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Geometric Measure Theory

1.1 Measures, Integrals, and Measure Spaces

This section has an introductory character. It collects a minimum of knowledge
from abstract measure theory needed in subsequent chapters of the book. Most,
commonly well known, theorems are brought up without proofs. A full account
of measure theory can be found in many books, e.g., [Coh], [Fr], [RF].

Definition 1.1.1 A family F of subsets of a set X is said to be a σ -algebra if
and only if the following conditions are satisfied:

X ∈ F, (1.1)

A ∈ F ⇒ Ac, ∈ F, (1.2)

{Ai}∞i=1 ⊆ F �⇒
∞⋃

i=1

Ai ∈ F. (1.3)

It follows from this definition that ∅ ∈ F, i.e., that the σ -algebra F is closed
under countable intersections and under subtractions of sets. If (1.3) is assumed
only for finite subfamilies of F, then F is called an algebra. The elements of
the σ -algebra F are frequently called measurable sets.

Definition 1.1.2 For any family F of subsets of X, we denote by σ(F) the least
σ -algebra that contains F, and we call it the σ -algebra generated by F.

Definition 1.1.3 A function on a σ -algebra F, μ : F→ [0, +∞], is said to be
σ -additive or countably additive if, for any countable subfamily {Ai}∞i=1 of F
consisting of mutually disjoint sets, we have that

μ

( ∞⋃
i=1

Ai

)
=
∞∑

i=1

μ(Ai). (1.4)

We say then that μ is a measure.
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4 Part I Ergodic Theory and Geometric Measures

If we consider in (1.4) only finite families of sets, we say that μ is additive.
The two notions of additivity and of σ -additivity make sense for a σ -algebra
as well as for an algebra, provided that, in the case of an algebra, one considers
only families {Ai}∞i=1 ⊆ F such that

⋃∞
i=1 Ai ∈ F. The simplest consequences

of the definition of measure are the following:

μ(∅) = 0. (1.5)

If A,B ∈ F and A ⊆ B, then μ(A) ≤ μ(B). (1.6)

If A1 ⊆ A2 ⊆ · · · and {Ai}∞i=1 ⊆ F, then μ

( ∞⋃
i=1

Ai

)
= sup

i

μ(Ai)

= lim
i→∞

μ(Ai). (1.7)

Definition 1.1.4 We say that the triple (X,F,μ) with a σ -algebra F and μ, a
measure on F, is a measure space. If μ(X) =1, the triple (X,F,μ) is called a
probability space and μ is a probability measure.

Definition 1.1.5 We say that ϕ : X→ R is a measurable function if ϕ−1(J ) ∈
F for every interval J ⊆ R, equivalently for every Borel set J ⊆ R.

Throughout the book, for any set A ⊆ X, we denote by 11A the characteristic
function of the set A:

11A(x) =
{

1 if x ∈ A

0 if x /∈ A.

A step function is a linear combination of (finitely many) characteristic
functions. It is easy to see that any nonnegative measurable function ϕ : X →
R can be represented as the pointwise limit of a monotone increasing sequence
of nonnegative step functions, say

ϕ = lim
n→∞ϕn.

The integral of ϕ against the measure μ is then defined as:∫
X

ϕ dμ := lim
n→∞

∫
X

ϕn dμ.

It is easy to see that this definition is independent of the choice of a sequence
(ϕ)∞n=1 of monotone increasing nonnegative step functions. Writing any (not
necessarily nonnegative) measurable function ϕ : X→ R in its canonical form

ϕ = ϕ+ − ϕ−,
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1 Geometric Measure Theory 5

where

ϕ+ := max{ϕ,0} and ϕ− := −min{ϕ,0},
we say that the function ϕ is μ integrable if∫

X

ϕ+ dμ < +∞ and
∫

X

ϕ− dμ < +∞.

We then define the integral of ϕ against the measure μ to be∫
X

ϕ dμ :=
∫

X

ϕ+ dμ−
∫

X

ϕ− dμ.

The integral of ϕ is also frequently denoted by

μ(ϕ).

Since |ϕ| = ϕ+ − ϕ−, we see that ϕ is integrable if and only if |ϕ| is,
i.e., if

∫
X
|ϕ|dμ < ∞. We then write ϕ ∈ L1(μ). We now bring up two

fundmental properties of integrals – theose that make integrals such powerful
and convenient tools.

Theorem 1.1.6 (Lebesgue Monotone Convergence Theorem) Suppose that
(ϕ)∞n=1 is a monotone-increasing sequence of integrable, real-valued functions
on a probability space (X,F,μ). Denote its limit by ϕ. Then∫

X

ϕ dμ = lim
n→∞

∫
X

ϕn dμ.

In particular, the above limit exists. As a matter of fact, it is enough to assume
only that the sequence (ϕ)∞n=1 is monotone-increasing on a measurable set
whose complement is of measure zero.

Theorem 1.1.7 (Lebesgue Dominated Convergence Theorem) Suppose that
(φn)∞n=1 is a sequence of measurable, real-valued functions on a probability
space (X,F,μ), that |φn| ≤ g for an integrable function g, and that the
sequence (φn)∞n=1 converges μ-a.e. to a function ϕ : X→ R. Then the function
φ is μ-integrable and ∫

X

ϕ dμ = lim
n→∞

∫
X

ϕn dμ.

More generally than L1(μ), for every 1 ≤ p <∞, we write

||ϕ||p :=
(∫

X

|ϕ|pdμ

) 1
p
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6 Part I Ergodic Theory and Geometric Measures

and we say that ϕ belongs to Lp(μ) = Lp(X,F,μ). If

inf
μ(E)=0

{
sup
X\E
|ϕ|

}
<∞,

then we denote the latter expression by ||ϕ||∞, we say that the function ϕ is
essentially bounded, and we write that ϕ ∈ L∞. The numbers ||ϕ||p, 1 ≤ p <

∞, are called Lp-norms of ϕ. The vector spaces Lp(X,F,μ) become Banach
spaces when endowed with respective norms || · ||p.

Definition 1.1.8 A measure space (X,F,μ) and the measure μ are called

• finite if μ(X) < +∞,

• probability if μ(X) = 1,

• infinite if μ(X) = +∞,

• σ -finite if the space X can be expressed as a countable union of measurable
sets with finite measure μ.

Given two measures μ and ν on the same measurable space (X,F), we say that
μ is absolutely continuous with respect to ν if, for any set A in F, ν(A) = 0
entails μ(A) = 0. The famous Radon–Nikodym Theorem gives the following.

Theorem 1.1.9 Let (X,F) be a measurable space. Let μ and ν be two σ -finite
measures on (X,F). Then the following statements are equivalent.

(a) μ is absolutely continuous with respect to ν (ν(A) = 0 entails μ(A) = 0).
(b) ∀ε>0 ∃δ>0∀A∈F [ν(A) < δ ⇒ μ(A) < ε].
(c) There exists a unique (up to sets of measure zero) measurable function

ρ : X→ [0,+∞) such that

μ(A) =
∫

A

ρ dν

for every A ∈ F.

We then write

μ ≺ ν

in order to indicate that a measure μ is absolutely continuous with respect to
ν. The unique function ρ : X −→ [0, +∞) appearing in item (c) is denoted
by dμ/dν and is called the Radon–Nikodym derivative of μ with respect to ν.

We say that two measures μ and ν on the same measurable space (X,F)

are equivalent if each one is absolutely continuous with respect to the other. To
denote this fact, we frequently write

μ � ν.
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1 Geometric Measure Theory 7

On the other hand, there is a concept that is somehow opposite to equivalence
or even to absolute continuity of measures. Namely, we say that two measures
μ and ν on (X,F) are (mutually) singular if there exists a set Y ∈ F such that

μ(X\Y ) = 0 while ν(Y ) = 0.

We then write that

μ ⊥ ν.

1.2 Measures on Metric Spaces:
(Metric) Outer Measures and Weak∗ Convergence

In this section, we will show how to construct measures starting with functions
of sets that are required to satisfy much weaker conditions than those defining
a measure. These are called outer measures. At the end of the section, we also
deal with the weak∗ topology of measures and Riesz Representation Theorem.
Again, we refer, for example, to [Coh], [Fr], [RF] for complete accounts.

Definition 1.2.1 An outer measure on a set X is a function μ defined on all
subsets of X taking values in [0,∞] such that

μ(∅) = 0; (1.8)

if A ⊆ B, then μ(A) ≤ μ(B); (1.9)

μ

( ∞⋃
n=1

An

)
≤
∞∑

n=1

μ(An) (1.10)

for any countable family {An}∞n=1 of subsets of X.

A subset A of X is called μ-measurable or simply measurable with respect to
the outer μ if and only if

μ(B) ≥ μ(A ∩ B)+ μ(B\A) (1.11)

for all sets B ⊆ X. The opposite inequality follows immediately from (1.10).
One can immediately check that if μ(A) = 0, then A is μ-measurable.

Theorem 1.2.2 If μ is an outer measure on X, then the family F of all μ-
measurable sets is a σ -algebra and restriction of μ to F is a measure.

Proof Obviously, X ∈ F. By symmetry (1.11), A ∈ F if and only if Ac ∈ F .
So the conditions (1.1) and (1.2) of the definition of σ -algebra are satisfied.
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8 Part I Ergodic Theory and Geometric Measures

To check the condition (1.3) that F is closed under a countable union, suppose
that A1,A2, . . . , ∈ F and let B ⊆ X be any set. Applying (1.11) in turn to
A1,A2, . . ., we get, for all k ≥ 1,

μ(B) ≥ μ(B ∩ A1)+ μ(B\A1)

≥ μ(B ∩ A1)+ μ((B\A1) ∩ A2)+ μ(B\A1\A2)

≥ . . .

≥
k∑

j=1

μ

⎛⎝⎛⎝B\
j−1⋃
i=1

Ai

⎞⎠ ∩ Aj

⎞⎠+ μ

⎛⎝B\
k⋃

j=1

Aj

⎞⎠
≥

k∑
j=1

μ

⎛⎝⎛⎝B\
j−1⋃
i=1

Ai

⎞⎠ ∩ Aj

⎞⎠+ μ

⎛⎝B\
∞⋃

j=1

Aj

⎞⎠ ;
therefore,

μ(B) ≥
k∑

j=1

μ

⎛⎝⎛⎝B\
j−1⋃
i=1

Ai

⎞⎠ ∩ Aj

⎞⎠+ μ

⎛⎝B\
∞⋃

j=1

Aj

⎞⎠. (1.12)

Since

B ∩
∞⋃

j=1

Aj =
∞⋃

j=1

⎛⎝B\
j−1⋃
i=1

Ai

⎞⎠ ∩ Aj,

using (1.10) we, thus, get

μ(B) ≥ μ

⎛⎝ ∞⋃
j=1

⎛⎝B\
j−1⋃
i=1

Ai

⎞⎠ ∩ Aj

⎞⎠+ μ

⎛⎝B\
∞⋃

j=1

Aj

⎞⎠.

