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This paper introduces the Bradley–Terry regression trunk model, a novel probabilistic approach for
the analysis of preference data expressed through paired comparison rankings. In some cases, it may be
reasonable to assume that the preferences expressed by individuals depend on their characteristics. Within
the framework of tree-based partitioning, we specify a tree-based model estimating the joint effects of
subject-specific covariates over and above their main effects. We, therefore, combine a tree-based model
and the log-linear Bradley-Terry model using the outcome of the comparisons as response variable. The
proposedmodel provides a solution to discover interaction effectswhenno a-priori hypotheses are available.
It produces a small tree, called trunk, that represents a fair compromise between a simple interpretation of the
interaction effects and an easy to read partition of judges based on their characteristics and the preferences
they have expressed. We present an application on a real dataset following two different approaches, and
a simulation study to test the model’s performance. Simulations showed that the quality of the model
performance increases when the number of rankings and objects increases. In addition, the performance
is considerably amplified when the judges’ characteristics have a high impact on their choices.

Key words: paired comparisons, preference rankings, regression tree, STIMA, GLM.

The analysis of preference data is ubiquitous in many scientific fields. Preferences are ana-
lyzed in several ways, depending on how these are collected from a set of individuals, or judges.
People can express their preferences with respect to a set of items (or stimuli, or objects) by
assigning a numerical value to each of them according to an ordinal scale or can place in order
the objects by forming a list, called ordering, in which the preferences are stated by looking at
the order in which each object appears in the list (Marden, 1996).

Sometimes objects are presented in pairs to judges, producing the so-called paired comparison
rankings: This could be the natural experimental procedurewhen the objects to be ranked are really
similar and the introduction of other objects may be confusing (David, 1969). Given a ranking of
no objects, it is possible to determine the set of no × (no − 1)/2 pairwise preferences, but this

Correspondence should be made to Antonio D’Ambrosio, University of Naples Federico II, Naples, Italy.
Email: antdambr@unina.it

1443
© 2022 The Author(s)

Downloaded from https://www.cambridge.org/core. 07 Jan 2025 at 21:34:52, subject to the Cambridge Core terms of use.

http://crossmark.crossref.org/dialog/?doi=10.1007/s11336-022-09882-6&domain=pdf
http://orcid.org/0000-0002-1905-037X
https://www.cambridge.org/core


1444 PSYCHOMETRIKA

set does not always correspond to a ranking because of the phenomenon of non-transitivity of the
preferences. This phenomenon could be avoided by ensuring that ‘individuals comparisons are
independent or nearly’ (David, 1969, p. 11).

In analyzing rank data, the goal is often to find one ranking that best represents all the
preferences stated by each individual. This goal, when dealing with rank vectors, is known as the
consensus ranking problem, the Kemeny problem, or the rank aggregation problem (Amodio et
al., 2016).When dealing with paired comparison rankings, the goal is to determine the probability
that object i is preferred to object j for all the possible pairs of them: The final outcome is thus
a probabilistic assessment of the central ranking (Kendall & Babington Smith, 1940; Bradley &
Terry, 1952; Mallows, 1957).

Preference rankings can be analyzedwith both supervised and unsupervisedmethods. Among
these, there are methods based on the goodness-of-fit adaptation aimed at describing the struc-
ture of rank data (Coombs, 1950; Carroll, 1972; Meulman et al., 2004; Busing et al., 2005;
D’Ambrosio et al., 2021) and probabilistic methods (Marden, 1996; Heiser & D’Ambrosio,
2013) that assume a homogeneous or heterogeneous distribution of judges preferences. When
homogeneity is assumed, probabilistic methods are based on the so-called Thurstonian models
(Thurstone, 1927). Heterogeneity of preferences implies that different groups of subjects with spe-
cific characteristics may show different preference rankings (Strobl et al., 2011) and is accounted
for introducing subject-specific covariates from which mixtures of known sub-populations can be
estimated, in most cases, with generalized linear models (Chapman & Staelin, 1982; Dittrich et
al., 2000; Böckenholt, 2001; Francis et al., 2002; Skrondal & Rabe-Hesketh, 2003; Gormley &
Murphy, 2008) or recursive partitioning methods (i.e., tree-based) (Strobl et al., 2011; Lee & Yu,
2010; D’Ambrosio & Heiser, 2016, Plaia & Sciandra, 2019).

Dittrich et al. (2000) proposed a parametric model for the analysis of rank ordered preference
by means of Bradley–Terry (BT)-type models with categorical subject-specific covariates. They
transform the (complete) rankings data into paired comparisons and apply a log-linear model
for a corresponding contingency table. The search for the interaction effects between covariates
is based on a forward selection and backward elimination procedure. Although this approach is
suited for hypothesis-based modeling, it requires an effective selection of the covariates and a
distinct choice of the functional form in which these covariates are added to the model (Strobl
et al., 2011). Thus, it requires the arbitrary introduction of higher-order interactions when no a
priori hypotheses are known.

Strobl et al. (2011) proposed a tree-based classifier, where the paired comparisons are treated
as response variables in Bradley-Terry models. They found a way to discover interactions when
no a priori hypothesis is known, suggesting a model-based recursive partitioning where splits
are selected with a semi-parametric approach by looking for instability of the basic Bradley–
Terry model object parameters. The final result provides the preference scales in each group
of the partition that derives from the order of object-related parameters, but it does not offer
information about how the subject-specific covariates affect the judges’ preferences. Thus, this
semi-parametric model returns parametric coefficients neither for the main effects nor for the
interaction effects.

Recently, Wiedermann et al. (2021) extended the Strobl’s model by combining the log-linear
Bradley–Terry (LLBT) model with the model-based recursive partition (MOB) for detecting
treatment effect heterogeneity. They proposed a semi-parametricmodel that distinguishes between
focal independent variables and covariates for recursive partition.A score-based procedure, theM-
fluctuation test (Zeileis &Hornik, 2007, 2008), is used to assess the stability of model parameters,
and the pruning procedure is conducted using the AIC.

In this paper, we propose a completely parametric approach that tries to overcome the draw-
backs of the models introduced in Dittrich et al. (2000) and Strobl et al. (2011). It fits a generalized
linear model with a Poisson distribution by combining its main effects with a parsimonious num-
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ber of interaction effects. Our approach is framed within the simultaneous threshold interaction
modeling algorithm (STIMA) proposed by Dusseldorp et al. (2010) and Conversano & Dussel-
dorp (2017) that, in the case of a numerical response, is based on the regression trunk approach
(Dusseldorp & Meulman, 2004). Dealing with paired comparisons, it combines the extended
log-linear Bradley–Terry model including subject-specific covariates with the regression trunk.
Thus, the proposed model is named Bradley-Terry regression trunk (BTRT). BTRT produces an
estimated generalized linear model with a log link and a Poisson distribution presenting a main
effects part and an interaction effects part, the latter being composed of a restricted number of
higher-order interactions between covariates that are automatically detected by the STIMA algo-
rithm. The interaction effect part can be graphically represented in a decision tree structure, called
trunk, because it is usually characterized by few terminal nodes. Hence, BTRT allows observing
the preference scale in each node of the trunk and to evaluate how the probability of prefer-
ring specific objects changes for different groups of individuals. The final result is a small tree
that represents a compromise between the interpretability of interaction effects and the ability to
summarize the available information about the judges’ preferences.

