution of the
following two-dimensional adjoint problem:⎛

⎜⎜⎝
J 0

uu ∇0 J 0
uν

−∇0· 0 0

J 0
νu 0 J 0

νν − nν̄n−1ḡn

⎞
⎟⎟⎠

† ⎛
⎜⎜⎝

ū†

p̄†

ν̄†

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

∂J
∂ū
0

0

⎞
⎟⎟⎟⎠ , (2.15)

where (·)† refers to the adjoint of the operator in (2.15) whose blocks are given in
Appendix B. The forcing term (on the right-hand side) of the adjoint RANS equations
is the gradient of the objective function with respect to the mean-flow velocity, which is
here given by

∂J
∂ū

= 2 (ū − ūd)1Ωm . (2.16)

It is simply the difference between the modelled mean-flow velocity and DNS velocity
data in the domain Ωm, 1Ωm being an indicator function for that domain.

The data-assimilation algorithm is similar to that described by Franceschini et al.
(2020), Mons & Marquet (2021) and Mons et al. (2022). We rely on the low-memory
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) descent method (Nocedal 1980) to
perform the minimization of the cost function in (2.13). The latter requires successive
inversions of the RANS (2.11a–d) and adjoint (2.15) equations to evaluate the cost function
and its gradient in (2.14).

2.4. Linear stability analysis for the identification of coherent perturbations
The linear stability analysis of three-dimensional perturbations to two-dimensional mean
flows is now considered, starting with the perturbed eddy-viscosity approach and following
with two different frozen eddy-viscosity approaches.

2.4.1. Perturbed eddy-viscosity approach
In the perturbed eddy-viscosity approach, linear perturbations of the eddy viscosity are
considered, in addition to the velocity and pressure perturbations, as shown in (2.10).
Since the transverse direction z is homogeneous, the three-dimensional perturbations can
be further decomposed as

u′(x, z, t) =
(

û(x)eλteiβz + c.c.
)

, p′(x, z, t) =
(

p̂(x)eλteiβz + c.c.
)

,

ν̃′(x, z, t) =
(
ν̂(x)eλteiβz + c.c.

)
,

⎫⎪⎬
⎪⎭ (2.17)

where the transverse (real) wavenumber is β = 2π/λz and λz is the corresponding
wavelength. Unlike the discrete approach followed by Plante et al. (2021) where values of
the wavenumber β are selected by the length of the computational domain in the transverse

1001 A41-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
09

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1009


K. Sarras, C. Tayeh, V. Mons and O. Marquet

direction, β is here a real parameter that can be arbitrarily chosen since it does not depend
on a spatial discretization in the transverse direction. The temporal behaviour is assumed to
be exponential with a complex value λ = σ + iω that indicates the growth rate σ (real part)
and the frequency ω (imaginary part) of the spatial structure (û, p̂, ν̂) that only depends on
the two-dimensional coordinate x. These spatial structures are eigenmodes of the following
eigenvalue problem:

λ

⎛
⎜⎝

Iu 0 0

0 0 0

0 0 1

⎞
⎟⎠

⎛
⎜⎝

û

p̂

ν̂

⎞
⎟⎠ +

⎛
⎜⎜⎝

Jβ
uu ∇β Jβ

uν

−∇β· 0 0

Jβ
νu 0 Jβ

νν − nν̄n−1ḡn

⎞
⎟⎟⎠

⎛
⎜⎝

û

p̂

ν̂

⎞
⎟⎠ =

⎛
⎜⎝

0

0

0

⎞
⎟⎠ , (2.18)

where the velocity vector is defined as û = (û, v̂, ŵ)T and Iu is an identity matrix of
corresponding size. The other block operators are defined in Appendix B. The first and
second lines correspond to the linearization of the RANS equations while the third one
corresponds to that of the turbulence model. The linearization of the correction in the
turbulence model (2.8) induces the new term −nν̄n−1ḡn in the (3, 3) block of the Jacobian
matrix in (2.18). For the investigated cases n = 1 and n = 2, the Jacobian matrix is
thus structurally modified compared with the baseline model, while for n = 0, this term
disappears and the structure of the Jacobian matrix is not altered by the correction of the
mean-flow equations. It should be recalled that, whatever the value of n, the other blocks
of the Jacobian matrix are indirectly impacted by the correction. Indeed these blocks
correspond to the linearization of the governing equation around the corrected turbulent
mean-flow velocity ū and turbulent viscosity ν̄, solutions of (2.11a–d). In the present paper,
the choice of the correction (i.e the value of n) is mainly driven by the efficiency of the
data-assimilation algorithm to match the reference mean-flow velocity field. The more
general impact of the correction term on the results of the stability analysis is discussed in
§ 4.4 by comparing results obtained with the different corrections n = 0, n = 1 and n = 2.
Note finally that the stability analysis around the turbulent mean flow obtained with the
baseline turbulence model is simply recovered here by setting ḡn = 0 in (2.11a–d) and
(2.18).

2.4.2. Frozen eddy-viscosity approaches
The frozen eddy-viscosity approach is a simpler analysis that does not require the
linearization of a turbulence model. Indeed, the perturbation of the eddy viscosity is
neglected (ν̃′ = 0) and the eigenvalue problem (2.18) is simplified as

λ

(
Iu 0
0 0

)(
û
p̂

)
+

(
Jβ

uu(ū, ν̄) ∇β

−∇β· 0

) (
û
p̂

)
=

(
0
0

)
. (2.19)

Similarly to the perturbed eddy-viscosity approach, the Jacobian operator Jβ
uu depends on

the mean-flow velocity ū and turbulent viscosity ν̄ obtained with the data-assimilation
method described in § 2.3.

A second frozen eddy-viscosity approach, that does not rely on any data-assimilation
process or any turbulence modelling, consists of performing the stability analysis around
the reference mean-flow velocity obtained from DNS, i.e. ūd. To determine a mean eddy
viscosity that is consistent with the reference mean-flow velocity, Pickering et al. (2021)
recently proposed a method that is based on the minimization of the RANS residual.
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This method is revisited in Appendix D. For the second frozen-eddy viscosity approach,
the eigenvalue problem can thus be written

λ

(
Iu 0
0 0

) (
û
p̂

)
+

(
Jβ

uu(ūd, ν̄
c
t ) ∇β

−∇β· 0

)(
û
p̂

)
=

(
0
0

)
, (2.20)

where the Jacobian block operator Jβ
uu now depends on the reference mean-flow velocity

ūd and consistent eddy-viscosity field ν̄c
t , rather than on the assimilated mean flow as in

(2.19).

2.5. Sensitivity of eigenvalues to residual error in the assimilated mean-flow velocity
The data-assimilation method described in § 2.3 allows the determination of the correction
ḡn of the turbulent mean-flow equation by minimizing the cost function (2.13). It
may be worth noting that the velocity error δū = ūd − ū(ḡn) is not necessarily strictly
zero at convergence of the minimization algorithm. We propose here to investigate
the uncertainty in the leading eigenvalue that is induced by the uncertainty in the
assimilated mean-flow velocity. To that aim, we consider a sensitivity analysis of the
eigenvalue to modifications of the mean-flow velocity. Such sensitivity analysis was
originally developed for eigenvalues of the Orr–Sommerfeld equations by Bottaro, Corbett
& Luchini (2003), later derived by Marquet, Sipp & Jacquin (2008b) for the linearized
Navier–Stokes equations and extended by Meliga et al. (2012) to the RANS equations
with the Spalart–Allmaras model. In the latter study, the authors derived the eigenvalue
sensitivity to modifications of both velocity and eddy-viscosity mean fields. Here, we
restrict ourselves to the sensitivity of the eigenvalue to mean-flow velocity modifications.

Since the residual velocity error δū is expected to be small, we consider that it is a
small modification of the assimilated mean-flow velocity, i.e. ū + δū, that perturbs the
eigenvalue problem (2.18). Following Marquet et al. (2008b) and Meliga et al. (2012), we
can show that the eigenvalue variation δλ that is induced by the mean-flow variation δū is
given by

δλ =
∫

Ω

∇ūλ · δū dΩ, (2.21)

where the sensitivity of the eigenvalue λ to mean-flow variations, ∇ūλ, is the sum of two
contributions:

∇ūλ = (∇ūλ)R + (∇ūλ)T . (2.22)

The first contribution in (2.22), that accounts for the mean-velocity modification in the
RANS momentum equations, is defined as

(∇ūλ)R = −(∇β û)Tû†∗ + (∇β û†∗
)û + ∇0 ·

(
ν̂t(∇β û†∗ + ∇β û†∗T

)
)

, (2.23)

where we recall that û and ν̂t are the velocity and turbulent eddy viscosity of the direct
mode corresponding to the eigenvalue λ according to (2.18). On the other hand, û† is the
velocity component of the adjoint mode, which is a solution of the following eigenvalue
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problem:

λ∗

⎛
⎜⎝

Iu 0 0

0 0 0

0 0 1

⎞
⎟⎠

⎛
⎜⎜⎝

û†

p̂†

ν̂†

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

Jβ
uu ∇β Jβ

uν

−∇β· 0 0

Jβ
νu 0 Jβ

νν − nν̄n−1ḡn

⎞
⎟⎟⎠

† ⎛
⎜⎜⎝

û†

p̂†

ν̂†

⎞
⎟⎟⎠ =

⎛
⎜⎝

0

0

0

⎞
⎟⎠ , (2.24)

where (·)∗ denotes complex conjugate. The first two terms on the right-hand side of (2.23)
are similar to the sensitivity function for Navier–Stokes equations (Marquet et al. 2008a,b),
while the last term arises from the added diffusion by the perturbed eddy viscosity.
The second contribution on the right-hand side of (2.22) is the eigenvalue sensitivity to
mean-velocity modifications in the turbulent model. We refer the reader to Meliga et al.
(2012) for a detailed definition. Once the sensitivity functions are determined, we can
assess the variation in the eigenvalue that is induced by the residual mean-flow velocity
errors according to (2.21).

2.6. Numerical methods
The two-dimensional mean-flow (2.11a–d) and adjoint (2.15) equations as well as the
eigenvalue problems (2.18), (2.19)–(2.20) and (2.24) are spatially discretized using a
stabilized Galerkin finite-element method. First, note that the nonlinear terms written in a
conservative form in the continuous equations are spatially discretized using a convective
form. There are many methods developed over the last 40 years to prevent the appearance
of spurious numerical oscillations arising in the simulation of the Navier–Stokes equations
at high Reynolds number with classical Galerkin methods. Among the broad class of
variational multiscale methods (Hughes et al. 1998; Ahmed et al. 2017), we rely here on the
classical streamlines upwind Petrov Galerkin (SUPG) method (Tezduyar 1991), but other
stabilized finite-element methods such as the orthogonal subscale method (Codina 2002),
the local projection stabilization (Braack & Burman 2006) or the continuous interior
penalty method (Burman, Fernández & Hansbo 2006) could be considered. These methods
are mainly developed to overcome some undesirable features of the SUPG methods such
as the appearance of artificial boundary conditions on the velocity and pressure or artificial
non-symmetric terms (see Burman et al. (2006) for others). However, most of these
modern stabilized finite-element techniques are applied to the Navier–Stokes equations
and not to the RANS equations with turbulence models investigated here. In addition, a
recent study by Ahmed & Rubino (2019) on the simulation of vortex flows at high Reynolds
number showed that the accuracy of the standard SUPG method is comparable to that
obtained with other stabilization methods. In our formulation, a Grad-Div stabilization
term is also included in the discretization of the RANS equations to improve the mass
conservation and stabilize the pressure. For the coefficient of the Grad-Div stabilization,
we adopt the form proposed by Codina (2000) and also used by Hachem et al. (2010). The
Spalart–Allmaras turbulence model is also discretized with the SUPG method as in Sari
et al. (2018).

An Inf-Sup stable finite-element pair is used to discretize the velocity and pressure
fields. Second-order (P2) Lagrange elements are used for the velocity components while
first-order (P1) Lagrange elements are used for the pressure and the turbulent viscosity
variable. This stabilized finite-element method is implemented in the open-source
software FreeFEM (Hecht 2012) using the parallelization strategy based on domain
decomposition to assemble the sparse matrices and the interface with the PETSc library
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Linear stability analysis of turbulent mean flows

(Balay et al. 2023) to solve linear problems. We refer the reader to Moulin, Jolivet
& Marquet (2019) for a detailed explanation on the parallel implementation of the
Navier–Stokes equations in FreeFEM. A quasi-Newton method is implemented to solve
the nonlinear RANS equations (2.11a–d). The nonlinear equations are first discretized
and then linearized. In particular, all the additional terms arising from the SUPG and
Grad-Div stabilization are linearized. The method is viewed as as quasi-Newton method
as a real coefficient 0 < γ � 1 is introduced to weight the update field and ensure the
convergence of this iterative algorithm. To speed up the latter, a criterion based on the
slope of the residual convergence is introduced to avoid the assembly and LU factorization
of the Jacobian matrix at each iteration.