Hence, condition (1.3) is also satisfied and F is a σ -algebra. To see that μ is
a measure on F , meaning that condition (1.4) is satisfied, consider mutually
disjoint sets A1,A2, . . . , ∈ F and apply (1.12) to B =⋃∞

j=1 Aj . We get

μ

⎛⎝ ∞⋃
j=1

Aj

⎞⎠ ≥ ∞∑
j=1

μ(Aj ).

Combining this with (1.10), we conclude that μ is a measure on F. �

Definition 1.2.3 Let (X,ρ) be a metric space. An outer measure μ on X is
said to be a metric outer measure if

μ(A ∪ B) = μ(A)+ μ(B) (1.13)
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1 Geometric Measure Theory 9

for all positively separated sets A,B ⊆ X, i.e, those satisfying the following
condition:

ρ(A,B) = inf{ρ(x,y) : x ∈ A, y ∈ B} > 0.

We assume the convention that ρ(A,∅) = ρ(A,∅) = ∞.

Recall that the Borel σ -algebra on X is the σ -algebra generated by open, or
equivalently closed, sets. We want to show that if μ is a metric outer measure,
then the family of all μ-measurable sets contains this σ -algebra. The proof is
based on the following lemma.

Lemma 1.2.4 Let μ be a metric outer measure on (X,ρ). Let {An}∞n=1
be an ascending sequence of subsets of X. Denote A := ⋃∞

n=1 An. If
ρ(An,A\An+1) > 0 for all n ≥ 1, then

μ(A) = lim
n→∞μ(An).

Proof By (1.9) it is sufficient to show that

μ(A) ≤ lim
n→∞μ(An). (1.14)

If limn→∞ μ(An) = ∞, there is nothing to prove. So, suppose that

lim
n→∞μ(An) = sup

n→∞
μ(An) <∞. (1.15)

Let B1 = A1 and Bn = An\An−1 for n ≥ 2. If n ≥ m + 2, then Bm ⊆ Am

and Bn ⊆ A\An−1 ⊆ A\Am+1. Thus, Bm and Bn are positively separated, and
applying (1.13) we get, for every j ≥ 1,

μ

⎛⎝ j⋃
i=1

B2i−1

⎞⎠ = j∑
i=1

μ(B2i−1) and μ

⎛⎝ j⋃
i=1

B2i

⎞⎠ = j∑
i=1

μ(B2i ). (1.16)

We also have, for every n ≥ 1, that

μ(A) =μ

( ∞⋃
k=n

Ak

)
= μ

⎛⎝An ∪
∞⋃

k=n+1

Bk

⎞⎠
≤ μ(An)+

∞∑
k=n+1

μ(Bk)

≤ lim
l→∞

μ(Al)+
∞∑

k=n+1

μ(Bk).

(1.17)
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10 Part I Ergodic Theory and Geometric Measures

Since the sets
⋃j

i=1 B2i−1 and
⋃j

i=1 B2i appearing in (1.16) are both contained
in A2j , it follows from (1.15) and (1.16) that the series

∑∞
k=1 μ(Bk) converges.

Therefore, (1.14) follows immediately from (1.17). The proof is complete. �

Theorem 1.2.5 If μ is a metric outer measure on (X,ρ), then all Borel subsets
of X are μ-measurable.

Proof Since the Borel sets form the least σ -algebra containing all closed
subsets of X, it follows from Theorem 1.2.2 that it is enough to check (1.11)
for every nonempty closed set A ⊆ X and every B ⊆ X. For all n ≥ 1, let
Bn = {x ∈ B\A : ρ(x,A) ≥ 1/n}. Then ρ(B ∩ A,Bn) ≥ 1/n and by (1.13)

μ(B ∩ A)+ μ(Bn) = μ
(
(B ∩ A) ∪ Bn

) ≤ μ(B). (1.18)

The sequence {Bn}∞n=1 is ascending and, since A is closed, B\A = ⋃∞
n=1 Bn.

In order to apply Lemma 1.2.4, we shall now show that

ρ
(
Bn,(B\A)\Bn+1

)
> 0

for all n ≥ 1. And, indeed, if x ∈ (B\A)\Bn+1, then there exists z ∈ A with
ρ(x,z) < 1/(n+ 1). Thus, if y ∈ Bn, then

ρ(x,y) ≥ ρ(y,z)− ρ(x,z) >
1

n
− 1

n(n+ 1)
> 0.

Applying now Lemma 1.2.4 with An=B shows that μ(A\B)=
limn→∞ μ(Bn). Thus, (1.11) follows from (1.18). The proof is complete. �

This theorem, as well as many other reasons disseminated over mathematics,
many of which we will encounter in this book, justifies the following definition.

Definition 1.2.6 Any measure on a metric space that is defined on its
σ -algebra of Borel sets (or larger) is called a Borel measure.

Let us list the following well-known properties of finite Borel measures.

Theorem 1.2.7 Any finite Borel measure μ on a metric space X is both outer
and inner regular. Outer regularity means that

μ(A) = inf{μ(G) : G ⊇ A and G is open },

while inner regularity means that

μ(A) = sup{μ(F) : F ⊆ A and F is closed }.
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1 Geometric Measure Theory 11

In addition, if the space X is completely metrizable, then the closed sets
involved in the concept of inner regularity can be replaced by compact ones.

Given a metric space (X,ρ), we denote by M(X) the collection of all Borel
probability measures on X. We denote by C(X) the vector space of all real-
valued continuous functions on X and by Cb(X) its vector subspace consisting
of all bounded elements of C(X). Let us record the following easy theorem.

Theorem 1.2.8 If (X,ρ) is a metric space, the two measures μ and ν in M(X)

are equal if and only if

ν(g) = μ(f )

for all functions g ∈ Cb(X).

If X is compact, then C(X) becomes a Banach space if endowed with the
supremum metric. Denote by C∗(X) the dual of C(X). Endow C∗(X) with the
weak∗ topology. This means that

a net (Fλ)λ∈� in C∗(X) converges to an element F ∈ C∗(X)

if and only if

the net (Fλ(g))λ∈� converges to F(g)

for every g ∈ C(X). M(X), the space of all Borel probability measures on X,
can then be naturally viewed as a subset of C∗(X): every measure μ ∈ M(X)

induces the functional

C(X) � g �−→ μ(g).

We will frequently use the following.

Theorem 1.2.9 Let X be a compact metrizable space. Consider C∗(X) with
its weak∗ topology. Then

(a) M(X) is a convex compact subset of C∗(X).
(b) M(X) is a metrizable space. In particular, proving continuity or conver-

gence one can restrict oneself to sequences only (as opposed to nets).
(c) (Riesz Representation Theorem) Every nonnegative linear functional

F : C(X) −→ R such that F(11) = 1 is (uniquely) represented by an
element in M(X). More precisely, there exists μ ∈ M(X) such that

F(g) = μ(g)

for all g ∈ C(X).
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12 Part I Ergodic Theory and Geometric Measures

It follows from item (c) of this theorem that the functional F considered
therein is bounded. In fact, this is a quite elementary property whose short
proof we leave for the reader as an exercise.

Definition 1.2.10 If X is a topological space and μ is a Borel measure on X,
then the topological support of μ is defined as the set of all points x ∈ X such
that, for every open set G containing x, μ(G) > 0. It is denoted by supp(μ).

The following proposition collects the basic properties of topological
supports.

Proposition 1.2.11 If X is a topological space and μ is a Borel measure on
X, then the topological support supp(μ) of μ is a closed subset of X.

If, in addition, X is a separable metrizable space, then the following hold.

(1) μ(X\supp(μ)) = 0.
(2) If F ⊆ X is a closed set such that μ(X\F) = 0, then F ⊇ supp(μ).
(3) If, in addition, μ is a nonzero finite measure, then supp(μ) is the smallest

closed subset of X such that μ(F) = μ(X).

Proof The fact that the topological support supp(μ) is closed is immediate
from its definition. Let us prove item (1). If x ∈ X\supp(μ), then there exists
an open set Gx ⊆ X containing X such that μ(Gx) = 0. Since X is a
separable metrizable space, so is X\supp(μ). But then X\supp(μ) a Lindelöf
space. Therefore, the cover Gx , x ∈ supp(μ), of X\supp(μ) has a countable
subcover. This means that there exists a countable set D ⊆ X\supp(μ)

such that ⋃
x∈D

Gx = X\supp(μ).

Hence,

μ(X\supp(μ)) ≤
∑
x∈D

μ(Gx) = 0,

meaning that item (1) holds.
In order to prove item (2), note that, since X\F is an open set and its

measure is equal to zero, it is contained in the complement of supp(μ). This
means that item (2) holds.

Proving item (3), its hypotheses yield μ(X\F) = 0. Since the set F is also
closed, item (2) implies that F ⊇ supp(μ), and we are done. �

We end this section with the following easy fact, which will be frequently
used throughout both volumes of the book.
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1 Geometric Measure Theory 13

Theorem 1.2.12 If X is a compact metric space and μ is a finite Borel measure
on X with full topological support, then, for every r > 0,

M(μ,r) := inf{μ(B(x,r)) : x ∈ X} > 0. (1.19)

Proof Since the space X is compact, there exists a finite set F ⊆ X such that⋃
y∈F

B(y,r/2) = X.

Since supp(μ) = X, we have that

M := min{μ(B(y,r/2)) > 0.

Now, if x ∈ X, there exists y ∈ F such that x ∈ B(y,r/2). But then B(x,r) ⊇
B(y,r/2), and, therefore,

μ(B(x,r)) ≥ μ(B(y,r/2)) ≥ M > 0.

The proof of Theorem 1.2.12 is complete. �

1.3 Covering Theorems: 4r , Besicovitch, and Vitali Type;
Lebesgue Density Theorem

In this section, we prove first the 4r Covering Theorem. Following the
arguments of [MSzU], we prove it for all metric spaces. If we do not insist
on 4r but are content with 5r (which is virtually always the case), a shorter,
less involved proof is possible. This can be found, for example, in [Heino].
Then, following [Mat], we will prove the Besicovitch Covering Theorem and,
as its fairly straightforward consequence, the Vitali-Type Covering theorem.
We finally deduce from the latter the Lebesgue Density Points Theorem.
All these theorems are classical and can be found in many sources with
extended discussions. More applications of covering theorems will appear in
further sections of this chapter and throughout the entire book. For every ball
B := B(x,r), we put r(B) = r and c(B) = x.