The main feature of BTRT is that it does not require a selection of the covariates to be added
to the model nor a specification of their functional form. Moreover, its output provides a specific
estimated parameter for the variables composing the main effects part of the model as well as for
the possible interactions between subject-specific covariates. The differences with respect to the
Wiedermann et al. model are due to the different split search procedures based on theMOBmodel.
As pointed out by the authors, the testing procedure for the split search can be very challenging.
They use theM-fluctuation test to search for the best splitting covariate, while our method is based
on the easy-to-compute decrease in deviance introduced in the regression trunk approach within
the STIMA algorithm. Both methods can deal with continuous or categorical subject-specific
covariates, even if the current implementation of BTRT does not handle nominal covariates.
Furthermore, as in the Wiedermann et al. model, also in the STIMA algorithm it is possible to
distinguish between focal predictors and partitioning covariates, choosing the treatment variable
as the first split variable.

The rest of the paper is organized as follows. In Sect. 1, we give an overview of the basic
Bradley–Terry model and its extension with subject-specific covariates. Next, the STIMA algo-
rithm and the regression trunk methodology are recalled in Sect. 2 before introducing BTRT and
explaining how it can efficiently be used for the task of partitioning individuals based on their
preferences. A simulation study has been carried out to investigate, in particular, the choice of a
suitable pruning rule: results are reported in Sect. 3. In Sect. 4, we present an application of BTRT
on a real dataset. Conclusions and future research directions are reported in Sect. 5.

1. The (Extended) Bradley–Terry Model

The Bradley–Terry model [BT, Bradley & Terry, 1952] derives a latent preference scale
from paired comparison data when no natural measuring scale is available. It has been applied
in psychology and several other disciplines (Dittrich et al., 2006; Choisel & Wickelmaier, 2007;
Rodríguez Montequín et al., 2020).

Let π(i j)i denote the probability that the object i is preferred in the comparison with j . The
probability that j is preferred is π(i j) j = 1−π(i j)i . The basic Bradley–Terry model can be defined
as (Agresti, 2002, p. 436-439)

π(i j)i = πi

πi + π j
, (1)
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whereπi andπ j are nonnegative parameters (also calledworth parameters) describing the location
of objects on the preference scale. Eq. (1) can be expressed as a logisticmodel for paired preference
data. With a set of no objects to be judged, by following Sinclair (1982) for which

π(i j)i = πi

πi + π j
=

√
πi/π j

√
πi/π j + √

π j/πi
, (2)

the BT model can be defined as a quasi-symmetry model for paired comparisons with object
parameters λO

i such that

logi t (π(i j)i ) = log

(
π(i j)i

π(i j) j

)
= λO

i − λO
j , (3)

where λO
i and λO

j are object parameters related toπ ’s in Eq. (2) by λO
i = 1

2 ln(πi ). The superscript

O refers to object-specific parameters. Thus, π̂(i j)i = exp (λ̂O
i −λ̂O

j )

1+exp (λ̂O
i −λ̂O

j )
, where π(i j)i = 1

2 when

λO
i = λO

j . Themodel estimates
(no
2

)
probabilities, which is the number of paired comparisonswith

no objects. Note that the logit model in Eq. (3) is equivalent to the model in Eq. (1). Identifiability
of the two models requires a restriction on the parameters related to the last object no, such as
λO

no
= 0 or

∑no
i πi = 1.

The BT model can also be fitted as a log-linear model (Fienberg & Larntz, 1976; Sinclair,
1982; Dittrich et al., 1998). Sinclair (1982) assumed that, in comparing object i with object j , the
random variables y(i j)i and y(i j) j follow a Poisson distribution and represent the number of times
a specific comparison occurs. Let ni j be the number of comparisons made between object i and j ,
andm(y(i j)i ) be the expected number of comparisons inwhich i is preferred to j . Then, combining
the re-specification proposed by Sinclair and the notation for log-linear models for contingency
tables, it follows that, m(y(i j)i ) = ni jπ(i j)i has a log-linear representation and, conditional on the
fixed marginal total, its distribution is multinomial

log(m(y(i j)i )) = μi j + λO
i − λO

j

log(m(y(i j) j )) = μi j − λO
i + λO

j .
(4)

The nuisance parameters μ in Eq. (4) may be interpreted as interaction parameters representing
the objects involved in the respective comparison, therefore fixing the corresponding ni j marginal
distributions (Dittrich et al., 2004; Dittrich & Hatzinger, 2009). In total, 2

(no
2

)
expected counts are

estimated. This approach allows synthesizing the information about all preferences in a unique
design matrix. The columns of the design matrix represent the responses y(i j), the parameter μ

expressed as a factor indicating the n × (n − 1)/2 comparisons, and the object parameters λO
i .

An example of design matrix for three objects is given in Table 11 in the Appendix.
When y(i j) assumes values +1 and −1 instead of 1 and 0, respectively, the linear predictor η

of the basic log-linear BT model is (Hatzinger & Dittrich, 2012)

ηy(i j)i = log(m(y(i j)i )) = μi j + y(i j)i (λ
O
i − λO

j ). (5)

Equation (5) can be extended by introducing multiple subject-specific covariates. For continuous
subject-specific covariates it is necessary to build up a separate contingency table for each judge,
and each different value of the covariate. An example in which two judges, with different ages,
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express their preferences regarding three objects is shown in Table 12 in the Appendix. For a
categorical covariate S, let m(y(i j)i,l) be the expected number of preferences for i compared with
j , among individuals classified in covariate category l, with l = 1 . . . L , where L represents the
total number of levels of the covariate. The BT model is then specified as

log(m
(
y(i j)i,l

)
) = μi j,l + λO

i − λO
j + λS

l + λO S
i,l − λO S

j,l

log(m
(
y(i j) j,l

)
) = μi j,l − λO

i + λO
j + λS

l − λO S
i,l + λO S

j,l ,
(6)

where λS
l is the main effect of the subject-specific covariate S measured on its l-th level; λO S

i,l

and λO S
j,l are the subject-object interaction parameters describing the effect of S observed on

category l and concerning the preference for object i and j , respectively. If S has no effect on the
preferences of the judges, then λO S

i,l = 0 and the model collapses into the previously described
basic BT model: There is just one log-odds for the comparison of two specific objects (Hatzinger
& Dittrich, 2012). The parameters of interest λO S

i,l and λO S
j,l in Eq. (6) can still be interpreted as

log-odds and log-odds ratio

log

(
π(i j)i,l

π(i j) j,l

)
= 2(λO

i + λO S
il ) − 2(λO

j + λO S
jl ). (7)

Hence, the LLBT equation for the h-th judge and objects i and j is

log(m
(
y(i j)i,h

)
) = μi j,h + y(i j)i,h(λO

i,h − λO
j,h). (8)

The parameter λO
i,h can be expressed through a linear relation

λO
i,h = λO

i +
P∑

p=1

βi px p,h, (9)

where λO
i (intercept) indicates the location of object i in the overall consensus ranking, x p,h is

the value of the x p-th continuous covariate (p = 1, . . . , P) observed for judge h and β measures
the effect of x p on object i .