To determine dominant eigenvalues that correspond to the largest growth rates in
eigenvalue problems such as (2.18), we rely on a shift-and-invert strategy and the
Krylov–Schur subspace method implemented in the SLEPc library (Hernandez, Roman &
Vidal 2005). Although the adjoint problems (2.15) and (2.24) are written in a continuous
form, their numerical discretization relies on a discrete approach (Peter & Dwight 2010).
The stabilized forms of the direct problems are first implemented and the adjoint matrices
are then obtained by taking the transpose (or transconjugate) of the direct matrices.
The discrete adjoint is preferred over the continuous adjoint (Papoutsis-Kiachagias &
Giannakoglou 2016) not only due to its ease of implementation, but also because the
eigenvalue spectra of the direct and adjoint matrices are exactly the same. Some numerical
artefact might be observed in the adjoint eigenmodes near the inlet of the boundary
domain, as discussed by Chandler et al. (2012), but it did not impact any of the present
results.

3. Experimental and numerical characterization of stall cells with the baseline RANS
model

We investigate the onset of stall cells around a three-dimensional unswept wing for
angles of attack α near stalling conditions. The constant wing section is a NACA4412
airfoil of chord c = 20 cm and the incoming uniform velocity is close to u∞ = 25 ms−1.
This characteristic length and velocity are used in the following to make all variables
non-dimensional, unless otherwise stated. The air flow is thus characterized by the
Reynolds number Re = 350 000 and a low Mach number M < 0.1 so that it is considered
as incompressible. For that Reynolds number, the boundary layer developing near the
leading edge of the airfoil is laminar. To avoid the formation of any laminar separation
bubbles on the suction (upper) side of the airfoil, the laminar–turbulent transition is
triggered at chordwise location xt

c,u = 0.05. On the pressure (lower) side, it is also
triggered but further downstream at midchord, i.e. xt

c,l = 0.5.
The experimental investigation of the onset of stall cells around the wing near stalling

conditions is reported in § 3.1. Results of the numerical investigation relying on a baseline
RANS model are described in § 3.2, starting by describing the steady mean flow and
identifying the critical angle of attack for the appearance of stall cells based on global
stability analysis, as in Plante et al. (2021). Finally, results of DNS are described and
compared with the baseline RANS results in § 3.3.

3.1. Experimental identification of stall cells
Experiments are conducted in the low-speed wind tunnel S2L of ONERA in
Chalais-Meudon. The velocity in this Eiffel-type wind tunnel can be varied in the range
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Figure 1. Experimental evidence of stall cells on the suction side of a NACA4412 wing for Re = 350 000
using oil flow visualization at (a) α = 10◦, (b) α = 12◦ and (c) α = 16◦ angles of attack. The black arrow
in (a) indicates the direction of the incoming flow. Positions of the leading and trailing edges are delimited
with horizontal white dashed lines. (d) Non-dimensional wavelength of stall cells λz as a function of the angle
of attack. Grey circles show the wavelengths extracted from the images while open black circles indicate the
wavelength based on the number nc of observed cells, i.e. λz = Lexp

z /nc, where the (non-dimensional) wingspan
is Lexp

z = 4.65.

5 m s−1 � u∞ � 40 m s−1. The wing is installed horizontally in the test section so
that the wingspan corresponds to the width of the test section. The wingspan made
non-dimensional with the chord is thus Lexp

z = 4.65. The transition to turbulence is tripped
on the suction and pressure sides of the wing, using zz-shaped ribbons of thickness
0.125mm and length 6 mm that are positioned along the wingspan at the chordwise
locations indicated above, i.e. xt

c,u = 0.05 and xt
c,l = 0.5. The wind tunnel’s velocity is

fixed to u∞ ∼ 25 m s−1 so as to obtain a Reynolds number close to Re = 350 000 for air
temperature T = 10 ◦C. The emergence of structures on the suction side of the wing is
characterized using oil visualizations. The oil is a mixture made of paraffin oil, titanium
dioxide, oleic acid and blue-coloured pigment. Before any experimental run during which
the angle of attack is fixed, this mixture is painted on the entire upper surface of the
wing. A camera is located around 1 m above the wing to view its suction side through
the glass window that equips the top wall of the test section. During a transient phase,
the paint around the leading edge of the wing is driven by the flow towards the trailing
edge until a stationary pattern emerges after a few minutes. This pattern approximates
the time-averaged wall skin friction over the suction side. In particular, it allows one to
distinguish between positive and negative skin-friction areas. Indeed, the paint is almost
removed from positive skin-friction areas because it is driven downstream by the flow. Due
to the inclination of the wing, gravity also plays a role in driving the paint downstream.
On the other hand, in negative skin-friction areas, the paint is driven upstream by the
recirculating flow but is counteracted by gravity. Therefore, the paint tends to accumulate
in the negative skin-friction area. This accumulation is even more pronounced at the
separation line that delimits the negative from positive skin-friction area. The experiments
are repeated for each angle of attack which is varied in the range 10◦ � α � 20◦ by steps
of 1◦.

Figures 1(a)–1(c) display typical images acquired during the experimental campaign
for angles α = 10◦, 12◦ and 16◦. The arrow in figure 1(a) indicates the direction of the
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incoming flow. The wingspan is thus along the horizontal direction. For angle α = 10◦,
a spanwise variation of the separation line is visible at the junction of the wing with the
sidewalls of the wind tunnel, showing the existence of three-dimensional corner flows.
The variation of the separation line is, however, much weaker in the symmetry plane of
the test section. Such a pattern, which is not associated with stall cells, is also obtained
for all angles below 10◦. For α = 12◦ (figure 1b), a clear spanwise oscillation of the
separation line emerges, with three stall cells appearing along the transverse direction.
The non-dimensional wavelength of individual stall cells is approximated by considering
the ratio between the length of the red arrow displayed in figure 1(b) and the chord of
the wing estimated here as the distance between the leading and trailing edges as visible
on the images with horizontal dashed lines. This method does not account for the optical
distortion of the image. The wavelength of these individual cells is reported with grey
circles in figure 1(d) as a function of the angle of attack. It lies in the range 1.4 � λz � 1.8
for angles 12◦ � α � 15◦. A unique value of the wavelength, reported with open circles in
the figure, can also be obtained by defining λz = Lexp

z /nc, where nc is the number of cells
and we recall that Lexp

z = 4.65. Patterns of nc = 3 cells are observed for 12◦ � α � 15◦,
which correspond to the fixed wavelength λz = 1.55. Around α = 16◦, a transition occurs
to a pattern of nc = 2 cells that is shown in 1(c). For larger values of α, a clear pattern
of stall cells is no longer observed. In conclusion of this experimental investigation, the
critical angle of attack for the onset of stall cells is α

exp
c = 12◦ with an accuracy of 1◦ and

the wavelength of the corresponding stall cells is λexp
z = 1.55.

3.2. Mean flow and global stability analysis with the baseline RANS model
Following an approach similar to that in Plante et al. (2021), we here numerically
investigate the onset of stall cells on the same NACA4412 airfoil in the same conditions.
Neglecting the effect of the sidewalls in the wind-tunnel test section, we may assume
that the spanwise direction is a homogeneous direction. Therefore, the mean-flow velocity
field around the NACA4412 airfoil can be estimated with the two-dimensional RANS
equations, which are here closed with the Spalart–Allmaras model, i.e. (2.11a–d). When
the turbulence model is not corrected (ḡ = 0), this set of equations is referred to as the
baseline RANS model. The ft2 tripping function of the Spalart–Allmaras model (see
Appendix A) is used to trigger transition to turbulence at the same locations as in the
experiments, i.e. xt

c,u = 0.05 and xt
c,l = 0.5 on the suction and pressure sides of the airfoil,

respectively.
The mean-flow equations and eigenvalue problems are discretized on a C H

computational domain, with the leading edge of the airfoil located at the centre of
the half-circle (C) whose radius is R = 29. The outlet is located at Lo

x = 30 of the
airfoil’s leading edge, while the upper (lower) boundary is located at Lu

y = 30 (Ll
y = 30).

An unstructured mesh made of triangular elements is then obtained with a Delaunay
triangulation. The RANS equations (2.11a–d) are spatially discretized on this mesh with
the stabilized finite-element method that is described in § 2.6 and using the following
boundary conditions. At the inlet, we impose Dirichlet boundary conditions on the
non-dimensional velocity, i.e. ū = cos(απ/180), v̄ = sin(απ/180), where α is the angle
of attack expressed in degrees, while ν̄ = 3/Re is set for the eddy-viscosity variable.
Therefore, the angle of attack is imposed via the direction of the inlet flow in the numerical
simulations. All results are, however, presented in the rotated axis of the coordinates
where the inflow velocity is (ū = 1, v̄ = 0) so that the angle of attack is visible on
the airfoil position. At the outlet of the computation domain, a stress-free boundary
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aniso ne nd nw CL σL

M0 5 210 857 1 065 460 3412 1.6329 0.0496
M1 10 120 599 609 250 1772 1.6329 0.0499

S0 5 304 249 1 536 050 4622 1.6343 0.0453
S1 10 171 641 866 248 2368 1.6347 0.0450

Table 1. Effect of the mesh resolution on mean-flow and global stability analysis results with the baseline
RANS model at α = 16◦. Different meshes Mk (adapted to mean-flow results only) and Sk (adapted to both
mean-flow and endogeneity results) are considered that correspond to different values of the parameter aniso
that is a measure of the mesh anisotropy, while ne is the number of elements (triangles), nd is the total number
of degrees of freedom and nw is the number of nodes on the airfoil’s wall. Parameter CL is the lift coefficient
of the mean flow and σL is the growth rate of the leading zero-frequency eigenvalue for β = 5.

condition is imposed. Finally, symmetry conditions ∂yū = 0, v̄ = 0, ∂yν̄ = 0 are imposed
on the upper and lower lateral boundaries. The eigenvalue problem (2.18) is discretized
on the same mesh with boundary conditions corresponding to those imposed for the
steady solution. Homogeneous Dirichlet boundary conditions on the velocity and eddy
viscosity are imposed on the inlet, upper and lower lateral walls, while the stress-free
boundary conditions are also applied at the outlet. Table 1 reports results of mean-flow
and eigenvalue computations that are obtained for meshes with different resolutions. The
meshes labelled M0 and M1 are obtained using a metric-based anisotropic mesh adaptation
where the parameter aniso (first column) controls the maximum anisotropy (aspect ratio)
of the triangles. The metric is computed automatically from mean-flow velocity, pressure
and turbulent viscosity fields that are obtained from a preliminary computation. The
meshes labelled S0 and S1 are obtained using a second metric-based anisotropic mesh
adaptation, where the metric is now determined from the endogeneity function in addition
to the mean-flow solutions that are computed with meshes M0 and M1, respectively.
This endogeneity function, which is introduced later in the paper to identify the flow
region where destabilizing physical mechanisms are at play (Marquet & Lesshafft 2015;
Paladini et al. 2019), is rather used here to refine the mesh in regions where the direct and
adjoint global modes overlap so as to ensure mesh convergence of the stability results, as
proposed by Fabre et al. (2018). The effect of the mesh resolution on the mean flow is
reported by examining the lift coefficient CL that exhibits variations that are lower than
0.1 % among all cases. The effect of the mesh resolution on the eigenvalue problem is
reported by examining the growth rate of the leading zero-frequency mode at wavenumber
β = 5 which will be of interest later. Decreasing the anisotropy coefficient by 2 has also
a negligible effect on the growth rate, so the anisotropy coefficient 10 is selected since
it leads to coarser meshes. The refinement of the mesh in regions of large endogeneity
(meshes Sk) induces larger variations of the growth rate around 10 % compared with
meshes Mk, showing the interest in adopting this strategy. For the next results, we thus
adopt the following mesh adaption procedure for each value of the angle of attack that will
be considered, where a mesh of type M1 is first built, followed by the construction of a
mesh of type S1.

The streamwise component ū of the mean-flow velocity and the turbulent eddy viscosity
ν̄t are shown in figures 2(a) and 2(b), respectively, for angle of attack α = 16◦. The grey
circles indicate the locations for triggering laminar–turbulent transition. On the pressure
side of the airfoil, the boundary layer remains attached. On the suction of the airfoil, the
turbulent boundary layer separates at xc,u = 0.54 forming a recirculation region around the
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Figure 2. (a) Streamwise velocity ū and (b) turbulent eddy viscosity ν̄t normalized by the kinematic viscosity
of the baseline RANS model for α = 16◦. Solid curves are the dividing streamlines of the separated flow at
the trailing edge. Grey circles indicate the positions for triggering the laminar–turbulent transition on the upper
and lower surfaces.
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Figure 3. Global stability analysis in the perturbed eddy-viscosity approach of the mean flow estimated with
the baseline RANS model at α = 16◦. (a) Eigenvalue spectrum for spanwise wavenumber β = 5, with σ the
growth rate and ω the angular frequency. The black filled circle highlights the leading (unstable) eigenvalue.
(b) Growth rate σL of the leading steady mode versus the wavenumber β (solid curve). The dashed curve shows
the leading eigenvalue growth rate for the critical angle of attack αc = 15.65◦.

trailing edge. An increase of the turbulent eddy-viscosity field is noticeable from the flow
separation, with the largest magnitude reached downstream of the recirculation region.