Theorem 1.3.1 (4r Covering Theorem). Suppose that (X,ρ) is a metric space
and B is a family of open balls in X such that sup{r(B) : B ∈ B} < +∞.
Then there is a family B′ ⊆ B consisting of mutually disjoint balls such that⋃

B∈B B ⊆⋃
B∈B′ 4B. In addition, if the metric space X is separable, then B′

is countable.

Proof Fix an arbitrary M > 0. Suppose that there is a family B′M ⊆ B
consisting of mutually disjoint balls such that
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14 Part I Ergodic Theory and Geometric Measures

(a) r(B) > M for all B ∈ B′M ,
(b)

⋃
B∈B′M 4B ⊇⋃{B : B ∈ B and r(B) > M}.

We shall show that then there exists a family B′′M ⊆ B with the following
properties:

(c) B′′M ⊆ F := {B ∈ B : 3M/4 < r(B) ≤ M},
(d) B′M ∪ B′′M consists of mutually disjoint balls,
(e)

⋃
B∈B′M∪B′′M 4B ⊇⋃{B : B ∈ B and r(B) > 3M/4}.

Indeed, put

B′′′M =
⎧⎨⎩B ∈ F : B ∩

⋃
D∈B′M

D = ∅
⎫⎬⎭ . (1.20)

Consider B ∈ F\B′′′M . Then there exists D ∈ B′M such that B ∩D �= ∅. Hence,
r(B) ≤ M < r(D) and, in consequence,

ρ(c(B),c(D)) < r(B)+ r(D) ≤ M + r(D) < r(D)+ r(D) = 2r(D)

and

B ⊆ B(c(D),r(B)+ 2r(D)) ⊆ B(c(D),3r(D)) = 3D ⊆ 4D.

Therefore, ⋃
B∈F\B′′′M

B ⊆
⋃

B∈B′M
4B. (1.21)

So, if B′′′M = ∅, we are done with the proof by setting B′′M = ∅. Otherwise,
fix an arbitrary B0 ∈ B′′′M and further, proceeding by transfinite induction, fix
some Bα ∈ B′′′M such that

c(Bα) ∈ c
(
B′′′M

)\⋃
γ <α

8

3
Bγ

for some some ordinal number γ ≥ 0, as long as the difference on the right-
hand side above is nonempty. This procedure terminates at some ordinal
number λ. First, we claim that the balls (Bα)α<λ are mutually disjoint. Indeed,
fix 0 ≤ α < β < λ. Then c(Bβ) /∈ 8

3Bα . So,

ρ
(
c(Bβ),c(Bα)

) ≥ 8

3
r(Bα) >

8

3
· 3

4
M = 2M

and

r(Bβ)+ r(Bα) ≤ M +M = 2M .
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1 Geometric Measure Theory 15

Thus, Bβ ∩ Bα = ∅. Now if B ∈ B′M and 0 ≤ α < λ, then Bα ∈ B′′′M and, by
(1.20), Bα ∩ B = ∅. Thus, we proved item (d) with B′′M = {Bα}α<λ. Item (c)
is obvious since Bα ∈ B′′′M ⊆ F for all 0 ≤ α < λ. It remains to prove item (e).
By the definition of λ, c(B′′′M) ⊂ ⋃

γ <λ
8
3Bγ =

⋃
B∈B′′M

8
3B. Hence, if x ∈ B

and B ∈ B′′′M, then there exists D ∈ B′′M such that c(B) ∈ 8
3D. Therefore,

ρ(x,c(D)) ≤ ρ(x,c(B))+ ρ(c(B),c(D)) ≤ r(B)+ 8

3
r(D)

≤ M + 8

3
r(D) <

4

3
r(D)+ 8

3
r(D)

= 4r(D).

Thus, x ∈ 4D; consequently,
⋃

B′′′M ⊆
⋃

D∈B′′M 4D. Combining this and

(1.21), we get that
⋃

B∈F B ⊆ ⋃
B∈B′M∪B′′M 4B. This and (b) immediately

imply (e). The properties (c), (d), and (e) are established. Now take
S = sup{r(B) : B ∈ B} + 1 < +∞ and define inductively the sequence
(B′(3/4)nS)∞n=0 by declaring that B′S = ∅ and B′

(3/4)n+1S
= B′(3/4)nS ∪ B′′(3/4)nS .

Then

B′ =
∞⋃

n=0

B′(3/4)nS .

It then follows directly from (d) and our inductive definition that B′ consists
of mutually disjoint balls. It follows from (e) that

⋃
B∈B′ 4B ⊇ ⋃{B ∈

B : r(B) > 0} = ⋃
B. The first part of our theorem is, thus, proved. The

last part follows immediately from the fact that any family of mutually disjoint
open subsets of a separable space is countable. �

Remark 1.3.2 Assume the same as in Theorem 1.3.1 (no separability of X is
required) and suppose that there exists a finite Borel measure μ on X such that
μ(B) > 0 for all B ∈ B′. Then B′ is countable.

We shall now prove the Besicovitch Covering Theorem. We consider it
to be one of the most powerful geometric tools when dealing with some
aspects of fractal sets. We can easily deduce from it two fundamental classical
theorems: the Vitali-Type Covering Theorem and the Lebesgue Density Points
Theorem. For the proof of the Besicovitch Covering Theorem, we introduce
two concepts. First the following definition.

Definition 1.3.3 Let (X,ρ) be a metric space. A collection B = {B(xi,ri)}∞i=1
of open balls centered at a set A ⊆ X, meaning that xi ∈ A for all i ≥ 1, is
said to be a packing of A if and only if, for any pair i �= j ,

ρ(xi,xj ) ≥ ri + rj .
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16 Part I Ergodic Theory and Geometric Measures

This property is not in general equivalent to the requirement that all the balls
B(xi,ri) be mutually disjoint. It is obviously so if X is a Euclidean space. We
call the number

r(B) := sup{ri : i ≥ 1}

the radius of packing B.

This notion has a far-reaching meaning. It is the key concept to define packing
measures and dimensions, which will be done in Section 1.5. The other notion
we need is the following.

For any x ∈ Rn, any 0 < r ≤ ∞, and any 0 < α < π by Con(x,α,r), we
will denote any solid central cone with vertex x, radius r , and angle α. That is,
with the above data, for an arbitrary ray l emanating from x, we denote

Con(x,α,r) = Con(l,x,α,r)

:= {y ∈ Rn : 0 < |y − x| < r, � (y − x,l) ≤ α} ∪ {x}.

The proof of Theorem 1.3.5 makes substantial use of the following obvious
geometric observation.

Observation 1.3.4 Let n ≥ 1 be an integer. Then there exists α(n) > 0 so
small that the following holds. If x ∈ Rn, 0 < r <∞, if z ∈ B(x,r)\B(x,r/3)

and if x ∈ Con(z,α(n),∞), then the set Con(z,α(n),∞)\B(x,r/3) consists of
two connected components: one of z and one of ∞. The one containing z is
contained in B(x,r).

Theorem 1.3.5 (Besicovitch Covering Theorem) Let n ≥ 1 be an integer.
Then there exists an integer constant b(n) ≥ 1 such that the following holds.

If A is a bounded subset of Rn, then, for any function r : A→ (0,∞), there
exists {xk}∞k=1, a countable subset of A, such that the collection

B(A,r) := {B(xk,r(xk)) : k ≥ 1}

covers A and can be decomposed into b(n) packings of A.

Proof We will construct the sequence {xk : k = 1,2, . . .} inductively. Let

a0 := sup{r(x) : x ∈ A}.

If a0 = ∞, then one can find x ∈ A with r(x) so large that B(x,r(x)) ⊇ A

and the proof is finished.
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1 Geometric Measure Theory 17

If a0 <∞, choose x1 ∈A so that r(x1) > a0/2. Fix k≥ 1. Assume that the
points x1,x2, . . . ,xk have already been chosen. If A ⊆ B(x1,r(x1)) ∪ · · · ∪
B(xk,r(xk)), then the selection process is finished. Otherwise, put

ak := sup
{
r(x) : x ∈ A\(B(x1,r(x1)) ∪ · · · ∪ B(xk,r(xk))

)}
and take

xk+1 ∈ A\(B(x1,r(x1)) ∪ · · · ∪ B(xk,r(xk))
)

(1.22)

such that

r(xk+1) > ak/2. (1.23)

In order to shorten notation from now on, throughout this proof we will write
rk for r(xk). By (1.22), we have that xl /∈ B(xk,rk) for all pairs k,l with k < l.
Hence,

‖xk − xl‖ ≥ r(xk). (1.24)

It follows from the construction of the sequence (xk) that

rk > ak−1/2 ≥ rl/2. (1.25)

therefore, rk/3+ rl/3 < rk/3+ 2rk/3 = rk . By combining this and (1.24) we
obtain that

B(xk,rk/3) ∩ B(xl,rl/3) = ∅ (1.26)

for all pairs k,l with k �= l since then either k < l or l < k.
Now we shall show that the balls {B(xk,rk) : k ≥ 1} cover A. Indeed, if the

selection process stops after finitely many steps this claim is obvious. Other-
wise, it follows from (1.26) that limk→∞ rk = 0 and if x /∈⋃∞

k=1 B(xk,rk) for
some x ∈ A, then by construction rk > ak−1/2 ≥ r(x)/2 for every k ≥ 1. The
contradiction obtained proves that

⋃∞
k=1 B(xk,rk) ⊇ A.

The main step of the proof is given by the following.

Claim 1◦. For every z ∈ Rn and any cone Con(z,α(n),∞) (α(n) given by
Observation 1.3.4), we have that

#
{
k ≥ 1: z ∈ B(xk,rk)\B(xk,rk/3) and xk ∈ Con(z,α(n),∞)

} ≤ (12)n.

Proof Denote the above set by Q. Our task is to estimate its cardinality from
above. If Q = ∅, there is nothing to prove. Otherwise, let i = min Q. If k ∈ Q

and k �= i, then k > i and, therefore, xk /∈ B(xi,ri). Therefore, by Observation
1.3.4 applied with x = xi , r = ri , and by the the definition of Q, we get that
‖z− xk‖ ≥ 2ri/3. Hence,

rk ≥ ‖z− xk‖ ≥ 2ri/3. (1.27)
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18 Part I Ergodic Theory and Geometric Measures

On the other hand, by (1.25), we have that rk < 2ri ; therefore, B(xk,rk/3) ⊆
B(z,4rk/3) ⊆ B(z,8ri/3). Thus, using (1.26), (1.27) and the fact that the
n-dimensional volume of balls in Rn is proportional to the nth power of radii,
we obtain that, #Q ≤ (8ri/3)n/(2ri/9)n = 12n. The proof of the claim is
finished. �

Clearly, there exists an integer c(n) ≥ 1 such that, for every z ∈ Rn, the
space Rn can be covered by at most c(n) cones of the form Con(z,α(n),∞).
Therefore, it follows from the above claim that, for every z ∈ Rn,

#{k ≥ 1: z ∈ B(xk,rk)\B(xk,rk/3)} ≤ c(n)(12)n.