The deviance of the model in Eq. (7) indicates howwell the model fits the data. It corresponds
to the deviance of a fitted Poisson regression

D = 2
H∑

h=1

yi j,h × log

(
yi j,h

m(yi j,h)

)
, (10)

where yi j,h represents the observed values of each comparison i j for each judge h, andm(yi j,h) =
ŷi j,h are the predicted values based on the estimated model parameters. If the model fits well, the
yi j,h will be close to their predicted values m(yi j,h).

2. The Bradley–Terry Regression Trunk (BTRT) for Preference Data

The BT model is hereby applied to preference data by specifying a regression model for
paired comparisons. This specification is aimed at estimating, in an automatic and data-driven
fashion, both the main effects and, if present, the interaction effects part of the model. For this
purpose, we resort to the STIMA framework extended with the use of GLM in Conversano &
Dusseldorp (2017) and combine the extended BTmodel including subject-specific covariates with
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the regression trunk methodology (Dusseldorp & Meulman, 2004). The latter allows the user to
evaluate in a unique model the importance of both main and interaction effects by first growing a
regression trunk and then by pruning it back to avoid overfitting. The interaction effects are hereby
intended as a particular kind of non-additivity (Berrington de González & Cox, 2007; Cohen et
al., 2013).

STIMA integrates generalized linear models—GLM (McCullagh & Nelder, 1989) and clas-
sification and regression trees (CART) (Breiman et al., 1984), and is used when the analyst has
no exact a priori hypotheses about the nature of the interaction effects (e.g., in Conversano et al.,
2019). Notationally, the GLM estimated by STIMA assumes that a response variable y observed
on n subjects has an exponential family density ρy(y; θ;φ)with a natural parameter θ and a scale
parameter φ. The response y depends on a set of P categorical and/or continuous covariates x p

(p = 1, . . . , P) and its mean μ = E(y|x1, . . . , xP ) is linked to the x ps via a link function g(·):

g(μ) = η = β0 +
P∑

p=1

βpx p,h +
T −1∑

t=1

βP+t I {(x1,h, . . . , xP,h) ∈ t} (11)

Equation (11) refers to a standard GLM presenting a linear predictor η such that μ = g−1(η) (μ
is an invertible and smooth function of η). The first P parameters concern the main effects part
of the model estimated in the root node of the trunk via standard GLM, while the other T − 1
parameters define the interaction effects part of the model obtained by partitioning recursively in
a binary way the n cases in order to add additional interaction terms defined by the coefficients
βP+t and the indicator variables I {(x1,h, . . . , xP,h) ∈ t}. Being obtained by a sequential binary
splitting of the original data, the interaction effects correspond to threshold interactions since the
values/labels of the splitting predictors leading to a specific terminal node can be considered as
thresholds that partition the predictor space in order to correctly identify a GLM with interaction
effects that maximizes goodness of fit by controlling for overfitting.

The Bradley–Terry regression trunk (BTRT) model combines the extended log-linear BT
model including subject-specific covariates (Eqs. 8 and 9) with the STIMA-based trunk model
(Eq. 11). In BTRT, the estimated consensus expressed for object i by the judge h is

λ̂i,h = λ̂i +
P∑

p=1

β̂i,px p,h +
T −1∑

t=1

β̂i,P+t I {(x1,h, . . . , xP,h) ∈ t}, (12)

in which the subscript O is left out from the notation of the λ̂ parameters for readabil-
ity reasons. Again, the term

∑P
p=1 β̂i,px p,h is the main effects part assessing the effects

of covariates on the consensus for object i . The interaction effects part is estimated by∑T −1
t=1 β̂i,P+t I {(x1,h, . . . , xP,h) ∈ t} and is derived from the terminal nodes of a regression

trunk that searches for possible threshold interactions between the P covariates assuming that
they have a joint effect on the consensus expressed for object i besides their individual (main)
effect. Thus, the regression trunk has T terminal nodes and for each terminal node t an additional
parameter βi,P+t is estimated. It expresses the effect of the threshold interaction between the
covariates x1, . . . , xP whose split points lead to t . The estimated intercept term λ̂i measures the
average consensus about object i in the root node of the trunk while the estimated intercept for the
terminal node t is λ̂i + β̂i,P+t . The model in Eq. (12) is still a log-linear model aimed at modeling
the pairwise comparisons of objects i and j (Eq. 8) through a different specification of the linear
components describing the consensus expressed for the objects (see Eq. 9 for object i).
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Although the estimation procedure of BTRT is framed within the STIMA algorithm, some
steps are different. Once a set of paired comparisons is given, a preliminary data processing step is
required to obtain the design matrix of the BT model. In our framework, ties are not included, but
the model can be extended by incorporating undecidedness parameters. The final design matrix
is composed of n = no × (no − 1) × H rows, where H indicates the number of judges. The
total number of rows is equal to the product between the number of comparing objects, that is
2, the number of paired comparisons (no × (no − 1)/2), and the number of judges, resulting in
2 × (no × (no − 1)/2) × H .

2.1. Growing the Bradley–Terry Regression Trunk

In each step of STIMA, a generalized linear model with a Poisson link is fitted to the data.
To discover the main effects, it is only necessary to fit the model in the root node. The first
estimatedmodel consists of P β coefficients that describe the probability distribution of preferring
a particular object to another one, given a set (x1, ..., xP ) of judges’ characteristics. The search
for the best split of the trunk at each iteration is made by taking into account all the available
terminal nodes at that step. For a particular terminal node and based on paired comparisons, for
each covariate x p, with (p = 1, . . . P), we consider each unique value of x p as a candidate split
point. Specifically, a Bradley-Terry model is estimated for each of the possible pairs of candidate
values i j ∈ [1, no]; i �= j , by discretizing x p and creating the associated dichotomous variable
zi jp.

Next, the split point associated with z∗
i j p maximizing the decrease in deviance is computed

with respect to the goodness-of-fit test based on the deviance of a Poisson regression model
introduced in Eq. (10). Thus, it is considered as the ‘best’ split point and the node is split according
to the specific value of the discretized variable x p. The splitting criterion of BTRT is based on
maximizing the decrease in deviancewhenmoving froma parent node to the two possible daughter
nodes defined by splitting on zi jp. This split search procedure is repeated by searching for each
splitting node t the best split point so that, once found, the new dichotomous variable z∗

i j p,t is
added to the model and an additional interaction effect is included. When the split is found, all
regression coefficients in the model are re-estimated.

Preliminarily, the user is required to choose between two main approaches that could be
followed in BTRT:

a One Split Only (OSO), where the splitting covariates already used in the previous splits
are not considered as candidate splitting variables for the current split;

b Multiple Splitting (MS), where the whole set of covariates is considered to split the
current node despite some of them have been previously selected to split other nodes.