The global stability of this mean flow is investigated by considering the perturbed
eddy-viscosity approach described in § 2.4.1. The temporal evolution of linear
three-dimensional perturbations is considered for several spanwise wavenumbers β.
A typical eigenvalue spectrum obtained after solving the eigenvalue problem (2.18)
is shown in figure 3(a) for the transverse wavenumber β = 5. The horizontal axis
corresponds to the growth rate σ and the vertical axis to angular frequency ω of the
eigenmodes. The mean flow is globally unstable since there is a steady eigenvalue (ω = 0)
emphasized with the black filled circle that has a positive growth rate (σ > 0). Its spatial
structure, which is analysed in the next section, corresponds to stall cells. Figure 3(b)
shows how the growth rate of this leading steady mode, which is denoted by σL, varies
with the wavenumber β. It is unstable in the range 4 � β � 6 and the maximum growth
rate is reached for β = 4.8. By repeating the analysis for lower values of the angle of
attack, we determine the critical angle to be αRANS

c = 15.65◦ and the critical wavelength
λRANS

z = 2π/β = 1.30.
The global stability analysis of the mean flow around the same NACA4412 airfoil

at Re = 350 000 has been recently performed by Plante et al. (2021) using a perturbed
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eddy-viscosity approach of the compressible RANS equations for Mach number M = 0.2.
The Spalart–Allmaras turbulence model was also considered but using the modification
proposed by Edwards & Chandra (1996). They found that the stall cell mode becomes first
unstable at αc ∼ 15◦ for the wavenumber βc ∼ 4.4 (λz ∼ 1.4). Our results are thus in good
agreement with these previously published results for the exact same airfoil, Reynolds
number and triggering locations. The slight discrepancies might be attributed either to
flow modelling differences, such as the compressibility of the RANS equations or the
version of the Spalart–Allmaras turbulent model, or to the different spatial discretization
used in the two studies (finite volume versus stabilized finite element). Plante et al. (2021)
also performed three-dimensional RANS computations using periodicity conditions in the
spanwise direction with a wingspan equal to a multiple of the wavelength λz = 2π/βc.
Thus, they could determine the nonlinear three-dimensional steady solutions that emerge
from the linear stall cell mode. These nonlinear solutions exhibited cellular patterns, whose
number depends on the wingspan, and which have characteristics of stall cells as reported
in previous experiments for other airfoils (Schewe 2001). Thus, they confirmed that the
linear stall cell mode is responsible for the emergence of stall cells.

The critical wavelength obtained from linear stability analysis λRANS
z = 1.30 is in

rather good agreement with the wavelength of stall cells λexp
z = 1.55 observed in the

experiments. However, the critical angle of attack α
exp
c = 12◦ is much lower than the

critical angle of attack αRANS
c = 15.65◦ determined by the stability analysis of the mean

flow with the baseline RANS model. To analyse the origin of that discrepancy, we compare
in the next section the mean flow estimated using the baseline model with that computed
using DNS.

3.3. Comparison with mean flows extracted from DNS
High-fidelity simulations of this transitional turbulent flow were recently performed by
Gleize et al. (2022) with the in-house compressible flow solver FastS. The structured mesh
is made of 1.68 × 109 cells. With the mesh resolution detailed in Gleize et al. (2022), the
accuracy of that numerical simulation lies between that of a DNS and of an implicit LES.
The authors thus considered that they performed quasi-DNS but we will refer to them
as DNS in the following. To trigger the laminar–turbulent transition, small cylindrical
roughness elements were equidistantly distributed in the spanwise direction at the same
locations as in the experiments on the pressure and suction sides of the airfoil. Hairpin
vortex structures are thus generated in the wake of these cylindrical roughness elements,
thus leading to a rapid transition to turbulence. Periodic boundary conditions are applied
on the side planes of the mesh. Therefore, these simulations do not aim at reproducing
the three-dimensional sidewall effect occurring in the experiments. On the other hand,
they allow one to accurately determine turbulent flow statistics. For the two angles of
attack α = 10◦ and α = 11◦ for which DNS have been performed, it is important to note
that the extension of the wing along the span is LDNS

z = 0.4 in the simulations. This is
much smaller than the experimental wingspan Lexp

z = 4.65 and too small to observe the
stall cells of wavelength λexp

z = 1.55. The mean flows that are obtained from DNS can
therefore be used as reference for the mean flows estimated with the two-dimensional
RANS simulations.

The reference mean-flow velocity data are precisely defined as ūd = PūDNS where the
unsteady flow solution uDNS is first averaged over time and space along the spanwise
direction, in accordance with (2.9). Five convective times, excluding initial transients,
are used for the time averaging. Secondly, the mean-flow statistics computed on the
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Figure 4. Streamwise component of the mean-flow velocity obtained from (a,b) DNS and (c,d) baseline
RANS simulations for angles of attack (a,c) α = 10◦ and (b,d) α = 11◦.

fine structured grid used for the DNS are then projected onto the coarser unstructured
grid used to discretize the RANS equations. This spatial projection, which is defined by
the operator P , is more precisely composed of two steps. In the first step, a very fine
unstructured mesh is obtained by using a Delaunay triangulation from all the points of
the fine structured grid used for the DNS. On this fine unstructured mesh, the mean-flow
velocity field is discretized with linear Lagrange elements such that all the nodes of the
solution correspond exactly to the points of the structured grid used for DNS. Therefore,
there is no interpolation error in this first step. In a second step, a coarser unstructured
mesh is generated using a Hessian-based mesh adaptation where the metric is computed
from the mean-flow velocity and pressure fields. On this coarser unstructured mesh, the
mean-flow velocity is discretized with quadratic Lagrange elements. An interpolation
from the space spanned by linear Lagrange elements defined on the fine mesh to the
space spanned by quadratic Lagrange elements defined on the coarser mesh is finally
performed to obtain the reference velocity data ūd. Several tests, not reported here, have
been performed to ensure that the interpolation errors that arise during this second step
are negligible.

The streamwise velocity ūd of the mean flow extracted from DNS is displayed
in figures 4(a) and 4(b) for angles α = 10◦ and α = 11◦, respectively. A turbulent
trailing-edge separation is observed for both angles of attack, leading to a recirculation
region that is delimited with the black solid curve in the figure. The turbulent separation
occurs at xc,u = 0.866 and xc,u = 0.816 and the maximum back-flow velocities are ūd =
−0.14 and ūd = −0.16 for angles α = 10◦ and α = 11◦, respectively. The turbulent flow
separation is similar to that obtained with the baseline RANS model (figure 2a) but at
a much larger angle of attack (α = 16◦). For comparison, the mean-flow velocity fields
obtained with the baseline RANS model at the same angles of attack α = 10◦ and 11◦
are shown in figures 4(c) and 4(d), respectively. The turbulent boundary layer is now
fully attached on the suction side of the airfoil. There is no turbulent separation near
the trailing edge, unlike what is observed for the DNS mean flow (figure 4a,b). These
discrepancies between baseline RANS and DNS are also apparent when comparing the
turbulent eddy viscosity. While the eddy-viscosity field ν̄RANS

t is naturally retrieved from
the Spalart–Allmaras model, we use the approach described in Appendix D to extract an
eddy-viscosity field ν̄c

t that is consistent with the DNS mean velocity. Figure 5 displays
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Figure 5. Turbulent eddy viscosity normalized by the kinematic viscosity obtained with (a) baseline RANS
(ν̄RANS

t ) and (b) DNS (ν̄c
t ). The latter is extracted from DNS data as described in Appendix D. The angle of

attack is α = 11◦.
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Figure 6. Time-averaged lift coefficient CL as a function of the angle of attack α for the baseline RANS
model (curves), DNS (crosses) and experiments (circles). Stable and unstable RANS solutions are shown with
solid and dashed curves, respectively. Filled and open circles indicate the existence or not of stall cells in the
experiments. The critical angles of attack αRANS

c = 15.68◦ and α
exp
c = 12◦ are also indicated.

both eddy-viscosity fields for angle α = 11◦. They are divided by the kinematic viscosity,
or, when considering non-dimensional variables, multiplied by the Reynolds number.
The DNS-consistent eddy viscosity (figure 5b) is much larger in the wake of the airfoil.
This results from the trailing-edge flow separation that induces a larger production of
turbulence. That striking discrepancy results from, rather than explains, the inability of the
baseline RANS model to capture the turbulent flow separation. We will see in the following
that the overproduction of eddy viscosity in the turbulent boundary layer upstream of the
flow separation (i.e. xc,u < 0.8) is responsible for the failure of the baseline RANS model.

A comparison between experimental results and numerical results obtained with the
baseline RANS model and DNS is reported in figure 6 by displaying the lift coefficient
CL as a function of the angle of attack. The baseline RANS model (solid curve) clearly
overpredicts the lift coefficient obtained from DNS (crosses) and measured experimentally
(circles). The latter is obtained by integrating static wall-pressure measurements that are
available in the symmetry plane of the wing at several locations on the suction and
pressure sides of the airfoil. At angle 16◦, where the presence of stall cells is predicted
by linear stability analysis of the baseline RANS model, the discrepancy in the lift
coefficient is around 30 % between RANS and experiments. That discrepancy in the
mean-flow solution is associated with an error of 4◦ in the critical angle αc for the

1001 A41-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
09

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1009


Linear stability analysis of turbulent mean flows

onset of stall cells as estimated by baseline RANS, which is clearly visible in the figure.
Interestingly, we observe that, for the two angles 10◦ and 11◦ where stall cells are not
observed in the experiments (open circles), the lift predicted with DNS is close to that
measured experimentally. In the next section, the mean-velocity fields obtained from DNS
are used as reference data to improve the baseline RANS model and better predict the
onset of stall cells with stability analysis.

4. Prediction of stall cells based on linear analyses of DNS-consistent mean flows

To improve the prediction of stall cells based on linear stability analysis, we report in
§ 4.1 results of the data-assimilation method where the baseline RANS model is corrected
using the above-discussed reference mean-flow velocity fields from DNS. Linear stability
analysis around the assimilated mean flows is then performed in § 4.2 starting with
results of the perturbed eddy-viscosity approach. These results are compared not only
with experimental results, but also with those obtained with simpler frozen eddy-viscosity
approaches. The impact of the residual velocity error in the assimilated mean flow on the
stall cell eigenvalue is assessed in § 4.3 using sensitivity analysis. Finally, the influence of
the model correction on the stability analysis results is discussed in § 4.4.

4.1. Data-assimilation results
The data-assimilation method introduced in § 2.3 is first applied in § 4.1.1 relying on the
correction f̄1 in the turbulence model. The choice of the model correction ( f̄k) and its
influence on the estimation of the mean-flow velocity are then further investigated in
§ 4.1.2.

4.1.1. Results with the correction f̄1
The data-assimilation method using the correction f̄1 = ν̄ḡ1 in the turbulence model in
(2.11a–d) is first applied to the estimation of the mean-flow velocity at α = 11◦.

We recall that the objective function J , defined in (2.13), is the sum of two terms.
The first term J u accounts for the velocity error in the domain Ωm that is restricted here
to −0.5 < x < 1.5 and −0.3 < y < 0.2. The second term J gn penalizes the correction
field ḡn in the full computational domain so as to improve the well-posedness of the
minimization problem and also to avoid non-physical large-amplitude correction fields.
These two terms are weighted by the penalty parameter m. The evolution of the two
terms defining the cost function is shown in figure 7(a) during the iterative process of
the data-assimilation algorithm, for the penalty parameter m = 10−4. The cost function J
(dashed curve) decreases by almost two orders of magnitude in 100 iterations. The decrease
is sharp during the first 20 iterations and quite slow for the remaining 80 iterations.
The velocity error (solid curve) follows the same evolution while the penalization term
(dash-dotted curve) increases strongly during the first 20 iterations before stagnating close
to a value below 10−2. To better understand the effect of the penalization parameter,
figure 7(b) reports the value of the cost function at convergence for several values of
the penalty parameter in the space (J u/J0,J gn/J0). The arrow indicates increasing
values of the penalization parameter indicated in the caption of the figure. For small
values of the penalty parameter, the velocity error J u/J0 is around 5 × 10−3, smaller
than the velocity error reached in figure 7(a). However, the correction field (not shown
here) then exhibits large peaks localized in space that induce strong values of J gn/J0.
The penalty parameter m is thus increased so as to avoid such strong localized peaks.
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Figure 7. (a) Evolution of the cost function J = J u + mJ gn (dashed curve), the velocity error J u

(solid curve) and the penalization term mJ gn (dash-dotted curve) as a function of i, the iteration of the
data-assimilation algorithm. Results are normalized by the initial cost function J0 and shown for the
penalization coefficient m = 10−4. (b) Values of the converged cost function for values of the penalization
parameter m = [10−2, 5 × 10−3, 10−3, 3 × 10−4, 10−4, 5 × 10−5, 10−5, 10−6] shown in the space J gn/J0
versus J u/J0. The filled circle highlights the solution for m = 10−4. Results are shown for α = 11◦ using
the correction f̄1.
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Figure 8. (a) Streamwise velocity ū and (b) turbulent eddy viscosity ν̄tRe of the assimilated mean flow for
α = 11◦. Differences in (c) velocity

√
(ū − ūd) · (ū − ūd) and (d) eddy-viscosity fields (ν̄t − ν̄c

t )Re between
the assimilated solution and the DNS data.