Thus, applying (1.26),

#{k ≥ 1: z ∈ B(xk,rk) ≤ 1+ c(n)(12)n. (1.28)

Since the ball B(0,3/2) is compact, it contains a finite subset P such that⋃
x∈P

B(x,1/2) ⊇ B(0,3/2).

Now, for every k ≥ 1, consider the composition of the map Rn � x �−→ rkx ∈
Rn and the translation determined by the vector from 0 to xk . Call the image
of P under this affine map Pk . Then, #Pk = #P , Pk ⊆ B(xk,3rk/2), and⋃

x∈Pk

B(x,rk/2) ⊇ B(0,3rk/2). (1.29)

Consider now two integers 1 ≤ k < l such that

B(xk,rk) ∩ B(xl,rl) �= ∅. (1.30)

Let y ∈ Rn be the only point lying on the interval joining xl and xk at the
distance rk − rl/2 from xk . As xl /∈ B(xk,rk), by (1.30) we have that ‖y −
xl‖ ≤ rl + rl/2 = 3rl/2 and, therefore, by (1.29) there exists z ∈ Pl such that
‖z− y‖ < rl/2. Consequently, z ∈ B(xk,rl/2+ rk − rl/2) = B(xk,rk). Thus,
applying (1.28), with z being the elements of Pl , we obtain the following:

#
{
1 ≤ k ≤ l − 1: B(xk,rk) ∩ B(xl,rl) �= ∅

} ≤ #P(1+ c(n)(1)2n) (1.31)

for every l ≥ 1. Putting

b(n) := #P(1+ c(n)(12)n)+ 1,

this property allows us to decompose the set N of positive integers
into b(n) subsets N1,N2, . . . ,Nb(n) in the following inductive way. For
every k= 1,2, . . . ,b(n), set Nk(b(n))={k} and suppose that, for every
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1 Geometric Measure Theory 19

k = 1,2, . . . ,b(n) and some j ≥ b(n), the mutually disjoint families Nk(j)

have already been defined so that

N1(j) ∪ · · · ∪ Nb(n)(j) = {1,2, . . . ,j}.
Then, by (1.31), there exists at least one 1≤ k≤ b(n) such that B(xj+1,rj+1)∩
B(xi,ri) = ∅ for every i ∈ Nk(j). We set

Nk(j + 1) := Nk(j) ∪ {j + 1}
and

Nl (j + 1) = Nl (j)

for all l ∈ {1,2, . . . ,b(n)}\{k}. Putting now, for every k = 1,2, . . . ,b(n),

Nk := Nk(b(n)) ∪ Nk(b(n)+ 1) ∪ · · · ,
we see from the inductive construction that these sets are mutually disjoint,
that they cover N, and that for every k = 1,2, . . . ,b(n) the families of balls
{B(xl,rl) : l ∈ Nk} are also mutually disjoint. The proof of the Besicovitch
Covering Theorem is finished. �

We would like to emphasize here that the same statement remains true, if open
balls, are replaced by closed ones. It also remains true if, instead of balls,
one considers n-dimensional cubes. And, in this latter case, it is even better:
namely, the proof based on the same idea is technically considerably easier.
There are further, frequently useful, generalizations, especially a theorem of
Morse. The reader is advised to consult the book [Gu] by Guzman on such
topics.

As we have already mentioned, we can easily deduce from the Besicovitch
Covering Theorem some other fundamental facts.

Theorem 1.3.6 (Vitali-Type Covering Theorem) Let μ be a probability Borel
measure on Rn, let A ⊂ Rn be a Borel set, and let B be a family of closed balls
such that each point of A is the center of arbitrarily small balls of B, i.e.,

inf{r : B(x,r) ∈ B} = 0

for all x ∈ A. Then there exists a countable (finite or infinite) collection B(A)

of mutually disjoint balls in B such that

μ
(
A\

⋃
{B ∈ B(A)}

)
= 0.

Proof We assume that A is bounded, leaving the unbounded case to the
reader. We may assume that μ(A) > 0. The measure μ restricted to a compact
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20 Part I Ergodic Theory and Geometric Measures

ball B(0,R) such that A ⊂ B(0,R/2) is Borel, hence regular. Hence, there
exists an open set U ⊂ Rn containing A such that

μ(U) ≤ (
1+ (4b(n))−1)μ(A),

where b(n) is as in the Besicovitch Covering Theorem 1.3.5. By that theorem
applied for closed balls we can decompose B in packings B1, . . . ,Bb(n) of A

contained in U , i.e., each Bi consists of disjoint balls and

A ⊂
b(n)⋃
i=1

⋃
Bi ⊂ U .

Then μ(A) ≤∑b(n)
i=1 μ

(⋃
Bi

)
; consequently, there exists an i such that

μ(A) ≤ b(n)μ
(⋃

Bi

)
.

Further, for some finite subfamily B′i of Bi ,

μ(A) ≤ 2b(n)μ
(⋃

B′i
)

.

Letting A1 = A\ (⋃B′i
)
, we get

μ(A1) ≤ μ
(
U\

⋃
B ′i

)
= μ(U)− μ

(⋃
B ′i

)
≤

(
1+ 1

4
(b(n))−1 − 1

2
(b(n))−1

)
μ(A)

= uμ(A)

with u := 1− 1
4 (b(n))−1 < 1. Now consider A1 in the role of A before. Since

A1 ⊂ Rn\
(⋃

B′i
)

,

which is open, we find a packing, playing the role of B ′i contained in

Rn\
(⋃

B′i
)

,

so disjoint from
⋃

B′i . We then get the measure of a noncovered remnant
bounded above by uμ(A1) ≤ u2μ(A). We can continue, consecutively
constructing packings that exhaust the whole set A except at most a set of
measure 0. The proof is complete. �

Now we shall prove two quite straightforward consequences of the Besi-
covitch Covering Theorem (Theorem 1.3.5), the first one being the celebrated,
and to some extent counter-intuitive, Density Points Theorem. It in fact follows
from the Vitali-Type Covering Theorem (Theorem 1.3.6), which itself is a
consequence of the Besicovitch Covering Theorem.
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1 Geometric Measure Theory 21

Theorem 1.3.7 (Lebesgue Density Theorem) Let μ be a probability Borel
measure on Rn, n ∈ N, and A ⊂ Rn be a Borel set. Then the limit

lim
r→0

μ(A ∩ B(x,r))

μ(B(x,r))

exists and is equal to 1 for μ-almost every point x ∈ A.

Proof First of all, for every Borel set B ⊆Rn and every x ∈Rn, we obviously
have that

lim
s↗r

μ(B ∩ B(x,s)) = μ(B ∩ B(x,r))

and

lim
s↘r

μ(B ∩ B(x,s) ≥ μ(B ∩ B(x,r))).

Therefore, the function

Rn � x �−→ μ(B ∩ B(x,r)) ∈ R

is lower semi-continuous, thus Borel measurable. Hence, the function

Rn � x �−→ μ(A ∩ B(x,r))

μ(B(x,r))
∈ R

is also Borel measurable. Furthermore, since

lim
Q�s↗r

μ(B ∩ B(x,s)) = μ(B ∩ B(x,r)),

it follows that the set of points x ∈ Rn for which the limit

lim
r→0

μ(A ∩ B(x,r))

μ(B(x,r))
(1.32)

exists is the same as the set of points x ∈ Rn for which the limit

lim
Q�r→0

μ(A ∩ B(x,r))

μ(B(x,r))

exists. Since the set Q of rational numbers is countable, we, thus, conclude that
the set of points in X for which in (1.32) exists is Borel measurable.

Seeking contradiction, suppose now that the set of points in A where this
limit is either not equal to 1 or does not exist has positive measure μ. Then
there exists 0 ≤ a < 1 and Borel A′ ⊂ A of positive measure μ such that, for
every x ∈ A′, there exists a sequence (ri(x))∞i=1 of positive radii converging to
0 such that

μ
(
A′ ∩ B(x,ri(x))

)
μ

(
B(x,ri(x))

) < a

for all i ≥ 1. Given an open set U containing A, let
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22 Part I Ergodic Theory and Geometric Measures

BU := {
B(x,ri(x)) : x ∈ A′, B(x,ri(x)) ⊆ U

}
.

Then let BU (A′) be the corresponding collection of balls whose existence is
asserted in the Vitali-Type Covering Theorem (Theorem 1.3.6). Then

μ(A′) =
∑

B∈BU (A′)
μ(A′ ∩ B) ≤ a

∑
B∈BU (A′)

μ(B) ≤ aμ(U).

Since measure μ is regular, this yields μ(A′) ≤ aμ(A′). This contradiction
finishes the proof. �

Every point in the set A for which the assertion of the Lebesgue Density
Theorem holds will be called a Lebesgue density point of A with respect to the
measure μ.

The second consequence of the Besicovitch Covering Theorem (Theorem
1.3.5), which we have mentioned above, is the following technical, but very
useful and frequently applied, lemma, which is suitable for proving that one
given measure is absolutely continuous with respect to the other. We follow
the proof from [DU2].

Lemma 1.3.8 Let μ and ν be Borel probability measures on X, a bounded
subset of a Euclidean space Rd , d ≥ 1. Suppose that there is a constant M > 0
and, for every point x ∈ Y , there is a converging to zero sequence

(
rj (x)

)∞
i=0

of positive radii such that, for all j ≥ 1 and all x ∈ X,

μ(B(x,rj (x)) ≤ Mν(B(x,rj (x)).

Then the measure μ is absolutely continuous with respect to ν and the Radon–
Nikodym derivative satisfies

dμ/dν ≤ Mb(d),

where b(d) is the constant coming from the Besicovitch Covering Theorem,
i.e., Theorem 1.3.5.

Proof Consider an arbitrary Borel set E⊆X and fix ε > 0. Since
limj→∞ rj (x) = 0 and measure ν is regular, for every x ∈E there exists
a radius r(x) of the form rj (x) such that

ν

(⋃
x∈E

Be(x,r(x)) \ E

)
.