The OSO approach returns a tree in which it is possible to analyze the interaction effects between
all the covariates. Since, in this case, a covariate cannot split two subsequent nodes of the tree, the
risk of possible ‘spurious interactions’ is avoided. In this case, the final tree might not necessarily
return the best model as that producing the best goodness of fit (i.e., maximum reduction in
deviance). Besides, following the MS approach it is possible to achieve the maximum reduction
in deviance, but there is a risk of obtaining a tree that utilizes the same covariate (with different
values) to split several, even subsequent, nodes. In this case, it can happen that only the main
effects part is retained and thus it is not possible to analyze interactions. We compare the two
criteria in the real data application (see Sect. 4).

At each split step, the estimated regression parameters β̂i,P+t measure the probability of
preferring a specific object i , given the interaction between different characteristics of a particular
group of judges. While some similar methods, such as M5 (Quinlan, 1992) and Treed regression
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Figure 1.
Flowchart of the STIMA algorithm implementing the BTRT model for preference data.

(Alexander & Grimshaw, 1996), estimate several linear models, one in each node of the tree, the
regression trunk model estimates a single linear model only.

Consistent with standard criteria applied in decision tree modeling, the stopping criterion of
BTRT is based on the a-priori definition of the minimum number of observations for a node to
be split. The default implementation is based on the requirement that the size of the new nodes
should be at least equal to five, even if the minimum bucket size can be modified based on the
depth of the tree requested by the user. Figure 1 shows a flowchart in which the tree growing
procedure is schematically explained.

The final BTRT model estimates a number of parameters equal to the number of intercepts,
plus the number of main effects parameters, plus the number of interactions. The total number of
parameters is computed as follows:

(no − 1) + [P × (no − 1)] + [(T − 1) × (no − 1)]. (13)

2.2. Pruning the Bradley–Terry Regression Trunk

When the final estimated trunk model presents a large number of higher-order interactions,
it may be challenging to interpret the results and the overfitting problem might occur. Anyway,
growing the maximum expanded trunk is necessary since a small trunk may not be able to capture
the real interactive structure of the data if the splitting process ends too early. For this reason,
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BTRT considers a pruning procedure operated after the trunk growing. In particular, a V -fold
cross-validation of the BTRT model deviance is computed for each step split of the trunk. The
user has to provide the number of subsets V in which the entire dataset is divided. The minimum
sample size requirements for the choice of V depends on the number of judges, the number of
objects to be compared and the number of subject-specific covariates, which all determine the
dimension of the design matrix. As there is not a formal rule to follow, we recommend to decrease
the number of folds of the CV procedure and possibly repeat the CV procedure several times (i.e.,
m times V -fold cross-validation), if the number of judges and/or the number of comparing objects
is limited. To obtain the cross-validated deviance, all the preferences expressed by a particular
judge h in the design matrix are randomly assigned to a specific subset and, for V times, the
BTRT trunk model estimated in a specific node is trained on V − 1 subsets while the left-out
subset is treated as a test set. At the end of the process, a predicted value ŷi j,h is obtained for each
observation in the data matrix. Following this approach, the case-wise cross-validation deviance
Dcv is

Dcv = 1

n

[

2
n∑

i ′=1

yi ′ j;h × log

(
yi ′ j;h
ŷi ′ j;h

)]

, (i ′, j) ∈ no, (i
′ �= j), h ∈ H (14)

where n is equal to the total number of rows of the design matrix and i ′ is its generic row. Note
that the number of rows n is greater than the total number of judges H . The standard error of Dcv

is

SEcv =
√√√√1

n

n∑

i ′=1

[
yi ′ j;h × log

(
yi ′ j;h
ŷi ′ j;h

)
− Dcv

]2
. (15)

Usually, Dcv decreases after the first splits of the trunk and starts to increase next. BTRT uses
the same c · SE pruning rule used in STIMA (Dusseldorp et al., 2010). Let t∗ ∈ [1, T ] be the
size of the regression trunk with the lowest Dcv , say Dcv

t∗ . The best size of the BTRT trunk t∗∗
corresponds to the minimum value of t such that Dcv

t∗∗ ≤ Dcv
t∗ + c · SEcv

t∗ .

3. Simulation Study: The Choice of the Pruning Parameter

Pruning the BTRT model with the c · SE rule requires the choice of the most suitable value
for the parameter c. The optimal value may depend on characteristics of the data, such as sample
size (Dusseldorp et al., 2010). In this section, a simulation study is carried out to assess the value
of the optimal c to be used to select the final BTRT model.

For the regression trunk approach used to detect threshold interactions in the linear model,
Dusseldorp et al. (2010) reported that most of the times a value of c = 0 results in a regression
trunk with too many interaction terms while a value of c = 1 gives a small-sized regression trunk
with too few interaction terms.

As for BTRT, we compare the performance of seven pruning rules obtained by specifying
seven different values of c ranging from 0 to 1, namely 0.00, 0.10. 0.30, 0.50, 0.70, 0.90 and 1.00.

Three different scenarios are considered for the data generating process (DGP):

λi,h = λi + βi,1x1,h; (16)
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λi,h = λi +
4∑

p=1

βi,px p,h; (17)

λi,h = λi +
4∑

p=1

βi,px p,h + βi,5 I (x1,h > 0.00 ∩ x2,h > 0.50). (18)

In the first scenario (Eq. 16), only one subject-specific covariate (x1) affects the preferences
expressed by the generic judge h on each object i . In the second one (Eq. 17), four subject-specific
covariates are assumed to influence the judges’ preferences. These twomodels present linear main
effects only so that the performance metric of the pruning rules is the proportion of times a BTRT
model with at least one interaction term is selected (type I error). In the third scenario (Eq. 18),
a model including both linear main effects and threshold interaction effects is considered as a
threshold interaction term between x1 and x2 is added to the main effects part of the model. In this
case, the performance metric of the pruning rule is the type II error, obtained by computing the
proportion of times the selected regression trunk model does not include x1 and x2 exactly as the
first and only two interacting variables. In all cases, all the covariates x p are standard normally
distributed.

3.1. Design Factors and Procedure

Three design factors are considered in the simulation study:

• The number of judges H : 100, 200, 300;
• The number of objects no: 4, 5. The consensus rankings were set as (A B C D) and (A B

C D E), respectively, by using decreasing values of λi , namely (0.9, 0.4, 0.3, 0.0) in the
first case, and (0.8, 0.4, 0.2, 0.1, 0.0) in the second one;

• The effect size of each covariate x p on the preferences expressed by the judge h on each
object i . Values of the parameters βi are reported in Table 1 for each set of objects, the two
possible effect sizes and the three different scenarios.