Following the L-shaped curve in figure 7(b), we can strongly decrease the value of
J gn/J0 without much deteriorating the velocity error, as for the value m = 10−4 which is
emphasized with the black circle. This is the optimal penalty parameter since, by further
increasing m, the penalization term no longer decreases while the velocity error strongly
increases. Interestingly, it is shown in Appendix C that the difference in the components
of the Reynolds stress tensor modelled or computed from DNS is also minimal close to
m = 10−4.

The streamwise component of the assimilated velocity field at α = 11◦ is displayed in
figure 8(a). Unlike for the solution obtained with the baseline RANS model (figure 4d), the
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Linear stability analysis of turbulent mean flows

turbulent boundary layer on the suction side of the airfoil separates and a recirculation flow
region appears near the trailing edge, similar to that observed in the DNS (figure 4b). The
maximum back-flow velocity is ū ≈ −0.16, very close to that obtained for the DNS. To
better quantify the residual velocity error between the assimilated mean velocity and DNS,
the magnitude of the velocity error is shown in figure 8(c). The largest velocity error, close
to 0.1 and barely visible in the figure, is reached very close to the trailing edge. Otherwise,
the remaining error is smaller than 0.05 and distributed in the turbulent boundary layer on
the suction side as well as in the two turbulent shear layers on the wake. The impact of
this residual velocity error on the stability analysis is assessed later. The turbulent eddy
viscosity corresponding to the assimilated solution is shown in figure 8(b). Compared
with the baseline eddy viscosity shown in figure 5(a), the turbulent eddy viscosity is much
larger in the wake, around 600 times the non-dimensional molecular viscosity. This is a
consequence of the turbulent boundary layer separation, whose origin is explained later by
analysing the subtle difference in the attached turbulent boundary layer. For completeness,
we also display in figure 8(d) the difference of the assimilated eddy viscosity from that
extracted from the DNS. The largest discrepancies lie in the wake and are still significant.
This does not question the accuracy of the assimilated solution. Indeed, the eddy viscosity
that is extracted from DNS is not really a ground-truth variable since it also results from an
optimization problem as described in Appendix D. Those discrepancies rather highlight
the remaining differences between the eddy viscosity as predicted with the corrected
Spalart–Allmaras model and that extracted from DNS according to Pickering et al. (2021).

Let us now examine the turbulent correction found by the data-assimilation algorithm
that allows us to obtain the assimilated solution described above. The effective turbulent
correction field f̄1 = ν̄ḡ1, multiplied by the Reynolds number, is shown in figure 9(a). Two
flow regions, where the turbulent correction is active, are easily identified in this figure.
The first region corresponds to the wake of the airfoil, downstream of the recirculation
region. There, the positive turbulent correction acts as a source term in the turbulence
model, which contributes to increase the turbulent eddy viscosity. This is confirmed by
examining, in figure 9(b), the difference (ν̄t − ν̄RANS

t ) between the assimilated and baseline
eddy-viscosity fields, which is large and positive in the wake of the airfoil. The second
region in figure 9(a) corresponds to negative turbulence corrections (blue) that act as a sink
term in the turbulence model. The correction is of very small amplitude in the attached
turbulent boundary layer on the suction side of the airfoil (xc,u < 0.8) but its magnitude
increases in the shear layers of the recirculation region (x ∼ 1). Such negative corrections
contribute to decrease the turbulent eddy viscosity and thus favour the separation of the
turbulent boundary layer. To confirm that effect, we now examine eddy-viscosity and
velocity profiles at the station xc,u = 0.6 (dashed lines in figure 9a,b) where the boundary
layer thickness is δ = 0.035. More specifically, the turbulence correction is plotted in
figure 9(c) as a function of the wall-normal distance d/δ. The turbulent correction acts
only inside the turbulent boundary layer (d/δ < 1). Apart from a very small positive
correction close to the wall, the turbulent correction is negative, with a peak around
d/δ = 0.4 located in the log-law region of the turbulent boundary layer. The difference
between assimilated and baseline eddy viscosities (velocities) is displayed in figure 9(d)
(figure 9e). The negative turbulent correction clearly contributes to a destruction of ν̄t, as
seen in figure 9(d), where a deficit of eddy viscosity is observed for d/δ � 0.78. Such a
deficit is associated with a decrease of wall-tangential velocity in the assimilated solution
compared with the baseline solution. This is confirmed by examining figure 9(e) where the
deficit of velocity is about 0.2 in the near-wall region. To conclude, even if the negative
turbulent correction is of relatively small amplitude in the attached turbulent boundary
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Figure 9. (a) Effective turbulent correction f̄1 = ν̄ḡ1 (normalized by ν = 1/Re) obtained by the
data-assimilation algorithm for α = 11◦. (b) Difference (ν̄t − ν̄RANS

t )Re between the assimilated and
baseline eddy-viscosity fields. Wall-normal profiles at xc,u = 0.6 as indicated with dashed lines in (a,b) of
(c) the turbulent correction, (d) the eddy-viscosity difference and (e) the wall-tangential velocity difference
(ūt − ūRANS

t ). They are displayed as a function of the wall-normal distance d that is normalized by the boundary
layer thickness δ = 0.035.

layer compared with that observed further downstream in the wake, it induces a velocity
deficit that is large enough to explain the flow separation in the assimilated solution.

The data-assimilation method is also applied using the DNS velocity field at angle α =
10◦, allowing one to retrieve the small recirculation region at the trailing edge that is
illustrated in figure 4(a). An obvious prerequisite for the data-assimilation procedure is
to have access to reference data. In order to compute two-dimensional mean flows with
the corrected model at angles of attack other than α = 10◦ and α = 11◦ and for which no
data are available, we here rely on a simple approach that is based on the extrapolation of
the previously obtained turbulent corrections. Let us assume that two turbulent correction
fields, which are denoted by ḡ1(x, α0) and ḡ1(x, α1), have been determined through data
assimilation for two angles of attack α0 and α1. The corrective field ḡ1(x, α) for an angle of
attack α for which no reference data are available may be evaluated through the following
first-order approximation, assuming that α0, α1 and α are sufficiently close:

ḡ1(x, α) = ḡ1(x, α0)

(
α1 − α

α1 − α0

)
+ ḡ1(x, α1)

(
α − α0

α1 − α0

)
. (4.1)

The extrapolated correction field is computed with this expression using α0 = 10◦ and
α1 = 11◦. It can then be used to solve the RANS equations (2.11a–d) at any value of α,
and in particular at α = 12◦ where stall cells are observed in the experiments. Figure 10
shows the lift coefficient CL as a function of the angle of attack for the mean-flow solutions
obtained with the RANS model using this extrapolated correction (black curve). It is
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Figure 10. Comparison between the lift coefficient CL of the mean flows obtained with the baseline RANS
model (solid grey line), DNS (crosses), experiments (circles) and data assimilation with extrapolation of the
turbulent correction (solid black line) for various angles of attack. Filled and open circles indicate the existence
or not of stall cells in the experiments.

compared with the lift coefficients computed with the baseline RANS model (grey curve)
and DNS (crosses) and measured in the experiments (circles). This linear interpolation of
the corrective fields seems to yield meaningful results for angles of attack in the range
10◦ � α � 11◦. Its ability to extrapolate the solutions, for instance at the higher angle
α = 12◦, is more disputable. The lift coefficient is indeed higher than the experimental one
but the latter also corresponds to a case where stall cells are observed experimentally. The
corrective term in the turbulence model obtained by data assimilation is thus specific to the
parameters, data and flow configuration that are considered to determine it. It obviously
does not provide a new model that could be used for other values of the parameters such as
the angle of attack or the Reynolds number. To that aim, it could be tempting to recalibrate
the coefficients of the turbulence model using the same data-assimilation method, as for
instance performed by Shirzadi, Mirzaei & Naghashzadegan (2017) for a k–ε turbulence
model. However, the variability of the flow solution is probably too constrained by this
set of coefficients, as discussed by Ben Ali et al. (2022). Therefore, we would rather
recommend in future studies to use the modelling paradigm field inversion and machine
learning proposed by Parish & Duraisamy (2016), for which a neural network is trained to
learn the relationship between a corrective field and input features of the flow state.

4.1.2. Influence of the turbulence model correction f̄n on the assimilated mean flow
The influence of the correction f̄n = ν̄nḡn, introduced in the turbulence model (2.11a–d),
on the assimilated mean flow is now investigated for the case α = 11◦, considering the
supplementary cases n = 0 and n = 2. We perform L-curve analyses to identify optimal
values for the penalization parameter m as for the previously discussed case n = 1 in
figure 7(b). In all cases, the data-assimilation algorithm converges in about 100 iterations.
The values of the different terms in the cost function at the end of the data-assimilation
procedures are given in table 2 with the corresponding value of the optimal penalization
parameter. They are normalized by the initial cost function J0 that corresponds to the total
velocity error of the baseline RANS solution compared with the reference DNS solution.
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f̄0 f̄1 f̄2

J /J0 0.05246 0.02163 0.06568
J u/J0 0.03770 0.01419 0.02790
mJ gn/J0 0.01476 0.00744 0.03778
m 2 × 104 10−4 3 × 10−11

CL 1.2560 1.2541 1.2550

Table 2. Influence of the choice of the correction f̄n (n = 0, 1, 2) on the assimilated mean flow for α = 11◦.
The first four rows indicate the values of the cost function J , the velocity error J u and the penalization term
mJ gn at the final iteration of the data-assimilation algorithm, along with the value of the penalization parameter
m. Results are normalized by the the error of the baseline RANS solution J0 = J u

0 = 2.29964 × 10−3. The lift
coefficient of the assimilated solution is given in the last row and should be compared with CDNS

L = 1.25973.
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Figure 11. Spatial distribution of (a,c,e) the velocity error of the assimilated solution |ū − ūd| and (b,d, f ) the
corresponding effective corrections f̄n = ν̄nḡn for (a,b) n = 0, (c,d) n = 1 and (e, f ) n = 2.

In all cases, a strong reduction of the cost function J is thus achieved since the ratio
is always smaller than 0.1. The smallest values of the cost function and total velocity
error J u are obtained for the correction f̄1 previously discussed. The total velocity error
is around twice larger with the correction f̄2 and three times larger with the correction f̄0.
The spatial distribution of the velocity error for the assimilated solutions is displayed in
figure 11(a,c,e) for the three effective corrections that are shown in figure 11(b,d, f ). For
the correction f̄0, the largest local error is observed close to the trailing edge of the airfoil.
Being around 10 % of the free-stream velocity, it occurs in the thin shear layer immediately
downstream of the recirculation region, where a negative correction f̄0, corresponding to a
destruction of eddy viscosity, is also observed in figure 11(b). The correction f̄1 = ν̄ḡ1
displayed in figure 11(d) is much larger in this region, in particular because the eddy
viscosity ν̄ is large in separated flow regions. The assimilated solution in the near wake
of the airfoil is thus noticeably improved. The velocity error shown in 11(c) is around
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ten times smaller in this near-wake region than with the correction f̄0. Interestingly, on
the suction side where the turbulent boundary layer is attached, the corrections f̄0 and f̄1
are of similar magnitude, leading to similar velocity errors. Near the separation point, the
correction f̄1 is slightly larger and the velocity error is therefore slightly smaller. In the
present case, choosing the multiplicative correction f̄1 instead of the classical correction
f̄0 allows one to shift the effective correction of the turbulence model towards the trailing
edge of the airfoil where flow separation occurs. Another noticeable difference between
the corrections f̄0 and f̄1 is the significant action of the former close to the leading edge
in regions upstream of the laminar–turbulence transition locations, while the magnitude
of the latter correction is much smaller in these regions. If one considers that it is not
physically sound to introduce turbulence model corrections in laminar or transitional flow
regions, as discussed in § 2.3, this validates a posteriori the consideration of f̄1 (or more
generally n > 0) over f0 in that regard. The multiplicative correction f̄2 = ν̄2ḡ2 recently
proposed by Mons et al. (2024) is of similar magnitude to the two other corrections
in the region of attached turbulent boundary layer and extremely large in the wake of
the airfoil because it is now proportional to the square of the eddy-viscosity variable.
The spatial distribution of the velocity error is very similar to that obtained with the
correction f̄1 but around twice larger. To conclude, the assimilated mean-flow velocity is
slightly impacted by the choice of the correction in the turbulence model. For the present
flow configuration, the best correction is achieved with f̄1 and, for that reason, stability
analyses of the corresponding assimilated mean-flow velocity are first performed in § 4.2.
However, as discussed in § 2.4.1, multiplicative corrections (n /= > 0) change the form
of the linearized equations in the perturbed eddy-viscosity approach. The impact of these
corrections on the results of the stability analysis is assessed in § 4.4.