Now, by the Besicovitch Covering Theorem (Theorem 1.3.5) we can choose a
countable subcover {B(xi,ri(x))}∞i=1 from the cover {B(xi,ri(x))}x∈E of E, of
multiplicity bounded above by b(d). Therefore, we obtain that
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1 Geometric Measure Theory 23

μ(E) ≤
∞∑

i=1

μ(B(xi,ri(x))) ≤ M

∞∑
i=1

ν(B(xi,ri(x)))

≤ Mb(d)ν

( ∞⋃
i=1

B(xi,ri(x))

)
≤ Mb(d)(ε + ν(E)).

Letting ε ↘ 0, we, thus, obtain that μ(E) ≤ Mb(d)ν(E). Therefore, μ is
absolutely continuous with respect to ν with the Radon–Nikodym derivative
bounded above by Mb(d). �

1.4 Conditional Expectations and Martingale Theorems

The content of this section belongs to probability theory rather than to classical
measure theory. Its culmination (for us), i.e., Theorem 1.4.11, is, however,
similar to the Lebesgue Density Theorem, i.e., Theorem 1.3.7, so is natural
to place it here. This chapter is about conditional expectations and martingales
and is closely modeled on a chapter form Billingsley’s book [Bil2].

We start with conditional expectations. Let (X,F,μ) be a probability space.
Let D be a sub-σ -algebra of F. Let

φ : X −→ R

be a measurable function, integrable with respect to the measure μ. We denote
by

E(φ|D) = Eμ(φ|D)

the (conditional) expected value of φ with respect to the σ -algebra D. This is
the only function (up to sets of measure zero) that is measurable with respect
to the σ -algebra D such that∫

D

Eμ(φ|D)dμ =
∫

D

φ dμ

for every set D ∈ D. Its existence for nonnegative integrable functions is a
straightforward consequence of the Radon–Nikodym Theorem. In the general
case, one sets

Eμ(φ|D) := Eμ(φ+|D)− Eμ(φ−|D).

Uniqueness is obvious.
Conditional expectations exhibit several natural properties. We list the most

basic ones below. Their proofs are straightforward and are omitted.
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24 Part I Ergodic Theory and Geometric Measures

Proposition 1.4.1 Let (X,A,μ) be a probability space, B and C denote some
sub-σ -algebras of A and ϕ ∈ L1(X,A,μ). Then the following hold.

(a) If ϕ ≥ 0 μ-a.e., then

E(ϕ|B) ≥ 0 μ-a.e.

(b) If ϕ1 ≥ ϕ2 μ-a.e., then

E(ϕ1|B) ≥ E(ϕ2|B) μ-a.e.

(c)
∣∣E(ϕ|B)

∣∣ ≤ E
(|ϕ| ∣∣B)

.
(d) The functional E(·|B) is linear. In other words, for any c1,c2 ∈ R and

ϕ1,ϕ2 ∈ L1(X,A,μ), we have that

E(c1ϕ1 + c2ϕ2|B) = c1 E(ϕ1|B)+ c2 E(ϕ2|B).

(e) If ϕ is already B-measurable, then E(ϕ|B) = ϕ. In particular, we have
that

E
(
E(ϕ|B)

∣∣B) = E(ϕ|B).

Also, if ϕ = c ∈ R is a constant function, then E(ϕ|B) = ϕ = c.
(f) If B ⊇ C, then

E
(
E(ϕ|B)

∣∣C) = E(ϕ|C).

We will now determine the conditional expectations of an arbitrary inte-
grable function ϕ with respect to various sub-σ -algebras that are of particular
interest and are simple enough.

Example 1.4.2 Let (X,A,μ) be a probability space. The family B of all
measurable sets that are either of null or of full measure constitutes a sub-
σ -algebra of A. Let ϕ ∈ L1(X,A,μ). Since E(ϕ|B) is B-measurable,

E(ϕ|B)−1({t}) ∈ B

for each t ∈ R, meaning that the set E(ϕ|B)−1({t}) is either of measure zero
or of measure 1. Also bear in mind that

X = E(ϕ|B)−1(R) =
⋃
t∈R

E(ϕ|B)−1({t}).

Since the above union consists of mutually disjoint sets of measure zero and 1,
it follows that only one of these sets can be of measure 1. In other words, there
exists a unique t ∈ R such that

E(ϕ|B)−1({t}) = A
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1 Geometric Measure Theory 25

for some A ∈ A with μ(A) = 1. Because the function E(ϕ|B) is unique up to
a set of measure zero, we may assume without loss of generality that A = X.
Hence, E(ϕ|B) is a constant function. Therefore,

E(ϕ|B) =
∫

X

E(ϕ|B)dμ =
∫

X

ϕ dμ.

Example 1.4.3 Let (X,A) be a measurable space and α be a countable
measurable partition of X. The sub-σ -algebra σ(α) of A generated by α is the
family of all sets which can be represented as a union of elements of α. When
α is finite, so is σ(α). When α is countably infinite, σ(α) is uncountable; in
fact, it is of cardinality continuum. Let μ be a probability measure on (X,A).
Let ϕ ∈ L1(X,A,μ). Since E(ϕ|σ(α)) is B-measurable,

E(ϕ|B)−1({t}) ∈ σ(α)

for each t ∈ R, i.e.,

E
(
ϕ|σ(α)

)−1
({t}) ∈ σ(α).

This means that the set E
(
ϕ|σ(α)

)−1
({t}) is a union of elements of α. This

further means that the conditional expectation function E(ϕ|σ(α)) is constant
on each element of α. Let A ∈ α. If μ(A) = 0, then E(ϕ|σ(α))|A = 0.
Otherwise,

E(ϕ|σ(α))|A = 1

μ(A)

∫
A

E(ϕ|σ(α))dμ = 1

μ(A)

∫
An

ϕ dμ. (1.33)

In summary, the conditional expectation E(ϕ|B) of a function ϕ with respect
to a sub-σ -algebra generated by a countable measurable partition is constant
on each element of that partition. More precisely, on any given element of the
partition, E(ϕ|B) is equal to the mean value of ϕ on that element. In particular,
if α is a trivial partition, i.e., consisting of sets of measure zero and 1 only, then

E(ϕ|σ(α)) =
∫

X

ϕ dμ μ-a.e. (1.34)

The next result is a special case of a theorem originally due to Doob and is
commonly called the Martingale Convergence Theorem. In order to discuss it,
we first define the martingale itself.

Definition 1.4.4 Let (X,A,μ) be a probability space. Let (An)∞n=1 be a
sequence of sub-σ -algebras of A. Let also (ϕn : X −→ R)∞n=1 be a sequence
of random variables, i.e., a sequence of A-measurable functions. The sequence
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(
(ϕn,An)

)∞
n=1

is called a martingale if and only if the following conditions are satisfied:

(a) (An)∞n=1 is an ascending sequence, i.e., An+1 ⊇ An for all n ∈ N.

(b) ϕn is An-measurable for all n ∈ N.

(c) ϕn ∈ L1(μ) for all n ∈ N.

(d) E(ϕn+1|An) = ϕn μ-a.e. for all n ∈ N.

The main, and frequently referred to as the simplest, convergence theorem
concerning martingales is this.

Theorem 1.4.5 (Martingale Convergence Theorem) Let (X,A,μ) be a proba-
bility space. If ((ϕn,An))∞n=1 is a martingale such that

sup{‖ϕn‖1 : n ∈ N} < +∞,

then there exists ϕ̂ ∈ L1(X,A,μ) such that

lim
n→∞ϕn(x) = ϕ̂(x) for μ-a.e. x ∈ X

and

‖ϕ̂‖1 ≤ sup{‖ϕn‖1 : n ∈ N} < +∞.

This is a special case of Theorem 35.5 in Billingsley’s book [Bil2], proved
therein. Its proof is just too long and too involved to be reproduced here. We
omit it.

One natural martingale is formed by the conditional expectations of a
function with respect to an ascending sequence of sub-σ -algebras.

Proposition 1.4.6 Let (X,A,μ) be a probability space and let (An)∞n=1 be an
ascending sequence of sub-σ -algebras of A. For any ϕ ∈ L1(X,A,μ), the
sequence (

(E(ϕ|An),An)
)∞
n=1

is a martingale.

Proof Indeed, set

ϕn := E(ϕ|An)

for all n ∈ N. Condition (a) in Definition 1.4.4 is automatically fulfilled.
Conditions (b) and (c) follow from the very definition of the conditional
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expectation function. Regarding condition (d), a straightforward application
of Proposition 1.4.1(f) gives

E(ϕn+1|An) = E
(
E(ϕ|An+1)|An

) = E(ϕ|An) = ϕn

μ-a.e. for all n ∈ N. So
(
(E(ϕ|An),An)

)∞
n=1 is a martingale. �

With the hypotheses of this proposition, by using Proposition 1.4.1(c), we
see that

sup
n∈N
‖ϕn‖1 = sup

n∈N

∫
X

∣∣E(ϕ|An)
∣∣dμ ≤ sup

n∈N

∫
X

E
(|ϕ|∣∣An

)
dμ =

∫
X

|ϕ| dμ <∞.

According to Theorem 1.4.5, there, thus, exists ϕ̂ ∈ L1(X,A,μ) such that

lim
n→∞E(ϕ|An)(x) = ϕ̂(x) for μ-a.e. x ∈ X and ‖ϕ̂‖1 ≤ ‖ϕ‖1.

What is ϕ̂? This is the question we will address now. For this we need the
concept of uniform integrability and the convergence theorem that it entails.

Definition 1.4.7 Let (X,A,μ) be a measure space. A sequence of measurable
functions (fn)∞n=1 is called uniformly integrable if and only if

lim
M→∞

sup
n∈N

∫
{|fn|≥M}

|fn| dμ = 0.

The following theorem is classical in measure theory. It is proved, for example,
as Theorem 16.14 in Billingsley’s book [Bil2].

Theorem 1.4.8 Let (X,A,μ) be a finite measure space and (fn)∞n=1 a
sequence of measurable functions that converges pointwise μ-a.e. to a func-
tion f .

(a) If (fn)∞n=1 is uniformly integrable, then fn ∈ L1(μ) for all n ∈ N and
f ∈ L1(μ). Moreover,

lim
n→∞‖fn − f ‖1 = 0 and lim

n→∞

∫
X

fn dμ =
∫

X

f dμ.

(b) If f,fn ∈L1(μ) and fn≥ 0 μ-a.e. for all n∈N, then limn→∞
∫

X
fn dμ =∫

X
f dμ implies that (fn)∞n=1 is uniformly integrable.

We shall now prove the uniform integrability of the martingale appearing in
Proposition 1.4.6.