We only considered the case of 4 and 5 objects as design factors because working on paired
comparisonsmeans extending the number of judges’ evaluations to 6 and 10, respectively. It seems
more realistic that only few objects are presented to judges when working on paired comparisons.
Furthermore, as the number of objects increases, the size of the designmatrix increases, as does the
computational cost of searching for the split. However, the computational cost does not increase
in the same way when the number of judges increases. For this reason, the BTRT model is not
computationally expensive when the number of judges is high, whereas the computational time
increases as long as the number of objects increases. The combination of the three design factors
(no × H× effect size) results in 12 different BTRT specifications. For each of them, we generated
100 random samples, so that 1,200 datasets were generated for each true scenario, given in Eqs.
(16), (17), and (18). In each run, a BTRT with a maximum of five terminal nodes (T = 5) is
estimated.

Once the design factors are set, following Eq. 1 the values of λ̂i,h are estimated in order to
obtain the probability that a judge h prefers the object i to j . The latter are computed for each
possible comparison as follows
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Table 1.
Simulated values of βi for the estimation of the pruning parameter c.

Effect-size Low High
object A B C D A B C D

N. objects = 4
1st scenario (Eq. 16)
β1 0.30 0.20 0.10 0.00 0.90 0.80 0.70 0.00
2nd scenario (Eq. 17): add β2, β3 and β4
β2 0.20 0.30 0.10 0.00 0.80 0.70 0.90 0.00
β3 0.10 0.20 0.30 0.00 0.70 0.90 0.80 0.00
β4 0.30 0.10 0.20 0.00 0.90 0.70 0.80 0.00
3rd scenario (Eq. 18): add β5
β5 0.25 0.15 0.35 0.00 0.55 0.65 0.45 0.0
N. objects = 5
1st scenario (Eq. 16)
β1 0.40 0.30 0.20 0.10 0.00 0.90 0.80 0.70 0.60 0.00
2nd scenario (Eq. 17): add β2, β3 and β4
β2 0.30 0.20 0.10 0.40 0.00 0.80 0.90 0.60 0.70 0.00
β3 0.20 0.10 0.30 0.40 0.00 0.70 0.60 0.80 0.90 0.00
β4 0.10 0.20 0.40 0.30 0.00 0.90 0.70 0.60 0.80 0.00
3rd scenario (Eq. 18): add β5
β5 0.25 0.15 0.35 0.45 0.00 0.55 0.65 0.45 0.60 0.00

π(i j)i,h = exp [2(λ̂i,h − λ̂ j,h)]
1 + exp [2(λ̂i,h − λ̂ j,h)] ; (19)

The design matrix of the log-linear Bradley Terry model requires the values of y in the first
column. The response y is coded as a 0–1 variable depending on whether or not an individual
preference occurs for each comparison i j . Thus, we consider yi j,h as the realization of a Bernoulli
distribution that assumes the value 1 with probability π(i j)i,h . The main problem for this kind of
coding is that it is possible to obtain combinations of 0-1 values for the same judge that do not verify
the transitivity property between the preferences. The number of all possible combinations of two

values for each judge is equal to 2
no(no−1)

2 , where the exponent is the number of paired comparisons
obtainable from no objects. However, when ties are not allowed, the number of permutations of
no objects is equal to no!, which is much smaller than the number of all the possible combinations
of two values. When no is higher than 3, it is very likely to obtain combinations that do not find a
counterpart in the universe of allowed rankings. For instance, when the number of objects is equal
to four, there could be 64 different combinations of 0–1 values, of which only 24 are allowed.
Thus, there could be 40 not allowed combinations. To avoid this problem, we replaced these not
allowed combinations with the closest permutation in the universe of no! rankings.

3.2. Results

Results of the simulation study are summarized in Tables 2, 3 and 4. For the first two scenarios,
the pruning rules are evaluated with respect to the type I error (Tables 2, 3) while for the third
scenario the focus is on the type II error (Table 4). To facilitate the interpretation of the results,
the tables for type II error show the power of the pruning rules (i.e., 1 - type II error), rather than
the type II errors. Results are reported for the 9 different values of the c parameter (0, 0.1, 0.3,
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Table 2.
Results first scenario: type I error. Error higher than 0.05 in boldface.

N. objects no = 4 no = 5
Effect size Low High Low High
N. judges 100 200 300 100 200 300 100 200 300 100 200 300

c = 0.0 0.76 0.82 0.82 0.95 1.00 1.00 0.80 0.90 0.98 0.75 0.84 0.82
c = 0.1 0.16 0.18 0.04 0.62 0.51 0.58 0.60 0.58 0.60 0.30 0.38 0.26
c = 0.3 0.01 0.00 0.00 0.26 0.12 0.08 0.32 0.18 0.28 0.08 0.08 0.00
c = 0.5 0.00 0.00 0.00 0.08 0.05 0.02 0.12 0.04 0.10 0.00 0.02 0.00
c = 0.7 0.00 0.00 0.00 0.03 0.00 0.00 0.04 0.02 0.00 0.00 0.00 0.00
c = 0.9 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.00 0.00 0.00
c = 1.0 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.00 0.00 0.00

Table 3.
Results second scenario: type I error. Error higher than 0.05 in boldface.

N. objects no = 4 no = 5
Effect size Low High Low High
N. judges 100 200 300 100 200 300 100 200 300 100 200 300

c = 0.0 0.88 0.86 0.98 0.95 0.94 0.98 0.97 1.00 0.98 0.91 0.96 1.00
c = 0.1 0.58 0.56 0.66 0.67 0.66 0.74 0.74 0.86 0.86 0.62 0.70 0.80
c = 0.3 0.14 0.06 0.10 0.11 0.04 0.10 0.09 0.14 0.12 0.16 0.28 0.18
c = 0.5 0.04 0.02 0.00 0.01 0.00 0.00 0.01 0.02 0.04 0.06 0.06 0.02
c = 0.7 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
c = 0.9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
c = 1.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.5, 0.7, 0.9, 1), as well as for the number of objects (4 or 5), the number of judges (100, 200
or 300) and the effect sizes (Low or High). As conventionally done, a threshold value of 0.05 is
used for type I error (probability of incorrectly identifying an interaction effect). Hence, higher
values are shown in boldface because type I error is considered too large. For power we used the
value 0.8 as threshold so that a value less than 0.8 is considered unsatisfactory and thus reported
in boldface.

Table 2 reports the results for the first scenario where only the main effects of the single
covariate x1 are considered. When the number of objects is equal to 4 and the effect of x1 is low,
the pruning rules with c ≥ 0.3 result in acceptable type I errors despite the sample size. However,
when the effect size increases, the case with H = 100 requires higher values of c (i.e., c ≥ 0.7) for
the pruning parameter. When the number of objects is equal to 5 the inverse situation is observed:
For small effect sizes higher values of c (i.e., c ≥ 0.7) are required, while for a high effect sizes
lower values of c (i.e., c ≥ 0.5) can be used.

Table 3 displays the type I errors when all the covariates x1, ..., x4 influence judges’ pref-
erences individually (second scenario). In this case, for no = 4 the values of c ≥ 0.5 provide
acceptable error rates despite the effect size; for no = 5 and high effect size it would be better to
choose a pruning parameter c ≥ 0.7.