4.2. Stall cell prediction from linear analyses around assimilated mean flows
To determine the onset of stall cells, we now investigate the linear stability to
three-dimensional perturbations of the two-dimensional assimilated mean flow that has
been obtained with the effective correction f̄1 = ν̄ḡ1. Results obtained with the perturbed
and frozen eddy-viscosity approaches are reported in §§ 4.2.1 and 4.2.2, respectively,
which are further compared in § 4.2.3.

4.2.1. Perturbed eddy-viscosity approach
In the perturbed eddy-viscosity approach, perturbations of the velocity, pressure and eddy
viscosity are superimposed to the mean flow, so that the turbulence model is linearized, as
explained in § 2.4.1. The generalized eigenvalue problem (2.18) (with n = 1) is considered
and the eigenvalues of largest growth rate are determined, similarly to that performed with
the baseline RANS model in § 3.2.

Figure 12 displays stability analysis results around the assimilated mean flow at α = 11◦
(see figure 8a,b). The leading eigenvalues computed around the frequency ω = 0 are
shown in figure 12(a) for the transverse wavenumber β = 5. Apart from the stable modes,
which are depicted with open circles, we distinguish a zero-frequency eigenvalue (black
circle) that has a positive growth rate (σ > 0). The assimilated mean flow is therefore
unstable at this angle, unlike the mean flow of the baseline RANS model, which is
stable for this angle of attack and becomes unstable only at α ∼ 16◦. The growth rate of
this zero-frequency eigenvalue is shown in figure 12(b) as a function of the transverse
wavenumber β. The low-wavenumber eigenmode, which is labelled A in the figure
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Figure 12. Global stability analysis in the perturbed eddy-viscosity approach of the assimilated flow at
α = 11◦ obtained with the correction f̄1. (a) Eigenvalue spectrum for the spanwise wavenumber β = 5. The
black filled circle highlights the leading (unstable) eigenvalue. (b) Growth rate σL of the leading steady mode
versus the wavenumber β. Letters ‘A’ and ‘B’ distinguish between the two peaks of maximum amplification.

and corresponds to the stall cell mode as discussed in § 3.2, is unstable in the range
4 � β � 6, with a maximal value for β = 5.5. For higher wavenumbers, the eigenvalue
is stabilized but we also distinguish a bump around β = 18, labelled B in the figure.
The three-dimensional structure of the corresponding eigenmodes A and B is shown in
figures 13(a,c,e) and 13(b,d, f ), respectively. The spatial extent of the illustrated domain
in the transverse direction is Lz = 2λA

z , i.e. twice the wavelength of eigenmode A, λA
z =

2π/βA with βA = 5. The most striking difference between eigenmodes A and B is their
characteristic wavelength. Otherwise, for both modes, the isosurfaces of the streamwise
velocity component that are displayed in figure 13(a,b) look like streamwise-elongated
streaky structures of alternating sign in the spanwise direction. These streaky structures
emerge from the recirculation region at the trailing edge of the airfoil and elongate further
downstream. The isosurfaces of the spanwise velocity that are shown in figure 13(c,d) are
more localized in the recirculation region. These spatial structures suggest that streamwise
vortices induce low- and high-speed streaks similarly to the lift-up mechanism that
is discussed by Marquet et al. (2009) for zero-frequency unstable modes in laminar
recirculation regions. More generally, three-dimensional zero-frequency global modes
with similar spatial structures have been found in various low-Reynolds-number flow
configurations, as discussed in § 1.1, while Plante et al. (2021) first demonstrated, to the
best of our knowledge, the destabilization of such modes (i.e. stall cell mode, present mode
A) in a high-Reynolds-number turbulent flow. Isosurfaces of the eddy-viscosity component
of eigenmodes A and B are also reported in figure 13(e,f ). These fluctuations are more
concentrated in the wake, beyond the recirculation region, similarly to that for the base
turbulent eddy viscosity in figure 8(b).

In order to further analyse the differences between the spatial structure of eigenmodes
A and B, their streamwise velocity component in the plane z = 0 is reported in
figures 14(a) and 14(b), respectively. Although both modes display large magnitude of
the velocity close to the recirculation region, subtle differences are still noticeable. The
spatial structure of mode A is large predominantly outside of the recirculation region
(figure 14a), while the high-wavenumber mode B is of much large magnitude inside
the recirculation region (figure 14b). Moreover, the streamwise velocity of eigenmode
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Figure 13. Three-dimensional views of the zero-frequency (a,c,e) eigenmode A at wavenumber βA = 5 and
(b,d, f ) eigenmode B at wavenumber βB = 20. Isosurfaces of positive (red) and negative (blue) values of (a,b)
the streamwise velocity (u′ = ±0.5), (c,d) the transverse velocity (w′ = ±0.6) and (e, f ) the turbulent variable
(ν′/ν = ±1000). The spatial extent of the domain in the transverse direction is Lz = 2λA

z = 4π/βA.

0

–0.2

0.6 0.8 1.0 1.2

y

(a)

0

–0.2

0.6 0.8 1.0 1.2

0

–0.2

0.6 0.8 1.0 1.2

0

–0.2

0.6 0.8 1.0 1.2

y

x x

(c)

(b)

(d)

5.00

–5.00

200
150
100
50

–50
–100
–150
–200

0

200
150
100
50

–50
–100
–150
–200

0

3.75

–3.75

2.50

–2.50

1.25

–1.25
0

5.00

–5.00

3.75

–3.75

2.50

–2.50

1.25

–1.25
0

Figure 14. Two-dimensional view of the streamwise velocity u′ in the symmetry plane z = 0 for eigenmode
(a) A and (b) B. Real part of the endogeneity field scaled by the value of the growth rate Re(Eλ)(x)/σ (see 4.2)
for eigenmode (c) A and (d) B.

A has non-negligible amplitude upstream of the turbulent flow separation, unlike what
is observed for mode B. All of this suggests that the physical mechanisms that are
responsible for the destabilization of these two three-dimensional modes are of different
nature. This may be further investigated through structural sensitivity (Giannetti & Luchini
2007) or endogeneity (Marquet & Lesshafft 2015; Paladini et al. 2019) analyses which
aim to identify the flow regions where physical mechanisms are at play to destabilize a
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global mode. These analyses were originally developed for eigenmodes of the linearized
Navier–Stokes equations, but sensitivity analyses were also developed by Meliga et al.
(2012) for the linearized RANS equations with the Spalart–Allmaras turbulence model.
Here, we define the endogeneity Eλ of an eigenvalue λ, solution of the generalized
eigenvalue problem (2.18), as the complex field

Eλ(x) = λ
(

û†∗
(x) · û(x) + ν̂†∗(x)ν̂(x)

)
, (4.2)

where û and ν̂ are the velocity and eddy-viscosity components of the direct eigenmode,
respectively, while û† and ν̂† are the velocity and eddy-viscosity components of the
corresponding adjoint mode which are solutions of the adjoint eigenvalue problem (2.24).
They are normalized such that

∫
Ω

(û†∗ · û + ν̂†∗ν̂) dΩ = 1. Therefore, the integration
over space of the endogeneity field Eλ gives the eigenvalue, i.e.

∫
Ω

Eλ dΩ = λ. The
value of the endogeneity at a spatial location x is a conservative estimation of the local
contribution to the eigenvalue variation induced by a generic local structural perturbation
of the stability operator. Regions where endogeneity is large correspond to those where
physical mechanisms are at play.

The endogeneity function (4.2) is determined for the three-dimensional modes A and B
after computing the corresponding adjoint modes. Since these are zero-frequency modes,
only the real part of the corresponding endogeneity fields is displayed in figures 14(c)
and 14(d), respectively. We recall that mode A is unstable (σA = 0.005) while mode B is
stable (σB = −0.11). For the sake of comparison, the endogeneity fields are scaled by the
value of the corresponding growth rate. These fields clearly point to different flow regions.
For mode A (figure 14c), the endogeneity is large in the attached turbulent boundary
layer upstream of the separation point, with a peak that is reached around xc,u = 0.75.
Since the streamlines of the mean flow are concave near the separation point, it may be
associated with a Görtler instability (Görtler 1954). Such a region, slightly upstream of
the flow separation, was also identified by Beaudoin, Cadot & Aider (2004) as responsible
for the onset of three-dimensional structures in laminar backward-facing step flows. Now
examining the endogeneity of mode B in figure 14(d), it exhibits two peaks inside the
mean-flow recirculation region, a dominant one close to the airfoil’s wall and a second
one at the rear of the recirculation region. The two peaks suggest that both centrifugal and
elliptical instabilities are at play (Gallaire et al. 2007; Griffith et al. 2007).

The linear stability analysis of the assimilated mean flow based on the perturbed
eddy-viscosity approach is also performed for other angles of attack. Figure 15(a) shows
the local maximum growth rate σm = maxβ σL(β) as a function of α for modes A and
B. Filled circles are results obtained with the assimilated mean flows while open circles
correspond to mean flows that are computed through extrapolation of the assimilated
turbulent corrections as performed in § 4.1. When increasing the angle of attack, mode
A becomes first unstable for α � αc, where the critical angle is precisely determined to
be αc = 10.95◦. Mode B is much less amplified than mode A and remains stable for all
angles of attack that are investigated here. In figure 15(a), we also note that, for both modes,
the increase in the growth rate is linear for 10◦ � α � 11◦, while it tends to saturate for
larger angles. The saturation of the growth rate and a re-stabilization of the eigenmode are
expected at much higher angles of attack. Indeed, stall cells are observed in experiments
up to α = 16◦. The saturation observed in figure 15(a) is probably due a lack of accuracy
in the mean flows that are obtained through extrapolation of the turbulent correction, as
discussed before. A machine-learning-based approach such as discussed in Volpiani et al.
(2021) could be a better strategy for extrapolating the turbulent correction than the present
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Figure 15. (a) Maximum growth rate σm = maxβ(σL) for modes A and B as a function of the angle of attack
α in the perturbed eddy-viscosity approach. (b) The corresponding wavenumbers β. Filled and open circles
distinguish between results that correspond to assimilated mean flows and mean flows that are computed
through extrapolation of the turbulence correction, respectively. Vertical grey bars in (b) report the range of
unstable wavenumbers.

linear scheme (4.1), in particular for angles of attack that correspond to larger deviations
from the angles α0 = 10◦ and α1 = 11◦. In any case, it is worth mentioning that mode
A is unstable at the critical angle α

exp
c = 12◦ where stalls cells have been observed in

the experiments, while mode B remains stable. The wavenumbers that are associated
with the maximum growth rates σm in figure 15(a) are shown in figure 15(b) for both
modes. Vertical grey bars report the range of unstable wavenumbers, i.e. wavenumbers
with σ � 0. The wavenumber of mode A is quite independent of the angle of attack and
close to β = 5. The wavenumber of mode B tends to decrease with the angle of attack,
with a value close to β = 17 for α = 12◦. This corresponds to a wavelength λz = 0.37,
which is four times smaller than the experimental wavelength λexp

z = 1.55 (see § 3.1). The
wavelength of mode A (λz = 1.25) is in much better agreement.