Lemma 1.4.9 Let (X,A,μ) be a probability space and (An)∞n=1 be a sequence
of sub-σ -algebras of A. Then, for every ϕ ∈ L1(X,A,μ), the sequence
(E(ϕ|An))∞n=1 is uniformly integrable.
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Proof Without loss of generality, we may assume that ϕ ≥ 0. Let ε > 0.
Since the measure ν on (X,A) given by

ν(A) :=
∫

A

ϕ dμ

is absolutely continuous with respect to μ, it follows from the Radon–Nikodym
Theorem (Theorem 1.1.9) that there exists δ > 0 such that

A ∈ A, μ(A) < δ �⇒
∫

A

ϕ dμ < ε. (1.35)

Consider any

M >
1

δ

∫
X

ϕ dμ.

For each n ∈ N, let

Xn(M) := {
x ∈ X : E(ϕ|An)(x) ≥ M

}
.

Observe that Xn(M) ∈ An since E(ϕ|An) is An-measurable. Therefore, by
Tchebyschev’s Inequality, we get that

μ(Xn(M)) ≤ 1

M

∫
Xn(M)

E(ϕ|An)dμ = 1

M

∫
Xn(M)

ϕ dμ ≤ 1

M

∫
X

ϕ dμ < δ

for all n ∈ N. Consequently, by (1.35),∫
Xn(M)

E(ϕ|An)dμ =
∫

Xn(M)

ϕ dμ < ε

for all n ∈ N. Thus,

sup
n∈N

∫
{E(ϕ|An)≥M}

E(ϕ|An)dμ ≤ ε.

Therefore,

lim
M→∞

sup
n∈N

∫
{E(ϕ|An)≥M}

E(ϕ|An)dμ = 0,

i.e., (E(ϕ|An))∞n=1 is uniformly integrable. �

Theorem 1.4.10 (Martingale Convergence Theorem for Conditional Expecta-
tions) Let (X,A,μ) be a probability space and ϕ ∈ L1(X,A,μ). Let (An)∞n=1
be an ascending sequence of sub-σ -algebras of A and

A∞ := σ

( ∞⋃
n=1

An

)
.
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Then

lim
n→∞E(ϕ|An) = E(ϕ|A∞) μ-a.e. on X

and

lim
n→∞

∥∥E(ϕ|An)− E(ϕ|A∞)
∥∥

1 = 0.

Proof Let

ϕn := E(ϕ|An).

It follows from Proposition 1.4.6 and Lemma 1.4.9 that ((ϕn,An))∞n=1 is a
uniformly integrable martingale such that

lim
n→∞ϕn = ϕ̂ μ-a.e. on X

for some ϕ̂ ∈ L1(X,A,μ). For all n ∈ N, the function ϕn is A∞-measurable
since it is An-measurable and An ⊆ A∞. Thus, ϕ̂ is A∞-measurable, too.
Moreover, it follows from Theorem 1.4.8 that

lim
n→∞‖ϕn − ϕ̂‖1 = 0 and lim

n→∞

∫
A

ϕn dμ =
∫

A

ϕ̂ dμ

for all A ∈ A. Therefore, it just remains to show that

ϕ̂ = E(ϕ|A∞).

Let k ∈ N and A ∈ Ak . If n ≥ k, then A ∈ An ⊆ A∞ and, thus,∫
A

ϕn dμ =
∫

A

E(ϕ|An)dμ =
∫

A

ϕ dμ =
∫

A

E(ϕ|A∞)dμ.

Letting n→∞, this yields∫
A

ϕ̂ dμ =
∫

A

E(ϕ|A∞)dμ.k .

Since k was arbitrary, this entails∫
B

ϕ̂ dμ =
∫

B

E(ϕ|A∞)dμ

for all B ∈ ⋃∞
k=1 Ak . Finally, since

⋃∞
k=1 Ak is a π -system generating A∞

and both ϕ̂ and E(ϕ|A∞) are A∞-measurable, we conclude that

ϕ̂ = E(ϕ|A∞) μ-a.e. in X.

�
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Recall that countable measurable partitions of a measurable space are
defined and systematically treated in Section 6.1; they form the key concept for
all of Chapter 6. As an immediate consequence of the Martingale Convergence
Theorem for Conditional Expectations, i.e., Theorem 1.4.10 and (1.33), we get
the following theorem, which is somewhat similar to the Lebesgue Density
Theorem, i.e., Theorem 1.3.7 from the previous section.

Theorem 1.4.11 Let (X,A,μ) be a probability space and (αn)∞n=1 be a
sequence of finer and finer (more precisely, αn+1 is finer than αn for all n ≥ 1)
countable measurable partitions of X which generates the σ -algebra A, i.e.,
σ

(⋃
n≥1 αn

) = A. Then, for every set A ∈ A and for μ-a.e. x ∈ A, we have
that

lim
n→∞

μ(A ∩ αn(x))

μ(αn(x))
= 11A(x) = 1.

1.5 Hausdorff and Packing Measures: Hausdorff and
Packing Dimensions

In this section, we introduce the basic geometric concepts on metric spaces.
These are Hausdorff measures, Hausdorff dimensions, packing measures, and
packing dimensions. We prove their fundamental properties. While Hausdorff
measures and Hausdorff dimensions were introduced quite early, in 1919, by
Felix Hausdorff in [H], it took several decades more for packing measures
and packing dimensions to be defined. It was done in stages in [Tr], [TT], and
[Su6]. There are now plenty of books on these concepts; we refer the reader to,
for example, [Fal1], [Fal12], [Fal13], [Mat], and [PU2]. The classical book
[Ro] by C. A. Rogers is also interesting, and not only for historical reasons,
appearing for the first time in 1970. The 1998 edition is particularly interesting
because of the comments by Falconer that it contains.

Let ϕ : [0,+∞) −→ [0,+∞) be a function with the following properties:

• ϕ is nondecreasing, meaning that s ≤ t ⇒ ϕ(s) ≤ ϕ(t).

• ϕ(0) = 0 and ϕ is continuous at 0.

• ϕ((0,+∞)) ⊆ (0,+∞).

Any function ϕ : [0,+∞) −→ [0,+∞) with such properties is referred to in
what follows as a gauge function.
Let (X,ρ) be a metric space. For every δ > 0, define

Hδ
ϕ(A) := inf

{ ∞∑
i=1

ϕ(diam(Ui))

}
, (1.36)
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where the infimum is taken over all countable covers {Ui}∞i=1 of A of diameter
not exceeding δ.

We shall check that, for every δ > 0, Hδ
ϕ is an outer measure. Conditions

(1.8) and (1.9) of Definition 1.2.1, defining the concept of outer measures, are
obviously satisfied with μ = Hδ

ϕ . To verify (1.10), let {An}∞n=1 be a countable
family of subsets of X. Fix ε >. Then, for every n ≥ 1, we can find a countable
cover {Un

i }∞i=1 of An with diameters not exceeding δ such that

∞∑
i=1

ϕ(diam(Ui)) ≤ Hδ
ϕ(An)+ ε

2n
.

Then the family {Un
i : i,n ≥ 1} covers

⋃∞
n=1 An and

Hδ
ϕ

( ∞⋃
n=1

An

)
≤
∞∑

n=1

∞∑
i=1

ϕ(diam(Un
i )) ≤

∞∑
n=1

(
Hδ

ϕ(An)+ ε

2n

)
=
∞∑

n=1

Hδ
ϕ(An)+ ε.

Thus, letting ε ↘ 0, (1.10) follows, proving that Hδ
ϕ is an outer measure.

Define

Hϕ(A) := sup
δ>0

{
Hδ

ϕ(A)
} = lim

δ→0
Hδ

ϕ(A). (1.37)

The limit exists since Hδ
ϕ(A) increases as δ decreases, though it may happen to

be infinite. Since all Hδ
ϕ are outer measures. It is therefore immediate that Hϕ is

an outer measure too. Moreover, Hϕ is a metric measure, since if A and B are
two positively separated sets in X, then no set of diameter less than ρ(A,B)

can intersect both A and B. Consequently,

Hδ
ϕ(A ∪ B) = Hδ

ϕ(A)+ Hδ
ϕ(B)

for all δ < ρ(A,B). Letting δ ↘ 0, we get the same formula for Hϕ , which is
just (1.13) with μ = Hϕ . The metric outer measure Hϕ is called the Hausdorff
outer measure associated with the gauge function ϕ. Its restriction to the
σ -algebra of Hϕ-measurable sets, which by Theorem 1.2.5 includes all the
Borel sets, is called the Hausdorff measure associated with the function ϕ. We
should add that even if E ⊆ X is not a Borel set, nor even Hϕ-measurable, we
nevertheless commonly refer to Hϕ(E) as the Hausdorff measure of E rather
than the Hausdorff outer measure of E.
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As an immediate consequence of the definition of the Hausdorff measure and
the properties of the function ϕ, we get the following.

Proposition 1.5.1 For any gauge function ϕ, the Hausdorff measure Hϕ is
atomless.

A particularly important role is played by the gauge functions of the form

ϕt (r) = rt

for t > 0. In this case, the corresponding outer Hausdorff measure is denoted
by Ht . So, Ht can be briefly defined as follows.

Definition 1.5.2 Given that t ≥ 0, the t-dimensional outer Hausdorff measure
Ht (A) of the set A is equal to

Ht (A) = sup
δ>0

inf

{ ∞∑
i=1

diamt (Ai)

}
,

where the infimum is taken over all countable covers {Ai}∞i=1 of A by the sets
with diameters ≤ δ.

Remark 1.5.3 Since diam(A) = diam(A) for every set A ⊆ X, we may, in
Definition 1.5.2, restrict ourselves to closed sets Ai only.

Having defined Hausdorff measures, we now move on to define the dual
concept, i.e., that of packing measures. As mentioned at the beginning of this
section, while Hausdorff measures were introduced quite early, in 1919 by
Felix Hausdorff in [H], it took several decades more for packing measures to
be defined. It was done in stages in [Tr], [TT], and [Su6]. We do it again here
now. We recall that, in Definition 1.3.3, we introduced the concept of packing.
We will also use it now. For every A ⊆ X and every δ > 0, let

�∗δϕ (A) := sup

{ ∞∑
i=1

ϕ(diam(ri))

}
, (1.38)

where the supremum is taken over all packings {B(xi,ri)}∞i=1 of A with radii
not exceeding δ. Let

�∗ϕ(A) := inf
δ>0

{
�∗δϕ (A)

} = lim
δ→0

�∗δϕ (A). (1.39)

The limit exists since �∗δϕ (A) decreases as δ decreases. Although the function
�∗ϕ satisfies condition (1.9) of outer measures, albeit in contrast to the case
of Hausdorff measures, this function does not need to be subadditive, i.e.,
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conditions (1.10) in general fail. In order to obtain an outer measure, we take
one more step and we put

�ϕ(A) := inf

{ ∞∑
i=1

�∗δϕ (Ai)

}
, (1.40)

where the infimum is taken over all countable covers {Ai}∞i=1 of A.
Analogously, as in the case of Hausdorff measures, one checks, with similar
arguments, that �ϕ is already an outer measure. Furthermore, it is a metric
outer measure on X. It will be called the outer packing measure, associated
with the gauge function ϕ. Its restriction to the σ -algebra of �ϕ-measurable
sets, which by Theorem 1.2.5 includes all Borel sets, will be called the packing
measure associated with the gauge function ϕ.
In the case of gauge functions,

ϕt (r) = rt,

where t > 0, the definition of the outer packing measure takes the following
form.