The third scenario reflects the case in which all the covariates x1, ..., x4 have an influence on
the expressed preferences, and the first two covariates interact with each other, as shown in Eq.
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Table 4.
Results third scenario: test’s power (1-type II error). Power lower than 0.80 in boldface.

N. objects no = 4 no = 5
Effect size Low High Low High
N. judges 100 200 300 100 200 300 100 200 300 100 200 300

c = 0.0 0.00 0.00 0.00 0.03 0.02 0.01 0.02 0.00 0.01 0.00 0.00 0.02
c = 0.1 0.45 0.52 0.28 0.30 0.20 0.80 0.22 0.06 0.01 0.28 0.12 0.02
c = 0.3 0.79 0.94 0.84 0.84 0.84 0.99 0.82 0.52 0.46 0.74 0.28 0.14
c = 0.5 0.99 0.99 0.99 0.92 0.94 0.98 0.96 0.96 0.88 0.98 0.44 0.24
c = 0.7 1.00 1.00 1.00 0.96 0.98 1.00 1.00 1.00 1.00 0.98 0.80 0.56
c = 0.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.90
c = 1.0 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 0.96

18. The power (1 - type II error) is displayed in Table 4 for each possible value of c. It emerges
that for no = 4 a value of c ≥ 0.3 is considered as satisfactory despite the effect size (except in
case there are 100 judges and low effect size), while for the no = 5 case with high effect size it
is preferable to increase the value of c up to 0.9.

Recall that low values of the parameter c may return a large tree. In the first two scenarios, the
true model does not include interaction between variables, so low c parameter values return a too
high type I error. In the third scenario, the true model refers to a tree of minimum size with a single
interaction. For this reason, as the effect size of the covariates and the population size increase,
higher values of parameter c are required to obtain a high power. It follows that the ability of
the BTRT model to find the right interactions between covariates increases when the number of
judges and objects increases. In addition, if the judges’ characteristics have a high impact on the
choices, then the quality of performance of the BTRT model improves considerably.

Summarizing, results of the simulation study show that a value of the pruning parameter c
between 0.5 and 1 is a good choice in almost all situations. These results are consistent with
those reported in Dusseldorp et al. (2010) for the linear regression model and in Conversano &
Dusseldorp (2017) for the logistic regression model and should be considered as guidelines by
researchers interested in applying BTRT to real data.

4. Application on a Real Dataset

In this section, we show a practical application of the regression trunk for preference rankings
on a real dataset following two different approaches. The STIMA algorithm based on the BTRT
model has been implemented in the R environment (R Core Team, 2021) by using the packages
prefmod (Hatzinger & Dittrich, 2012) and BradleyTerry2 (Turner & Firth, 2012).

The analyzed data have been collected through a survey carried out at University of Cagliari
(Italy). In particular, 100 students (H = 100) enrolled in the first year of Master Degree in
Business Economics were asked to order five characteristics of an ideal professor (no = 5) based
on what they considered the most relevant: clarity of exposition (o1), availability of teaching
material before the lectures (o2), scheduling of midterm tests (o3), availability of slides and
teaching material accompanying the selected books (o4), helpfulness of the professor (o5). These
characteristics were ranked with values from 1 to 5, where 1 was assigned to the characteristic
considered as the most important, and 5 to the least important one. Students were not allowed to
indicate ties. Moreover, for each student, seven subject-specific covariates have been collected:
year of study (x1), total number of ECTSobtained (x2), grade point average (x3), course attendance
in percentage (x4), daily studyhours (x5), gender (x6), and age (x7). Table 5 reports the key statistics
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Table 5.
Descriptive statistics of the subject-specific covariates in application.

Vars n Mean sd Median Trimmed Mad Min Max Range Skew Kurtosis se

Year of
study

x1 100 1.18 0.39 1.00 1.10 0.00 1.00 2.00 1.00 1.64 0.70 0.04

ECTS x2 100 37.69 40.22 27.00 28.89 5.93 0.00 163.00 163.00 1.90 2.23 4.02
Grade point
average

x3 100 23.02 6.93 24.80 24.49 3.26 0.00 30.00 30.00 −2.36 5.17 0.69

Course
atten-
dance

x4 100 87.37 13.34 90.00 89.53 13.34 40.00 100.00 60.00 −1.22 0.93 1.33

Daily study
hours

x5 100 3.73 1.62 4.00 3.64 1.48 0.25 8.00 7.75 0.48 0.05 0.16

Age x7 100 21.00 3.25 20.00 20.27 1.48 19.00 41.00 22.00 3.16 13.59 0.33

for each numerical subject-specific covariate. The distribution of the covariate ‘gender’ is: male
= 44%, female = 56%.

To apply the Bradley–Terry model, the rankings were converted into ten paired comparisons.
Dealing with a small number of judges and several covariates, each judge will likely have at least
one characteristic that differs from the other judges. In this framework, for each pair of comparing
objects the response variable y is binary and takes values of 0 and 1. Therefore, 20 observations
are obtained for each judge so that the total number of rows n is equal to 2000.

Once the design matrix is obtained, a Poisson regression model is estimated in the root node.
Next, the split search as described in Sect. 2.1 is performed. In the following, we compare the
results obtained for the two splitting options currently implemented for BTRT: the OSO approach
and the MS approach.

4.1. One-Split-Only (OSO) Approach

Based on the OSO approach, the full tree can have a maximum number of splits equal to the
number of subject-specific covariates P . Thus, the maximum depth regression trunk has 7 splits.
In this application, the unpruned trunk is composed of 6 splits and 7 terminal nodes as no more
splits agreed with the minimum bucket condition (i.e., number of judges greater or equal to five).
Table A1 and Fig. A1 in Appendix report the information about the full (unpruned) trunk.

Table 6 reports the node splitting information and the deviance D of the final model estimated
in each node (see Eq. 10). Notice that the deviance of the main effects model is reported in the first
row of Table 6 while the deviance of the model including a simple dichotomous variable inducing
the first split of the trunk (bestsplit1) is reported in the second row. The threshold interactions are
specified starting from the third row of the table, i.e., from bestsplit2 onwards.

The maximum-depth regression trunk is pruned applying the c · SE rule described in Sect.
2.2 based on both the case-wise 10-fold cross-validation deviance (Dcv) introduced in Eq. 14 and
its standard error (SEcv , Eq. 15). Table 7 shows the results of the cross-validation estimates.

Note that Dcv is much smaller than the model deviance D, because we used two different
specifications for these two (see Eqs. 10 and 14): D decreases between one model and another,
while Dcv is decreasing up to the model 3 having four terminal nodes. The pruning rule with the
c parameter is not necessary in this case, because the cross-validation deviance starts to increase
from the fourth model (mod4). Thus, the pruned trunk corresponds to the model in Table 6. The
final trunk including three splits and T = 4 terminal nodes is shown in Fig. 2 .

Figure 2 shows the pruned regression trunk. It reports the number of judges H belonging to
each terminal node T . The consensus ranking C is computed by using the differential evolution
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Table 6.
Pruned regression trunk: OSO approach. The table shows the node in which the split is found, the splitting covariate, and
its split point together with the deviance associated with each estimated model.