We now further investigate stability results at angle α = 12◦ and relate them to
the experimental observations. It is first worth recalling that the wavenumber β of
three-dimensional perturbations developing on a homogeneous two-dimensional mean
flow is a real parameter that can take any values in the linear stability analysis. In the
comparison done so far, we selected the wavelength of the three-dimensional structures
by considering that the perturbations of maximum growth rate will ultimately grow and
dominate the others. When considering the experimental set-up, there is, however, another
mechanism of wavelength selection that is related to the finite size Lexp

z of the wing that
crosses the test section. Neglecting the effect of the boundary layer developing on the
sidewalls of the test section (thus assuming periodicity in the transverse direction), the
wavelength of the stall cells should satisfy the relation λz = Lexp

z /nc, where nc is the
(integer) number of cells, as already considered in § 3.1. Consequently, the admissible
values for the wavenumbers are β = nc2π/Lexp

z . The solid curve in figure 16(a) shows
the growth rate of the leading eigenvalue as a function of β for α = 12◦. The discrete
admissible values for the wavenumber, obtained for the finite wingspan Lexp

z = 4.65, are
shown in the figure through circles and the corresponding number of cells. The growth
rates corresponding to three and four cells are both positive and very similar. Although
the maximum growth rate is obtained for three cells (β = 4.05) as in the experiments, the
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Figure 16. Comparison between perturbed eddy-viscosity linear stability and experimental results at α = 12◦.
(a) Growth rate σL of the leading steady mode versus the wavenumber β. Circles identify admissible
values β = nc2π/Lexp

z that take into account the finite spanwise extent of the wing in the experiments. The
corresponding number of cells nc is also reported, distinguishing between unstable (filled circles) and stable
(open circles) modes. (b) Skin-friction lines of the reconstructed three-dimensional flow 〈u〉 (sum of the
two-dimensional mean flow and the most unstable admissible three-dimensional steady mode (nc = 3); see
text). (c) Skin-friction lines of the experimental oil-flow visualization.

slight difference in the growth rate cannot solely explain the wavenumber selection. In the
experiments, other effects such as the development of boundary layers on the sidewalls of
the wind tunnel may play a role in the number of observed stall cells, but they cannot be
captured with the present linear approach.

To better show that the destabilization of this three-dimensional global mode is related
to the onset of stall cells as witnessed in the experiments, we propose to approximate
the three-dimensional flow 〈u〉 by prescribing a finite amplitude A to the zero-frequency
stationary global mode û and superimpose the latter on the two-dimensional mean flow ū,
i.e. 〈u〉 (x, z) = ū(x) + A(û(x)eiβz + c.c.). This corresponds to a linear approximation of
the nonlinear flow that neglects the generation of higher harmonics as well as their effect
of the spanwise-averaged flow. The reconstructed flow that is obtained with amplitude
A = 0.3 and wavenumber β = 4.05 is shown in figure 16(b) by plotting the skin-friction
lines (or surface streamlines) on the suction side of the airfoil. They are isovalues of the
skin-friction vector defined as τ = (2/Re)Pt · (S(〈u〉) · n), where n and Pt refer to the
normal vector to the solid walls and to the projection operator onto the tangential plane,
respectively. Such a representation allows for a direct comparison with the experimental
oil visualization that is reproduced in figure 16(c). The friction lines of the reconstructed
flow form cellular patterns and, in the separated region, reveal counter-rotating vortex
pairs that concentrate around focal points connecting the cells and exhibit the ‘mushroom’
or ‘owl face’ shape reported in the literature (Winkelman & Barlow 1980; Schewe 2001).
A spanwise modulation of the separation line is clearly visible and similar to that observed
in the experiments.

To conclude, the global stability analysis of the assimilated mean flows performed with
the perturbed eddy-viscosity approach shows that the low-wavenumber mode A, related to
a Görler instability that is at play upstream of the turbulent flow separation, is responsible
for the onset of stall cells that are observed in the experiments.

4.2.2. Frozen eddy-viscosity approaches
We now turn to results of global stability analyses that are performed with the frozen
eddy-viscosity approach introduced in § 2.4.2, where only perturbations of the velocity and
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Figure 17. Growth rate σL of the leading steady mode versus the wavenumber β at α = 10◦. Stability results
are reported following the perturbed (solid curves) and frozen (dashed curves) eddy-viscosity approaches, the
latter relying either on (a) the assimilated mean-flow velocity and eddy viscosity (see (2.19)) or (b) the DNS
mean-flow velocity with a consistent eddy viscosity (see (2.20)).

pressure fields are considered. Two different mean flows are here considered for solving
the generalized eigenvalue problem in this approach.

In the first case, the RANS equations are linearized around the mean-flow velocity and
eddy viscosity that are obtained by the data-assimilation method, which corresponds to the
eigenvalue problem (2.19). Figure 17(a) displays with the dashed curve the growth rate σL
of the leading zero-frequency mode as a function of the transverse wavenumber β for angle
α = 10◦. The low-wavenumber mode A and high-wavenumber mode B are both unstable
with that approach, mode B being even more unstable than mode A. When considering
the perturbed eddy-viscosity approach (solid line), the modes are both stable for that angle
of attack. Therefore, including the perturbation of the eddy viscosity in the linear analysis
has a stabilizing effect on the two considered modes. Figure 18(a) shows the maximum
growth rate σm for both modes A and B as a function of α. Mode B is first destabilized
at the critical angle αc = 9.65◦ while mode A is destabilized for a slightly larger value
αc = 9.90◦. The wavenumbers β that are associated with these maximum growth rates are
reported in figure 18(b). Grey vertical bars highlight the range of unstable β values. The
two modes being destabilized for almost the same angle of attack, the range of unstable
wavenumbers is very large.

The second frozen eddy-viscosity approach is somehow simpler to implement since
it does not require one to perform data assimilation. Indeed, we directly use the
the DNS mean-flow velocity with a consistent eddy viscosity ν̄c

t (determined as
explained in Appendix D) to assemble the Jacobian matrix in the eigenvalue problem
(2.20). Figure 17(b) displays with the dashed curve the growth rate σL of the leading
zero-frequency mode obtained with that approach. Now, only the high-wavenumber mode
B is unstable, while the growth rate of mode A is much more similar to that obtained with
the perturbed eddy-viscosity approach (solid curve). This stability analysis can also be
performed at angle of attack α = 11◦ since DNS data are available for that angle. A linear
interpolation of the growth rates obtained for each mode at these two angles allows one to
estimate that the critical angle of attack is αc = 9.7◦ for mode B (αc = 10.7◦ for mode A)
with critical wavenumber βc = 22 (βc = 5.5).

1001 A41-35

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
09

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1009


K. Sarras, C. Tayeh, V. Mons and O. Marquet

0.3

0.2

0.1

–0.1

0

30

25

20

15

10

5

0
9.5 10.0 10.5 11.0 11.5 12.0 9.5 10.0 10.5 11.0 11.5 12.0

βσm

αα

A

B

A

B

(a) (b)

Figure 18. Stability analysis results with the frozen eddy-viscosity approach based on data-assimilation
results (see (2.19)). (a) Maximum growth rate σm for modes A and B as a function of angle of attack α.
(b) The corresponding wavenumbers β. Filled and open circles distinguish between results that correspond to
assimilated mean flows and mean flows that are computed through extrapolation of the turbulence correction,
respectively. Vertical grey bars in (b) report the range of unstable wavenumbers.

Experiments Perturbed Perturbed Frozen Frozen
baseline assimilated assimilated consistent

αc 11◦ < αc � 12◦ 15.68◦ (A) 10.95◦ (A) 9.67◦ (B) 9.74◦ (B)
βc 4.05 5.4 (A) 5.4 (A) 24.3 (B) 28.3 (B)
λz = 2π/βc 1.55 1.16 (A) 1.16 (A) 0.33 (B) 0.22 (B)
nc = Lexp

z /λz 3 4 (A) 4 (A) 18 (B) 21 (B)

Table 3. Comparison of the critical angle of attack αc and wavenumber βc, along with the corresponding
wavelength λz and number of structures nc, as observed experimentally or predicted by the various types of
stability analyses in this study. The type of critical mode (A or B) is indicated in parentheses for the numerical
results.

The major drawback of these two frozen-eddy stability approaches is that they
both overpredict the growth rate of the high-wavenumber mode B, such that this
high-wavenumber mode becomes first unstable when increasing the angle of attack, as
further discussed in the following.

4.2.3. Comparison between various approaches
In order to summarize the prediction of the various stability analyses investigated here
and compare them with the experimental results, we report in table 3 the critical angle of
attack αc, wavenumber βc and corresponding wavelength λz and number of structures
nc that are obtained with the different approaches. The reference values are given in
the first column where the experimental results are reported (see § 3.1), while the other
columns show results obtained with the stability analyses. The latter all take into account
the finite spanwise extent of the wing in the experiments which restricts admissible
wavenumbers, as discussed in § 4.2.1. The second column corresponds to stability analysis
results with the baseline RANS model, following the perturbed eddy-viscosity approach
(see § 3.2). The third column corresponds to the perturbed eddy-viscosity approach based
on assimilated mean flows (see § 4.2.1). The fourth and fifth columns report results for the
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Figure 19. Lift coefficient CL as a function of the angle of attack α as in figure 6, for the baseline RANS model
(grey curves), data assimilation (black curves) and experiments (circles). Solid and dashed curves show now
the stable and unstable data-assimilation solutions based on the perturbed eddy-viscosity approach, yielding a
critical angle of attack αDA

c = 10.95◦.

frozen eddy-viscosity approach (see § 4.2.2) around either assimilated mean flows (fourth
column) or DNS mean flows with consistent eddy viscosities (fifth column). Stability
results based on the baseline RANS model provide a relatively correct estimation of
the wavelength of the stall cells that are experimentally observed. However, the value
of the critical angle of attack αc for their onset is largely overestimated. All the other
types of stability analysis, which rely on better estimations of the two-dimensional mean
flow (obtained either through data assimilation or from DNS), better predict the critical
angle of attack. Still, the perturbed eddy-viscosity approach based on assimilated mean
flows provides a value for αc that is the closest to the experimental results. However,
the superiority of this latter approach over the frozen eddy-viscosity ones mainly lies in
its ability in also correctly estimating the wavelength of the stall cells, while the frozen
approaches predict that B modes, whose wavenumbers are largely superior to what is
experimentally observed, become first unstable. Finally, it may be worth recalling that,
while the perturbed eddy-viscosity approach based on assimilated mean flows predicts the
development of four stall cells (λz = 1.16) at αc = 10.95◦, it predicts the onset of three
stall cells (λz = 1.55) at α = 12◦, as in the experimental results at the same angle that are
reported in first column, and as illustrated in figure 16.

From this comparison, we conclude that the stability of the assimilated mean flows
including perturbed eddy viscosity is the best approach since (i) it determines the critical
angle of attack with greater accuracy and (ii) it is much more selective in terms of the
predicted unstable wavelengths, which come in good agreement with those measured in
the experiments. Figure 19 summarizes the benefit of the present approach for predicting
the onset of stall cells around a NACA4412 airfoil.

4.3. Sensitivity of the stall cell mode to residual errors in the assimilated mean-flow
velocity

As shown in § 4.1, the error between the assimilated and reference mean-flow velocities
does not strictly converge to zero. This residual velocity error is displayed in figure 8(c)
for the angle α = 11◦. We propose here to assess how such residual velocity error affects
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Figure 20. (a,b) Sensitivity ∇ūλ = (∇ūλ)R + (∇ūλ)T of mode A at α = 11◦ and β = 5 to mean-velocity
modifications in the perturbed eddy-viscosity approach around the assimilated flow. Streamwise components
(a) (∇ūλ)R and (b) (∇ūλ)T , which account for modifications in the RANS momentum equations and in the
turbulence model equation, respectively. (c) Difference in the streamwise velocity field δū = ūd − ū. (d) Local
contribution to the induced eigenvalue variation, i.e. ∇ūλ · δū.

the eigenvalue of the stall cell mode as predicted by the perturbed eddy-viscosity approach
using the sensitivity analysis developed in § 2.5.

The eigenvalue sensitivities to mean-flow modifications in the RANS and turbulence
models (see (2.22)–(2.23)) are computed for mode A at angle of attack α = 11◦ and
wavenumber β = 5 which has been discussed in § 4.2.1, in particular through figures 13
and 14. The streamwise components of these sensitivity fields are displayed in figures 20(a)
and 20(b), respectively. In both cases, the largest magnitudes are observed near the
airfoil’s wall. Interestingly, the sensitivity to mean-flow modifications in the RANS
equation (figure 20a) is negative, indicating that a positive mean-flow velocity variation
will induce a decrease in the growth rate. On the other hand, the opposite will happen
when considering the sensitivity to mean-flow modifications in the turbulence model
(figure 20b), since it is positive. However, that contribution is of much smaller magnitude;
therefore we can mainly focus on the sensitivity to mean-flow modifications in the RANS
equations in the following. The corresponding sensitivity field is of largest amplitude close
to the airfoil’s wall, inside the recirculation region but also upstream of the separation
point in the attached turbulence boundary layer. Its maximal value is indeed reached at
xc,u = 0.75, i.e. the same location as identified with the endogeneity field (figure 14c).
To better visualize the localization of the sensitivity field inside the turbulent boundary
layer, figure 21(b) displays the absolute value of the streamwise component |∇ūλ| at the
station xc,u = 0.75, as a function of the normalized distance to the wall d/δ, where δ is
the boundary layer thickness at this station. The sensitivity is very large in the viscous
sublayer of the boundary layer, in close proximity to the wall. A good estimation of the
mean flow in this region is therefore important to correctly predict the growth rate of the
stall cell mode.