Definition 1.5.4 The t-dimensional outer packing measure �t(A) of a set A ⊆
X is given by

�t(A) = inf
∪Ai=A

{∑
i

�t
∗(Ai)

}
(Ai are arbitrary subsets of A), where

�t
∗(A) = sup

δ>0
sup

{ ∞∑
i=1

rt
i

}
.

Here, the second supremum is taken over all packings {B(xi,ri)}∞i=1 of the set
A by open balls centered at A with radii which do not exceed δ.

From now on, in order to obtain more meaningful geometric consequences, we
assume that, for a given gauge function φ : [0,+∞)→ [0,+∞), there exists
a function Cφ : (0,∞) → (0,∞) such that, for every a ∈ (0,∞) and every
t > 0 sufficiently small (depending on a),

Cφ(a)−1φ(t) ≤ φ(at) ≤ Cφ(a)φ(t). (1.41)

We frequently refer to such gauge functions as evenly varying. Since
(at)r = ar tr , all the gauge functions φ of the form r �→ rt satisfy (1.41)
with Cφ(a) = at .
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We shall now establish a simple, but crucial for geometric consequences,
relation between Hausdorff and packing measures.

Proposition 1.5.5 For every set A ⊆ X, it holds that Hϕ(A) ≤ Cϕ(2)�ϕ(A).

Proof First, we show that, for every set A ⊆ X and every δ > 0,

H2δ
ϕ (A) ≤ Cϕ(2)�∗δϕ (A). (1.42)

Indeed, if there is no finite maximal (in the sense of inclusion) packing of
the set A of the form {B(xi,δ)}∞i=1, then, for every k ≥ 1, there is a packing
{B(xi,δ)}ki=1 of A; therefore,

�∗δϕ (A) ≥
k∑

i=1

ϕ(δ) = kϕ(δ).

Since ϕ(δ) > 0, this yields �∗δϕ (A) = ∞, and (1.42) holds. Otherwise, let

{B(xi,δ)}li=1 be a finite maximal packing of A. Then the collection {B(xi,2δ)}
covers A; therefore,

H2δ
ϕ (A) ≤

l∑
i=1

ϕ(2δ) ≤ Cϕ(2)lϕ(δ) ≤ Cϕ(2)�∗δϕ (A).

Hence, (1.42) is satisfied. Thus, letting δ ↘ 0, we get that

Hϕ(A) ≤ Cϕ(2)�∗ϕ(A). (1.43)

So, if {An}n≥1 is a countable cover of A, then

Hϕ(A) ≤
∞∑

n=1

Hϕ(Ai) ≤ Cϕ(2)

∞∑
n=1

�∗ϕ(Ai).

Hence, applying (1.40), the lemma follows. �

Definition 1.5.6 HD(A), the Hausdorff dimension of the set A, is defined to be

HD(A) := inf{t : Ht (A) = 0} = sup{t : Ht (A) = ∞}. (1.44)

Likewise, PD(A), the packing dimension of the set A, is defined to be

PD(A) := inf{t : �t(A) = 0} = sup{t : �t(A) = ∞}. (1.45)

The following theorem is the immediate consequence of the definition of
Hausdorff and packing dimensions and the corresponding outer measures.

Theorem 1.5.7 The Hausdorff and packing dimensions are monotone increas-
ing functions of sets, i.e., if A ⊆ B, then

HD(A) ≤ HD(B) and PD(A) ≤ PD(B).
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We shall prove the following theorem, commonly referred to as the σ -stability
Hausdorff and packing dimensions.

Theorem 1.5.8 If {An}∞n=1 is a countable family of subsets of X, then

HD

( ∞⋃
n=1

An

)
= sup

n≥1
{HD(An)}

and

PD

( ∞⋃
n=1

An

)
= sup

n≥1
{PD(An)}.

Proof We shall prove only the Hausdorff dimension part. The proof for the
packing dimension is analogous. Inequality

HD

( ∞⋃
n=1

An

)
≥ sup

n≥1
{HD(An)}

is an immediate consequence of Theorem 1.5.7. Thus, if supn{HD(An)} = ∞,
there is nothing to prove. So, suppose that

s := sup
n≥1
{HD(An)}

is finite and consider an arbitrary t > s. Then, in view of (1.44), Ht (An) = 0
for every n ≥ 1; therefore, since Ht is an outer measure,

Ht

( ∞⋃
n=1

An

)
= 0.

Hence, by (1.44) again,

HD

( ∞⋃
n=1

An

)
≤ t .

The proof is complete. �

As an immediate consequence of this theorem, Proposition 1.5.1, and
(1.44), we obtain the following.

Proposition 1.5.9 The Hausdorff dimension of any countable set is equal to 0.

These are the most basic, transparent, and also probably most useful properties
of Hausdorff and packing measures and dimensions. We will apply them
frequently in both volumes of the book.
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1.6 Hausdorff and Packing Measures: Frostman
Converse-Type Theorems

In this section, we derive several geometric consequences of Theorem 1.3.1.
Their meaning is to tell us when a Hausdorff measure or packing measure is
positive, finite, zero, or infinity. We refer to them as the Frostman Converse-
Type Theorems. Somewhat strangely, these theorems are frequently called the
Mass Redistribution Principle in the fractal literature, as if to indicate that
such measures would always have to appear in the process of an iterative
construction. At the end of the section, we formulate the Frostman Direct
Theorem and compare it with the Frostman Converse-Type Theorems. As
already mentioned, the advantage of the latter theorems is that they provide
tools to calculate, or at least to estimate, both Hausdorff and packing measures
and dimensions. We recall that in this section, as in the entire book, we keep

ϕ : [0,+∞) −→ [0,+∞),

an evenly varying gauge function, i.e., satisfying (1.41). We start with the
following.

Theorem 1.6.1 (Frostman Converse-Type Theorem for Generalized Hausdorff
Measures) Let ϕ : [0,+∞) −→ [0,+∞) be a continuous evenly varying
gauge function. Let (X,ρ) be an arbitrary metric space and μ a Borel
probability measure on X. Fix a Borel set A ⊆ X. Assume that there exists
a constant c ∈ (0,+∞] (1/+∞ = 0) such that

(1)

lim sup
r→0

μ(B(x,r))

ϕ(r)
≥ c

for all points x ∈A except for countably many perhaps. Then the Haus-
dorff measure Hϕ , corresponding to the gauge function ϕ, satisfies

Hϕ(E) ≤ c−1Cϕ(8)μ(E)

for every Borel set E ⊆ A. In particular,

Hϕ(A) < +∞ (Hϕ(A) = 0 if c = +∞).

(2) If, conversely,

lim sup
r→0

μ(B(x,r))

ϕ(r)
≤ c < +∞
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for all x ∈ A, then

μ(E) ≤ Hϕ(E)

for every Borel set E ⊆ A. In particular,

Hϕ(A) > 0

whenever μ(E) > 0.

Proof Part (1). Since Hϕ of any countable set is equal to 0, we may assume
without loss of generality that E does not intersect the exceptional countable
set. Fix ε > 0. Then fix δ > 0. Since measure μ is regular, there exists an open
set G ⊇ E such that

μ(G) ≤ μ(E)+ ε.

Further, for every x ∈ E, there exists r(x) ∈ (0,δ) such that B(x,r(x)) ⊆ G

and

(c−1 + ε)μ(B(x,r(x))) ≥ ϕ(r(x)) > 0.

By virtue both of 4r Covering Theorem, i.e., Theorem 1.3.1, and of Remark
1.3.2, there exists {xk}∞k=1, a sequence of points in E such that

B(xi,r(xi)) ∩ B(xj,r(xj )) = ∅ for i �= j

and
∞⋃

k=1

B(xk,4r(xk)) ⊇
⋃
x∈E

B(x,r(x)) ⊇ E.

Hence,

H2δ
ϕ (E) ≤

∞∑
k=1

ϕ(2 · 4r(xk)) ≤
∞∑

k=1

cϕ(8)ϕ(r(xk))

≤ cϕ(8)

∞∑
k=1

(c−1 + ε)μ(B(xk,r(xk)))

= cϕ(8)(c−1 + ε)μ

( ∞⋃
k=1

B(xk,r(xk))

)
≤ cϕ(8)(c−1 + ε)μ(G)

≤ cϕ(8)(c−1 + ε)(μ(E)+ ε).

So, letting δ ↘ 0, we get

Hϕ(E) ≤ cϕ(8)(c−1 + ε)(μ(E)+ ε)
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38 Part I Ergodic Theory and Geometric Measures

and, since ε > 0 was arbitrary, we finally get

Hϕ(E) ≤ cϕ(8)c−1μ(E).

This finishes the first part of the proof.
Part (2). Now we deal with the second part of our theorem. Fix an arbitrary
s > c. Note that, for every r > 0, the function

X � x �−→ μ(B(x,r))

ϕ(r)
is Borel measurable.

For every k ≥ 1, consider the function

X � x �−→ ϕk(x) := sup

{
μ(B(x,r)

ϕ(r)
: r ∈ Q ∩ (0,1/k]

}
,

where Q denotes the set of rational numbers. This function is Borel measurable
as the supremum of countably many measurable functions. Let

Ak = A ∩ ϕ−1
k ((0,s]) for k ≥ 1.

All Ak , k ≥ 1, are then Borel subsets of X. Fix an arbitrary r ∈ (0,1/k). Then
pick rj ↘ r , rj ∈ Q. Since the function t �→ μ(B(x,t)) is nondecreasing and
the function ϕ is continuous, we get, for every x ∈ Ak , that

μ(B(x,r))

ϕ(r)
≤ lim sup

j→∞
μ(B(x,rj ))

ϕ(rj )
≤ s.