Node n. Splitting covariate Split Point Model Deviance

Main effects (no splits) 1115
bestsplit1 1 x3 (grade point average) 27.50 1096
bestsplit2 2 x7 (age) 25.00 1080
bestsplit3 4 x2 (n. of ECTS) 39.00 1064

Table 7.
10-fold cross-validation results with OSO approach: D = model deviance (Eq. 10); Dcv = casewise cross-validation
deviance (Eq. 14); SEcv = standard error of Dcv (Eq. 15).

D Dcv SEcv

mod0 1115 0.5963 0.0006
mod1 1096 0.5914 0.0006
mod2 1080 0.5869 0.0007
mod3 1064 0.5864 0.0007
mod4 1058 0.5881 0.0008
mod5 1048 0.5890 0.0008
mod6 1033 0.5895 0.0008

Figure 2.
Pruned regression trunk: OSO approach.

algorithm for median ranking detection (D’Ambrosio et al., 2017) and the τx rank correlation
coefficient (Emond & Mason, 2002) within the group, which measures the strength of the con-
sensus ranking. Both measures are computed using the R package ConsRank (D’Ambrosio et al.,
2019). The consensus ranking reports the positions of the objects ordered from o1 to o5. Ties are
allowed only for the consensus ranking within the groups so that two tied objects have the same
associated value. For example, in the terminal node R1 in Fig. 2 the quantity C = 21234 indicates
that item o1 is ranked at the second place in a tie with item o3, item o2 is ranked at the first place,
and items o4 and o5 are ranked at the third and fourth position, respectively.

4.2. Multiple Splitting (MS) approach

The MS approach allows covariates already used in previous splits to be considered for
subsequent splits. To compare the MS approach with the OSO one, a regression trunk with the
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Table 8.
Pruned regression trunk: MS approach. The table shows the node in which the split is found, the splitting covariate, and
its split point together with the deviance associated with each estimated model.

Node Covariate Point Deviance
Main effects (no splits) 1115

bestsplit1 1 x3 (grade point average) 27.50 1096
bestsplit2 2 x7 (age) 25.00 1080
bestsplit3 4 x2 (n. of ECTS) 39.00 1064
bestsplit4 8 x3 (grade point average) 21.00 1050

Table 9.
10-fold cross-validation results with MS approach: D = model deviance (Eq. 10); Dcv = casewise cross-validation
deviance (Eq. 14); SEcv = standard error of Dcv (Eq. 15).

D Dcv SEcv

mod0 1115 0.5963 0.0006
mod1 1096 0.5914 0.0006
mod2 1080 0.5869 0.0007
mod3 1064 0.5864 0.0007
mod4 1050 0.5813 0.0007
mod5 1038 0.5810 0.0008
mod6 1026 0.5812 0.0008
mod7 1018 0.5811 0.0008

same number of terminal nodes as the OSO trunk is grown for the MS case (T = 7). Results of the
full trunk are reported in Table A2 and Figure A2 in the Appendix. Those concerning the pruned
trunk are reported in Table 8.

The pruning procedure is based on the 10-fold cross-validation estimation of the deviance
and its standard error. Table 9 shows the trunk pruning results obtained from the MS approach.

The MS approach, for each split, generates a reduction in deviance greater than that obtained
with the OSO approach. The cross-validation deviance is decreasing up to model 5. Figure 3
compares the two approaches in terms of cross-validation deviance obtained from one split to
another. It clearly displays that the MS approach returns a regression trunk capable of better
explaining the preferences expressed by the judges.

We consider the results of the simulation study (Sect. 3) with no = 5 and H = 100. A
possible pruning parameter is c = 0.5 so that the final trunk corresponds to model 4 (mod4) in
Table 9 and is represented in Fig. 4.

Note that in the pruned tree the professor’s quality of exposition (o1) is always preferred to all
the other objects, except by the judges in region 1 and 2. As expected, the two approaches provide
different results: The OSO approach detects the interaction between all the variables under study,
but does not return the best regression trunk in terms of goodness of fit. The MS approach returns
a trunk that fits the data better but the final BTRT model may be more challenging to interpret.

The model deriving from the MS regression trunk returns the coefficients shown in Table 10.
The regions R2, . . . , R5 obtained from the regression trunk represented in Fig. 4 are defined

as follows:

R2 = I (grade point average ≤ 21, age ≤ 25, n. of ECTS ≤ 39),

R3 = I (21 < grade point average ≤ 27.5, age ≤ 25),

R4 = I (grade point average ≤ 27.5, age ≤ 25, n. of ECTS > 39),

R5 = I (grade point average ≤ 27.5, age > 25),
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Figure 3.
Comparison between OSO and MS approaches.

Figure 4.
Pruned regression trunk: MS approach.

The region R1 plays the role of reference category. It is defined by the indicator function
I (grade point average > 27.5). From the main effects side, looking at the values in Table 10
the final model shows that the covariates x3 (grade point average) and x4 (course attendance
in percentage) have a negative effect on the preferences expressed. In particular, looking at the
β̂i,x3 coefficients, it can be seen that as the grade point average increases, the tendency to prefer
the professor’s clarity (o1) to his helpfulness (o5) is lower. On the contrary, it seems that when
the number of ECTS increases, the tendency to prefer the professor’s clarity to the professor’s
helpfulness is higher. These two results might suggest that for students looking for a high average
grade it is very important to interact with professors even outside of the class schedule. On the
other hand students who have a high number of ECTS may not be interested in a high average
grade, but only in obtaining a degree quickly, hence they recognize as more important the clarity
of presentation of topics covered in the class.

As for the interaction effects, looking at Table 10, the last region R4 has a negative coefficients
whatever the considered object. In each case, when the students’ grade point average is lower than
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Table 10.
MS regression trunk final output: the table shows the estimated coefficients associated to the objects o1, o2, o3, and o4. The
last object o5 is set as reference level, so that the estimated parameters associated to λ̂o5,h (the professor helpfulness) are
automatically set to zero. The standard errors are shown in parenthesis. There are two standard errors for each parameter:
The first is the standard error coming for the Poisson regression, the second one is corrected for the detected overdispersion,
which is equal to 1.25.