The residual difference between the DNS and assimilated mean-flow velocities δū =
ūd − ū, which has been minimized during the data-assimilation procedure, is displayed
in figure 20(c) for the streamwise component. As evoked in § 4.1, this error is small
but non-negligible. The largest values are obtained near the airfoil’s wall (red region)
as well as in the upper part of the shear layer (blue region). Examining more carefully
the velocity error in the attached turbulent boundary layer as displayed in figure 21(a) at
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Figure 21. Wall-normal profiles at xc,u = 0.75 of various quantities in figure 20 (solid curves): (a) streamwise
mean-velocity error |δū| = |ūd − ū|, (b) streamwise component of the sensitivity function |∇ūλ| and (c) local
contribution to the eigenvalue variation |∇ūλ · δū|. The dashed curve in (a) shows the profile of 1 − ρRS, where
ρRS is the correlation between the anisotropic Reynolds stress and mean strain rate tensors as evaluated from
DNS (see (4.3)).

station xc,u = 0.75, we identify two regions of significant residual velocity error (solid
curve). The dominant one is very close to the walls (d/δ � 0.05) while the subdominant
one is near the edge of the boundary layer (d/δ � 0.85).

Using the sensitivity function ∇ūλ, we can now estimate the uncertainty/variation in the
eigenvalue that is induced by such residual mean-flow velocity error according to (2.21).
The scalar field ∇ūλ · (ūd − ū) quantifies the uncertainty in the eigenvalue that is induced
by the local mean-flow velocity error. It is displayed in figure 20(d). The spatial integration
of this field yields the global uncertainty in the eigenvalue, which is around δλ ≈ −0.1
for the present mode A. This eigenvalue variation is non-negligible in comparison with
the maximum growth rate of mode A which is shown in figure 15(a). We would thus
obtain that mode A is stable for the angle α = 11◦, which is not in disagreement with the
experimental observation since stall cells are observed for α � 12◦. However, it may be
worth keeping in mind that, in addition to being restricted to a linearity assumption, the
present uncertainty quantification does not take into account the impact of residual errors
in the assimilated turbulent eddy viscosity, the latter being difficult to accurately evaluate
by lack of a reliable reference eddy viscosity, so that the present value of δλ should be
considered as only an estimate.

Coming back to figure 20(d) and comparing it with 20(c), it is interesting to note that
the residual mean-velocity errors close to the airfoil’s wall and near the separation point
are mainly responsible for the eigenvalue uncertainty. The residual errors in the shear layer
are thus of minor importance for predicting the growth rate of mode A. Examining more
carefully the contribution to δλ in the attached turbulent boundary layer (figure 21c), we
see that only the mean-flow velocity errors in the viscous sublayer induce uncertainties in
the eigenvalue. These residual mean-velocity errors and subsequent eigenvalue uncertainty
can be attributed to the Boussinesq hypothesis on which is based the present turbulent
model, as illustrated in the following. In this hypothesis, the anisotropic part of the
Reynolds stress tensor is assumed to be linearly proportional to the strain rate tensor, as
stated by (2.4). The validity of that hypothesis can be here quantified through the DNS
results (still at α = 11◦), from which are extracted a time- and spanwise-averaged reference
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n 0 1 2

J u/J0 0.038 0.014 0.028

σ(β = 5) −0.161 0.005 0.034
σ(β = 5) −0.166 — 0.029

||ū(f̄n)||2 0.023 — 0.009
(δσ )ū 0.001 — 0.011

Table 4. Influence of the choice of the correction f̄n (n = 0, 1, 2) on the stability of the assimilated mean flows
(in the perturbed eddy-viscosity approach). The first row recalls the decrease in the discrepancies between the
assimilated flows obtained with the different corrections and the reference DNS mean-flow velocity compared
with baseline RANS. The second and third rows show the growth rate of the eigenvalue computed at β = 5
and its variation σ = σ(f̄n) − σ(f̄1). The fourth and fifth rows show the L2 norm of the mean-flow velocity
variation ū(f̄n) = ū(f̄n) − ū(f̄1) and the corresponding variation of the growth rate (δσ )ū computed with
(4.4).

anisotropic Reynolds stress tensor R̄
a
d and strain rate tensor S(ūd). The correlation, or

alignment ρRS between these two tensors may be evaluated according to

ρRS = |R̄a
d : S(ūd)|

||R̄a
d||||S(ūd)||

, (4.3)

where || · || here denotes the tensor norm defined as || · ||2 = · : ·, while : denotes the
tensor contraction. For ρRS = 1 (ρRS = 0), the tensors are fully aligned (orthogonal) and
therefore the hypothesis is valid (invalid). The dashed curve in figure 21(a) displays the
quantity 1 − ρRS in the attached turbulent boundary layer at station xc,u = 0.75. Near the
outer edge of the boundary layer, that quantity is close to 0 and the Boussinesq hypothesis
is then valid in that region. On the other hand, it gets very close to 1 when approaching
the airfoil’s wall, which coincides with the region where the residual mean-velocity errors
are maximum (solid curve). This demonstrates that the Boussinesq hypothesis is not valid
in the viscous sublayer of that turbulent boundary layer, thus explaining the inability of
the data-assimilation algorithm to further reduce the mean-velocity error in that region.
The accuracy in the prediction of the stall cells using the present combination of data
assimilation and linear stability analysis is therefore limited here by the choice of a linear
eddy-viscosity turbulence model. The use of nonlinear eddy-viscosity models, as in Kitsios
et al. (2010), based on the expansion of the Reynolds stress tensor proposed by Pope (1975),
is a recommended approach for improving the present results in future studies.

4.4. Influence of the correction on the stability analyses of the assimilated mean flows
Since the correction f̄1 = ν̄ḡ1 leads to the best estimation of the mean-flow velocity field,
as recalled in the first row of table 4, the stability of the latter has been preferentially
investigated so far. We now investigate the stability of the assimilated mean flows that have
been obtained with the other corrections, f̄0 = ḡ0 and f̄2 = ν̄2ḡ2, so as to investigate the
influence of the choice of the correction on the results of stability analysis. Figure 22 shows
the growth rate of the leading eigenvalue as a function of the wavenumber, computed
with the perturbed eddy-viscosity approach and the assimilated mean-flow velocities
obtained with the corrections f̄0 (dash-dotted curve), f̄1 (solid curve) and f̄2 (dashed curve).
First of all, we clearly observe a variation in the growth rate that is of similar order
of magnitude to that when comparing frozen and perturbed eddy-viscosity approaches
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Figure 22. Growth rate of the leading eigenvalue σL as a function of the wavenumber β (computed with
the perturbed eddy-viscosity approach) for assimilated mean flows at α = 11◦ obtained with the correction f̄0
(dash-dotted curve), f̄1 (solid curve) and f̄2 (dashed curve).

around the assimilated flow for the correction f̄1 (see figure 17a). Results obtained with
the two multiplicative corrections (solid and dashed curves) are very similar for β � 5.
For larger values, the growth rate obtained with the correction f̄2 is systematically larger
and is unstable in the range 5 � β � 20. Recalling that the stall cells are observed in
the experiments for β ∼ 4, we can conclude that results obtained with the correction f̄2
lack selectivity in the transverse wavenumber. Interestingly, the stability analysis of the
mean flow corrected with f̄0 (dash-dotted curve) better selects the wavenumber since the
maximal value of the growth rate is obtained for β ∼ 5 and the growth rate for larger
wavenumbers is strongly damped. Therefore, the selectivity in the wavenumber is better
with the correction f̄0. Examining now the value of this growth rate, it is significantly lower
for the correction f̄0 than for f̄1. It is difficult to determine which correction gives the best
estimation, since there is no reference value for the growth rate. Recalling that no stall
cells are observed for angle of attack α = 11◦, the stable or marginally stable eigenvalues
obtained with the two corrections are both possible.

The variations in the growth rate between the different cases seen in figure 22 are
due either to variations in the assimilated mean-flow velocity ū(f̄n), to variations in
the assimilated eddy-viscosity variable ν̄(f̄n) or to the structural perturbation of the
eigenvalue problem. For multiplicative corrections (i.e. n > 0), the term h̄n = nν̄n−1ḡn
indeed appears in the Jacobian operator (2.18) so that the correction ḡn directly impacts
the stability analysis. In this regard, the correction f̄0 should possibly be preferred over
multiplicative corrections to avoid that additional complexity. As a first step to disentangle
the above-mentioned various factors to variations in the stability results, we estimate,
based on a sensitivity analysis, the growth rate variation for the leading mode at β = 5
that is specifically induced by velocity variations between the assimilated mean flows.
This analysis is similar to that developed in § 4.3. Since the error between the assimilated
and reference DNS mean-flow velocities is minimal for the correction f̄1, we use the
corresponding mean-flow velocity ū(f̄1) as reference in this subsection. The difference
in mean-flow velocities is thus here defined as ū(f̄n) = ū(f̄n) − ū(f̄1) where n = 0 or
n = 2. In table 4, we report the L2 norm of this difference, defined as ||ū(f̄n)||2 =
(
∫
Ω

ū · ū dΩ)1/2. This global measure of the velocity variation is very small for the
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Figure 23. Influence of the assimilated mean-flow velocity ū(f̄n) on the stability analysis. (a,c) Norm of
the difference between the assimilated velocity fields ū(f̄n) = ū(f̄n) − ū(f̄1) and (b,d) local contribution
to the growth rate of the eigenvalue induced by such differences determined with (4.4) for (a,b) n = 0 and
(c,d) n = 2.

correction f̄2 and around three times larger for f̄0. However, it appears that these velocity
variations do not fully explain the variations in the growth rate σ seen in figure 22 (black
circles) and also reported in table 4 (third row). Indeed, the variation in the eigenvalue
induced by these velocity variations may be evaluated as

(δλ)ū =
∫

Ω

∇ūλ · ū(f̄n), (4.4)

i.e. the integral over space of the local product between the velocity variation and ∇ūλ,
the sensitivity of the eigenvalue to mean-flow variation, computed here for the assimilated
mean flow with the correction f̄1 as already performed in § 4.3. Figure 23(a,c) displays
the spatial distribution of the velocity difference, defined as |ū(f̄n)| = (ū · ū)1/2,
for the corrections n = 0 and n = 2. Figure 23(b,d) reports the local contribution to the
eigenvalue variation, i.e. ∇ūλ · ū(f̄n), for n = 0 and n = 2. Starting with the correction
f̄2, the difference of the assimilated mean flow from that obtained for f̄1 is non-negligible
in the attached boundary layer, inside the recirculation region and close to the trailing
edge, as seen in figure 23(c). Due to the spatial distribution of the eigenvalue sensitivity
displayed in figure 20, the velocity differences close to the separation point and inside the
recirculation region induce non-negligible positive variation of the eigenvalue, as seen in
figure 23(d). After integration over space, we obtain that (δσ )ū = 0.011, showing that the
actual eigenvalue variation σ = 0.029 observed in figure 22 for β = 5 (black circles) can
be only partially explained by the velocity differences between the corrections. Examining
now results for the correction f̄0, the difference of the assimilated mean flow from that
obtained for f̄1 is very small in the attached boundary layer and inside the recirculation
region close to the separation point, while a much larger difference is observed close
to the trailing edge (see figure 23a). This larger velocity difference does not induce any
variation of the eigenvalue, as seen in figure 23(b), except very close to the trailing edge.
The variation of the eigenvalue induced by the velocity variation is eventually very small
(δσ )ū = 0.001 and cannot explain the large variation of the eigenvalue σ = −0.166
observed in figure 22. In that case, the impact of velocity differences on the eigenvalue
variation seems secondary compared with differences in the eddy-viscosity field or in the
structure of the Jacobian matrix.
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These results clearly indicate that a small difference in the mean-flow velocities,
which is the objective of the data-assimilation algorithm proposed here, is not always
sufficient to guarantee the convergence of the leading eigenvalue, because the impact of
the correction or of the assimilated mean eddy-viscosity on results of the stability analysis
is not negligible. In future studies, the mean-flow estimation with data assimilation and
its stability analysis should be more intertwined, so as to provide a better estimation of
the leading eigenvalues. The eigenvalue sensitivity field to mean-flow velocity variations
could be used as a weight function in the definition J u of the cost function (2.13) so as
to minimize the velocity difference preferentially in mean-flow regions of interest for the
stability analysis. To further investigate the impact of the correction on the eigenvalue, it
might also be interesting to determine the sensitivity of the eigenvalue to the correction
ḡn so as to determine sensitive mean-flow regions. Such information could then be used
to weight the penalization term J gn in the cost function so as to reduce the impact of
the correction on the eigenvalue. We should also remark that the effective correction is
partially linearized in the present study. Indeed, the correction ḡn is somehow frozen as it
is independent of the mean-flow state. The neural-network-augmented turbulence model
as proposed by Singh & Duraisamy (2016) would be interesting to obtain a correction
that depends on input features depending on the flow state. A proper linearization of the
correction term in the turbulence model could thus be achieved and would probably change
results of the eigenvalue analysis for the present flow configuration. Finally, the influence
of the turbulence model on the present results should be addressed in future studies.