λ̂o1,h λ̂o2,h λ̂o3,h λ̂o4,h

λ̂i 3.36 (1.98; 2.22) 4.96 (1.68; 1.88) 3.46 (1.59; 1.78) −2.41 (1.72; 1.93)
β̂i,x1 −0.90 (0.42; 0.48) −0.43 (0.40; 0.45) −0.03 (0.40; 0.45) −0.56 (0.42; 0.47)
β̂i,x2 0.02 (0.005; 0.006) 0.009 (0.004; 0.005) 0.003 (0.004; 0.005) 0.009 (0.004; 0.005)
β̂i,x3 −0.16 (0.04; 0.05) −0.14 (0.04; 0.04) −0.09 (0.03; 0.04) −0.01 (0.04; 0.04)
β̂i,x4 −0.008 (0.006; 0.008) −0.01 (0.006; 0.007) -0.01 (0.006; 0.007) -0.007 (0.006; 0.007)
β̂i,x5 −0.04 (0.06; 0.07) −0.07 (0.05; 0.06) −0.12 (0.05; 0.06) −0.06 (0.05; 0.06)
β̂i,x6 0.31 (0.18; 0.20) 0.29 (0.15; 0.17) 0.29 (0.15; 0.17) 0.36 (0.15; 0.17)
β̂i,x7 0.17 (0.06; 0.07) 0.03 (0.04; 0.05) 0.03 (0.04; 0.05) 0.15 (0.04; 0.05)
β̂i,R2 −2.30 (0.62; 0.69) −1.96 (0.56; 0.63) −1.47 (0.55; 0.62) −0.47 (0.59; 0.67)
β̂i,R3 −0.90 (0.30; 0.34) −0.64 (0.25; 0.28) −0.42 (0.24; 0.27) 0.32 (0.26; 0.29)
β̂i,R4 −2.86 (0.58; 0.65) −1.37 (0.47; 0.53) −0.73 (0.45; 0.51) −0.32 (0.46; 0.52)
β̂i,R5 −3.56 (0.67; 0.75) −1.47 (0.53; 0.69) −1.14 (0.52; 0.58) −1.32 (0.54; 0.60)

27.5 and the age is higher than 25, there is a strong tendency to prefer the professor helpfulness
to all other attributes.

5. Conclusions

This paper introduces a new Bradley–Terry Regression Trunk (BTRT) model to analyze
preference data. BTRT is based on a probabilistic approach in which the judges’ heterogeneity is
taken into account with the introduction of subject-specific covariates.

The combination of the log-linear Bradley–Terry model with the regression trunk methodol-
ogy allows generating, through Poisson regressions, an easy to read partition of judges based on
their characteristics and the preferences they have expressed.

The main effects on the object choice of the judges’ characteristics and their interactions
are simultaneously estimated. BTRT accounts for the drawback of the classic tree-based models
when no a priori hypotheses on the interaction effects are available. At the same time, it allows
detecting threshold interactions in an automatic and data-driven mode. The final result is a small
and easily interpretable tree structure, called regression trunk, that only considers the interactions
that bring relevant improvements to the main effects model fit.

Simulations showed that the ability of the BTRTmodel to find the right interactions increases
when both the sample size and the number of objects to be judged increase, particularly if the
covariates have a high impact on the choices. The results suggest that in most of the cases a value
of the pruning parameter c between 0.7 and 0.9 is a good choice. These values are consistent with
those reported in Dusseldorp et al. (2010) for the linear regression model and in Conversano &
Dusseldorp (2017) for the logistic regression model.

The two different approaches that have been introduced for the BTRT model have both been
used in a real dataset application. It emerges that the One-Split-Only approach aims to verify the
interaction effect between all the covariates taken into consideration and the final result is easier
to interpret. On the other hand, the Multiple Splitting approach yields a tree more capable of
capturing the most relevant interactions between the variables selected by the model.

The BTRT model appears well-suited to analyze the probability distribution of preferring a
particular object for a specific group of individuals with a specific set of characteristics. For this
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reason, it can be used for both descriptive and predictive purposes as it allows the user to estimate
the impact of each subject-specific covariate on the judges’ choices, the overall consensus ranking,
and the effect size of the interactions between covariates.

Future research is addressed to consider cases when categorical subject-specific covariates
with more than two categories are used as possible split candidates as well as to investigate further
model performance and stabilitywith respect to (big) datasets presenting a high number of objects,
rankings, and covariates. This would allow to better evaluate the two approaches illustrated in
Sect. 4. Last but not least, an R package including the function developed to estimate the BTRT
parameters and complementary functions to summarize the output and to predict new cases is
currently under development.

At the same time, research efforts will be aimed at extending the model to cases where
missing values (i.e., partial orderings) are allowed. As the number of objects increases, paired
comparisons become more difficult to treat. For this reason, future research may also be oriented
to the extension of the BTRT model for the analysis of ordinal data treated as rankings, using not
only information relating to the judges, but also the characteristics of the objects themselves (i.e.,
object-specific covariates).
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Appendix

Table 11.
Design matrix with one judge and three objects: The first column indicates the number of times a specific preference
is expressed for each pair of objects i j . The second column, the parameter μ, serves as an index for the n × (n − 1)/2
comparisons. Finally, preferences are expressed in the last three columns. For example, the first line shows that object B
is preferred to A since yi j = 1, λO

B = 1, and λO
A = −1.

Response μ λO
A λO

B λO
C

yAB = 1 1 −1 1 0
yAB = 0 1 1 −1 0
yAC = 1 2 −1 0 1
yAC = 0 2 1 0 −1
yBC = 1 3 0 1 −1
yBC = 0 3 0 −1 1
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Table 12.
Design matrix with two judges, three objects, and one continuous subject-specific covariate: The first column indicates
the number of times a specific preference is expressed for each pair of objects i j . The second column serves as an index
for the n × (n − 1)/2 comparisons. Preferences are expressed in the next three columns, and finally the age covariate is
showed in the last column. In this example, the two judges express opposite preference, BCA and ACB, respectively.

Response μ λO
A λO

B λO
C age

yAB = 1 1 −1 1 0 23
yAB = 0 1 1 −1 0 23
yAC = 1 2 −1 0 1 23
yAC = 0 2 1 0 −1 23
yBC = 1 3 0 1 −1 23
yBC = 0 3 0 −1 1 23
yAB = 0 1 −1 1 0 24
yAB = 1 1 1 −1 0 24
yAC = 0 2 −1 0 1 24
yAC = 1 2 1 0 −1 24
yBC = 0 3 0 1 −1 24
yBC = 1 3 0 −1 1 24

Table 13.
Full regression trunk: OSO approach. The table shows the node in which the split is found, the splitting covariate, and its
split point together with the deviance associated with each estimated model.

Node n. Splitting covariate Split Point Model Deviance
Main effects (no splits) 1115

bestsplit1 1 x3 (grade point average) 27.50 1096
bestsplit2 2 x7 (age) 25.00 1080
bestsplit3 4 x2 (n. of ECTS) 39.00 1064
bestsplit4 8 x4 (% course attendance) 90 1058
bestsplit5 16 x6 (gender) 1.00 1048
bestsplit6 32 x5 (daily study hours) 2.00 1033

Table 14.
Full regression trunk: MS approach. The table shows the node in which the split is found, the splitting covariate, and its
split point together with the deviance associated with each estimated model.

Node Covariate Point Deviance
Main effects (no splits) 1115

bestsplit1 1 x3 (grade point average) 27.50 1096
bestsplit2 2 x7 (age) 25.00 1080
bestsplit3 4 x2 (n. of ECTS) 39.00 1064
bestsplit4 8 x3 (grade point average) 21.00 1050
bestsplit5 17 x3 (grade point average) 23.49 1038
bestsplit6 34 x3 (grade point average) 23.00 1026
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Figure 5.
Full regression trunk: OSO approach.

Figure 6.
Full regression trunk: MS approach.
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