5. Conclusion

In this paper we investigated the formation of three-dimensional cellular structures, known
as stall cells, on the suction side of a NACA4412 airfoil at Reynolds number Re = 350 000
for angles of attack in the range 10◦ � α � 12◦. In the framework of a triple decomposition
of the flow, the turbulent flow may be described with the RANS equations with a linear
eddy-viscosity assumption for modelling the Reynolds stress tensor. The turbulent eddy
viscosity is here described with the Spalart–Allmaras model, resulting in closed form of
the equations governing the turbulent flow.

First, we showed that the baseline RANS model fails to determine the critical angle of
attack for the onset of stall cells. The two-dimensional mean-flow velocity field does not
capture the trailing-edge flow separation that occurs in the DNS performed by Gleize et al.
(2022) for angles in pre-stall conditions. A global stability analysis of the two-dimensional
turbulent mean flow then predicts the destabilization of a three-dimensional stall cell
mode, in agreement with previous results by Plante et al. (2021). However, the critical
angle of attack is largely superior to that observed in the experiments performed for the
same airfoil, angles of attack and Reynolds number in a subsonic wind tunnel at ONERA,
Chalais Meudon. This disagreement is preferentially attributed to the inability of the
RANS simulations in correctly capturing the trailing-edge mean-flow separation.

In order to improve the predictive capability of a global stability analysis around a
turbulent mean flow estimated with RANS equations, we proposed an adjoint-based
data-assimilation method that aims at determining corrective fields in the model equation
so as to minimize the discrepancies between the RANS-estimated and DNS-reference
mean-flow velocities. Several types of correction fields defined as source terms in
the turbulence model have been shown to strongly improve the estimation of the full
mean-flow velocity while giving a consistent eddy-viscosity field and model. For the
flow configuration investigated here, a multiplicative source term is the correction field
yielding the best estimation of the two-dimensional mean flow. To predict the onset of
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stall cells, two approaches of the linear stability analysis around this best estimation of the
mean flow were then considered and compared. In the perturbed eddy-viscosity approach,
perturbations of the velocity, pressure and turbulence model’s variables are considered.
The latter are neglected in the frozen eddy-viscosity approach that is most commonly used
for the linear analyses of turbulent wall-bounded and jet flows. The two approaches could
be investigated in this framework of data-consistent RANS model, since the turbulence
model has been linearized in addition to the RANS equations. Both approaches could
identify stationary low-wavenumber and high-wavenumber modes, which were referred to
as modes A and B, respectively, whose structures correspond to streaks of streamwise
velocity and strong transverse velocities. Through comparisons with the experimental
results, we have shown that the perturbed eddy-viscosity approach yields a significantly
better prediction of the onset of stall cells compared with the other investigated approaches
as (i) it predicts the critical angle of attack more precisely and (ii) it is much more accurate
and selective in terms of the unstable transverse wavelengths. Concerning this latter aspect,
it was indeed shown that the frozen eddy-viscosity approach predicts that B modes become
first unstable, while the corresponding wavelengths are far smaller than the experimental
observations. This was observed no matter if the frozen approach was performed around
assimilated mean flows or DNS ones with consistent eddy-viscosity fields in the sense of
Pickering et al. (2021).

The aforementioned results therefore demonstrate (i) the benefits of relying on data
assimilation to get accurate mean-flow descriptions that are solutions of a calibrated
turbulence model and (ii) the need to not only include an eddy-viscosity field but to also
account for its linear perturbations using this calibrated model in stability analyses for the
prediction of stall cells. More generally, the present methodology appears as a promising
approach for the accurate and yet computationally tractable estimation of coherent flow
phenomena in turbulent configurations.

Several aspects of the method that deserve further investigations have been briefly
addressed. Firstly, the influence of the residual error in the velocity of the assimilated mean
flow was investigated using sensitivity analysis of the stall cell modes. The corresponding
eigenvalue was shown to be sensitive in flow regions where the Boussinesq hypothesis
is not valid and the residual velocity errors thus remain non-negligible. Such results
clearly indicate that a more sophisticated turbulent flow model might be considered in
future studies. In future studies, information on the eigenvalue sensitivity might also be
included in the data-assimilation method used to obtain the mean flow so as to favour
the convergence of the stability analysis results and better constrain the chosen model
correction. Secondly, we have shown that the different correction fields used in the
mean-flow equations have a non-negligible influence on the results of stability analysis.
The selection in the transverse wavelength of the stall cell mode was notably different.
Interestingly, we have shown that differences in the growth rate are not necessarily due to
differences in the mean-flow velocity but also to the correction itself. To better investigate
the influence of the correction that has been frozen in the present study, we recommend
obtaining a data-consistent turbulent model using the paradigm of machine learning field
inversion proposed by Singh & Duraisamy (2016). By linearizing also the correction
field, we may better assess its influence on the stability results and hopefully reduce
it. Additionally, such neural network turbulence models have promising extrapolation
capability that could be used for cases where no reference data are available, facilitating
parametric studies and the identification of critical stability conditions. Finally, we should
say that the data-consistent RANS model approach presented here is not limited to the use
of full mean-flow velocity data, as done in the present study. As a perspective to the present
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work, we could use sparse data, such as wall pressure or wall skin-friction measurements
around the airfoil, to better estimate the mean flow and its stability. By doing so, we
could extend the method to more complex flow configurations for which generating full
mean-flow velocity with high-fidelity simulations is still not feasible nowadays.
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Appendix A. Spalart–Allmaras turbulent model

The Spalart–Allmaras turbulence model introduced in § 2.1 corresponds to a transport
equation for a turbulent viscosity variable denoted 〈ν̃〉. The eddy-viscosity variable 〈νt〉
depends on that turbulent viscosity variable according to

〈νt〉 (〈ν̃〉) = 〈ν̃〉 fv1(χ), fv1 = χ3

χ3 + c3
v1

, (A1a,b)

where χ = 〈ν̃〉 Re and cv1 = 7.1. The equation governing 〈ν̃〉 is

∂t 〈ν̃〉 + T(〈u〉 , 〈ν̃〉) = 0, (A2)

where the nonlinear operator T is defined as

T(〈u〉 , 〈ν̃〉) = (〈u〉 · ∇) 〈ν̃〉 − ∇ · (η(〈ν̃〉)∇ 〈ν̃〉) − s(〈ν̃〉 , ∇ 〈ν̃〉 , ∇ 〈u〉). (A3)

The first two terms correspond to convection and diffusion, respectively. In the latter, the
effective viscosity is η(〈ν̃〉) = σ−1(1/Re + 〈ν̃〉), where σ = 2/3. The third term in (A3)
is a nonlinear source term s defined as the sum of cross-diffusion C, production P and
destruction D terms, according to

s = (1 − ft2) · cb1S̃ 〈ν̃〉︸ ︷︷ ︸
P

+ σ−1cb2|∇ 〈ν̃〉 |2︸ ︷︷ ︸
C

− cw1fw
〈ν̃〉
d2︸ ︷︷ ︸

D

, (A4)

where the exact definition of each term can be found in Spalart & Allmaras (1992). The
term ft2 which multiplies the turbulence production term is known as the tripping term.
This scalar field allows one to trigger transition to turbulence, in particular at the locations
defined in § 3.2. When ft2 = 1, the production term is set to zero and the boundary layer
stays laminar while when we transition to ft2 = 0 at the prescribed locations on the upper
and lower surface, we initiate the production of turbulence.
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Appendix B. Definitions of operators used in RANS and turbulence model equations

The two-dimensional turbulent base flow satisfies the governing equation (2.11a–d) where
the residual vectors for the RANS and turbulent model equations are defined as

R0
u(ū, P̄, ν̄t(ν̄)) = ∇0 · (ū ⊗ ū) + ∇0P̄ − ∇0 ·

[
2

(
1

Re
+ νt(ν̄)

)
S0(ū)

]
,

T0(ū, ν̄) = (ū · ∇0)ν̄ − ∇0 · (η(ν̄)∇0ν̄) − s(ν̄, ∇0ν̄, ∇0ū),

⎫⎪⎬
⎪⎭ (B1)

where the spatial operator ∇0 = (∂x, ∂y, 0)T denotes the two-dimensional gradient and
S0(ū) = 1/2(∇0ū + ∇0ūT).

In the perturbed eddy-viscosity approach, the three-dimensional perturbations are
investigated by computing the leading eigenvalues/eigenmodes of the eigenproblem (2.18)
where the blocks in the Jacobian operator are defined as

Jβ
uu û = ∇β · (

ū ⊗ û + û ⊗ ū
) − ∇β ·

[
2

(
1

Re
+ ν̄t(ν̄)

)
Sβ(û)

]
,

Jβ
uν ν̂ = −∇β ·

[
2
∂ν̄t

∂ν̄
ν̂S0(ū)

]
,

Jβ
νν ν̂ = (ū · ∇β)ν̂ − ∇β · (η(ν̄)∇βν̂) − ∇β ·

(
∂η

∂ν̄
ν̂∇0ν̄

)
− ∂s

∂ν̄
ν̂ − ∂s

∂∇0ν̄
· ∇βν̂,

Jβ
νu û = (û · ∇0)ν̄ − ∂s

∂∇0ū
: ∇β û,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B2)

where ∇β = (∂x, ∂y, iβ) is the gradient operator in three dimensions and Sβ(û) =
1/2(∇β û + (∇β û)T), where û = (û, v̂, ŵ)T. Note that the two-dimensional operators that
are involved J 0

uu, J 0
uν , J 0

νν and J 0
νu involved when solving the two-dimensional mean-flow

equations (2.11a–d) (through a quasi-Newton method; see § 2.6) and the adjoint problem
(2.15) are obtained from the above definition by considering β = 0.

Appendix C. Effect of the penalization parameter on the assimilated Reynolds stress
tensor

As detailed in § 2.3, the cost function J in (2.13) involves the parameter m which weights
a penalty term that prevents from overfitting. The optimal value for this parameter is
determined in § 4.1.1 for the correction f̄1 through an L-curve analysis, as illustrated in
figure 7(b). In this appendix, it is shown that the thus-obtained value for m is also almost
optimal to model the Reynolds stress tensor. Figure 24(a) reports the following metric
that quantifies the discrepancies between the anisotropic part of the mean Reynolds stress
tensor as evaluated by DNS R̄

a
d or for assimilated mean flows R̄

a
(according to (2.4)) at

α = 11◦ for different values of the penalization parameter:

ERST =
∫

Ωm

R̄
a

: R̄
a

dΩm, R̄
a = R̄

a − R̄
a
d. (C1a,b)

It appears that the value of ERST is close to be minimum for m = 10−4 (filled circle),
i.e. the value that was identified through the L-curve analysis. Significantly increasing or
decreasing m would thus induce a deterioration in the modelled Reynolds stress tensor.
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Figure 24. (a) Error on the Reynolds stress tensor ERST (see (C1a,b)) normalized by its value for baseline
RANS ERST

0 for the assimilated flows at α = 11◦ that are obtained with different values of the penalization
coefficient m (see (2.13)). Reynolds stress u′′v′′ as estimated (b) by DNS, (c) by baseline RANS and (d) for the
assimilated flow with m = 10−4 (filled circle in a).

The improvement with respect to baseline RANS results is appreciable and is illustrated
through figures 24(b)–24(d), which report the Reynolds stress u′′v′′ as obtained from DNS
results, from baseline RANS results and for the assimilated mean flow that corresponds
to m = 10−4, respectively. The baseline RANS results significantly underestimate the
magnitude of u′′v′′ near the trailing edge and in the recirculation region, which is
satisfactorily corrected through the data-assimilation procedure.

Appendix D. Determination of eddy viscosity consistent with the reference mean
flow from DNS

To perform resolvent analyses of turbulent mean flows in isothermal jets, Pickering et al.
(2021) proposed to determine an eddy-viscosity field, denoted ν̄c

t , that is consistent with
the reference mean flow by minimizing the residual of the momentum equations. In order
to consider a well-posed problem, this is here formulated by minimizing the following cost
function:

G(ν̄c
t ) =

∫
Ωm

∥∥∥R0
u(ūd, P̄d, ν̄

c
t )

∥∥∥2
dΩm, (D1)

where R0
u(ūd, P̄d, ν̄

c
t ) refers to the residual of the RANS momentum equations in (B1).

Assuming that both ūd and P̄d are known through DNS, the minimizing consistent eddy
viscosity is obtained through inverting the following linear system:(

L†L
)

ν̄c
t = L†b, (D2)
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where
L (�) = ∇0 · [

2 (�) S0(ūd)
]
,

b = ∇0 · (ūd ⊗ ūd) + ∇0P̄d − ∇0 ·
[

2
Re

S0(ūd)

]
,

⎫⎪⎬
⎪⎭ (D3)

and where L† refers to the adjoint of the operator L.
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