Now fix k ≥ 1. Then fix a Borel set F ⊆ Ak . Our first objective is to prove
the assertion of Part (2) for the set F . To do this, fix r < 1/k and then
{Fi}∞1 , a countable cover of F by subsets of F that are closed relative to
F and have diameters less than r/2. For every i ≥ 1, pick xi ∈ Fi . Then
Fi ⊂ B(xi,diam(Fi)). Since all the sets Fi , i ≥ 1, are also Borel in X, we,
therefore, have that

∞∑
i=1

ϕ(diam(Fi)) ≥ s−1
∞∑

i=1

μ(B(xi,diam(Fi))) ≥ s−1
∞∑

i=1

μ(Fi) ≥ s−1μ(F).

Hence, invoking Remark 1.5.3, we get that

Hϕ(F ) ≥ s−1μ(F). (1.46)

Moving on, by our hypothesis, we have that

∞⋃
k=1

Ak ∩ A = A.
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1 Geometric Measure Theory 39

Define inductively

B1 := A1 ∩ A

and

Bk+1 := Ak+1 ∩
⎛⎝A\

k⋃
j=1

Aj ∩ A

⎞⎠ .

Obviously, the family {Bk}∞1 consists of mutually disjoint sets, with each set
Bk contained in Ak , k ≥ 1, and

∞⋃
k=1

Bk =
∞⋃

k=1

Ak = A.

Hence, if E is a Borel subset of A, then applying (1.46) for sets F = E ∩ Bk ,
k ≥ 1, we get

Hϕ(E) =
∞⋃

k=1

Hϕ(E ∩ Bk) ≥ s−1
∞∑

k=1

μ(E ∩ Bk) = s−1μ(E).

Letting s ↘ c then finishes the proof. �

Now let us prove the corresponding theorem for packing measures.

Theorem 1.6.2 (Frostman Converse-Type Theorem for Generalized Packing
Measures) Let ϕ : [0,∞) −→ [0,∞) be a continuous evenly varying gauge
function. Let (X,ρ) be an arbitrary metric space and μ be a Borel probability
measure on X. Fix a Borel set A ⊂ X and assume that there exists c ∈ (0,+∞]
(1/+∞ = 0) such that

(1)

lim inf
r→0

μ(B(x,r))

ϕ(r)
≤ c for all x ∈ A.

Then

μ(E) ≤ �ϕ(E)

for every Borel set E ⊆ A, where, we recall, �ϕ denotes the packing
measure corresponding to the gauge function ϕ. In particular, if μ(E) > 0,
then

�ϕ(E) > 0.

https://doi.org/10.1017/9781009215930.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009215930.005


40 Part I Ergodic Theory and Geometric Measures

(2) If, conversly,

lim inf
r→0

μ(B(x,r))

ϕ(r)
≥ c for all x ∈ A,

then

�ϕ(E) ≤ c−1μ(E)

for every Borel set E ⊆ A. In particular, if μ(E) < +∞, then

�ϕ(E) < +∞.

Proof Part (1). Let ε > 0. Fix an arbitrary subset F ⊆ A. Define a decreasing
sequence (Gn)n≥1 of open sets containing F as follows. By our hypothesis, for
every x ∈ A, there exists 0 < r1(x) < 1 such that

μ
(
B(x,r1(x))

)
φ(r1(x))

≤ c + ε.

Take the family of balls
{
B

(
x, 1

4 r1(x)
)}

x∈F . According to the 4r Covering
Theorem (Theorem 1.3.1), there is a countable set F1 ⊆ F such that the
subfamily

{
B

(
x, 1

4 r1(x)
)}

x∈F1
consists of mutually disjoint balls satisfying

F ⊆
⋃
x∈F

B
(
x,

1

4
r1(x)

)
⊆

⋃
x∈F1

B
(
x,r1(x)

)
.

Let G1 :=⋃
x∈F1

B(x,r1(x)). For the inductive step, suppose that Gn has been
defined for some n ≥ 1. By our hypothesis again, for every x ∈ A, there exists
some 0 < rn+1(x) < 1

n+1 such that B(x,rn+1(x)) ⊆ Gn and

μ
(
B(x,rn+1(x))

)
φ(rn+1(x))

≤ c + ε. (1.47)

Consider the family of balls
{
B

(
x, 1

4 rn+1(x)
)}

x∈F . According to the 4r

Covering Theorem (Theorem 1.3.1), there exists a countable set Fn+1 ⊆ F

such that the subfamily
{
B

(
x, 1

4 rn+1(x)
)}

x∈Fn+1
consists of mutually disjoint

balls satisfying

F ⊆
⋃
x∈F

B

(
x,

1

4
rn+1(x)

)
⊆

⋃
x∈Fn+1

B
(
x,rn+1(x)

)
.

Let

Gn+1 :=
⋃

x∈Fn+1

B(x,rn+1(x)).
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1 Geometric Measure Theory 41

It is clear that Gn+1 is an open set and F ⊆ Gn+1 ⊆ Gn. Moreover, for all
pairs x,y ∈ Fn+1 ⊆ F , we know that

d(x,y) ≥ 1

4
max{rn+1(x),rn+1(y)} ≥ 1

8
(rn+1(x)+ rn+1(y)).

Therefore, the collection
{(

x, 1
8 rn+1(x)

)}
x∈Fn+1

forms an
(

1
n+1

)
-packing

of F . Using (1.47), it follows that

�
∗ 1

n+1
φ (F ) ≥

∑
x∈Fn+1

φ

(
1

8
rn+1(x)

)
≥ (Cφ(8))−1

∑
x∈Fn+1

φ(rn+1(x))

≥ (Cφ(8))−1
∑

x∈Fn+1

μ
(
B(x,rn+1(x))

)
c + ε

= (Cφ(8))−1

c + ε
μ

⎛⎝ ⋃
x∈Fn+1

B(x,rn+1(x))

⎞⎠
≥ (Cφ(8))−1

c + ε
μ(Gn+1).

Letting n increase to infinity, we, thus, obtain that

�∗φ(F )≥ (Cφ(8))−1

c + ε
inf
n≥1

μ(Gn)= (Cφ(8))−1

c + ε
lim

n→∞μ(Gn)= (Cφ(8))−1

c + ε
μ(GF ),

where GF := ∩n≥1Gn is a Gδ set and, therefore, in particular, is a Borel set.
Consequently, for every Borel set E ⊆ A, we have that

�φ(E) = inf

{ ∞∑
k=1

�∗φ(Ak) : {Ak}∞k=1 is a cover of E

}

= inf

{ ∞∑
k=1

�∗φ(Ak) : {Ak}∞k=1 is a partition of E

}

≥ (Cφ(8))−1

c + ε
inf

{ ∞∑
k=1

μ(GAk
) : {Ak}∞k=1 is a partition of E

}

≥ (Cφ(8))−1

c + ε
inf

{
μ

( ∞⋃
k=1

GAk

)
: {Ak}∞k=1 is a partition of E

}

≥ (Cφ(8))−1

c + ε
inf

{
μ(E) : {Ak}∞k=1 is a partition of E

}
= (Cφ(8))−1

c + ε
μ(E).
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42 Part I Ergodic Theory and Geometric Measures

Since this holds for all ε > 0, we deduce that �φ(E) ≥ (Cφ(8)c)−1μ(E). The
proof of Part (1) is complete.
Part (2). The sequence of functions (ψk)∞k=1, where

X � x �−→ ψk(x) := inf

{
μ(B(x,r))

φ(r)
: r ∈ Q ∩

(
0,

1

k

]}
,

forms an increasing sequence of measurable functions. Let 0 < s < c. For
each k ≥ 1, let

Ak := ψ−1
k ([s,+∞)).

As (ψk)∞k=1 is increasing, so is the sequence (Ak)∞k=1. Moreover, since s < c,
it follows from our hypothesis that

∞⋃
k=1

Ak ⊇ A.

Furthermore, since [s,+∞) is a Borel subset of R, the measurability of ψk

ensures that Ak is a Borel subset of X. Fix k ≥ 1. Choose some arbitrary
r ∈ (0,1/k] and pick a sequence (rj )j≥1 ∈ Q such that rj increases to r .
Since μ is a measure and φ is continuous, we deduce that, for all x ∈ Ak ,

μ(B(x,r))

φ(r)
= lim

j→∞
μ(B(x,rj ))

φ(rj )
≥ ψk(x) ≥ s.

Thus, if x ∈ Ak , then

inf

{
μ(B(x,r))

φ(r)
: r ∈ (0,1/k]

}
≥ s.

Now fix any set F ⊆ Ak and any r ∈ (
0, 1

k

]
. Let {(xi,ti)}i≥1 be an r-packing

of F . Then
∞∑

i=1

φ(ti) ≤ s−1
∞∑

i=1

μ(B(xi,ti)) = s−1μ

( ∞⋃
i=1

B(xi,ti)

)
≤ s−1μ(Fr),

where Fr denotes the open r-neighborhood of F . Taking the supremum over
all r-packings yields

�φ(F) ≤ �∗φ(F ) ≤ �∗rφ (F ) ≤ s−1μ(Fr).

Thus, we have that Pφ(F ) ≤ s−1μ(Fr) for all r ∈ (0,1/k] and each subset
F ⊆ Ak . Consequently, �φ(F) ≤ s−1μ(F0) = s−1μ(F) for all F ⊆ Ak . In
particular, if C is a closed subset of E, then

�φ(C ∩ Ak) ≤ s−1μ(C ∩ Ak) ≤ s−1μ(C) ≤ s−1μ(E).
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1 Geometric Measure Theory 43

As this holds for all integers k ≥ 1 and closed sets C ⊆ E ⊆ A = ∪k≥1Ak ,
we deduce that �φ(C) ≤ s−1μ(E). By the regularity of μ, on taking the
supremum over all closed sets C contained in E, we conclude that

�φ(E) ≤ s−1μ(E).

Letting s increase to c finishes the proof. �

Replacing ϕ(r) by rt and Hϕ by Ht in Theorem 1.6.1 and �ϕ by �t in
Theorem 1.6.2, we immediately get the following two results.

Theorem 1.6.3 (Frostman Converse-Type Theorem for Hausdorff Measures)
Fix t > 0 arbitrary. Let (X,ρ) be a metric space and μ a Borel probability
measure on X. Fix a Borel set A ⊆ X. Assume that there exists a constant
c ∈ (0,+∞] (1/+∞ = 0) such that

(1)

lim sup
r→0

μ(B(x,r))

rt
≥ c

for all points x ∈ A except for countably many perhaps. Then the
Hausdorff measure Ht satisfies

Ht (E) ≤ c−18tμ(E)

for every Borel set E ⊆ A. In particular,

Ht (A) < +∞ (Ht (A) = 0 if c = +∞).

(2) If, conversely,

lim sup
r→0

μ(B(x,r))

rt
≤ c < +∞

for all x ∈ A, then

μ(E) ≤ Ht (E)

for every Borel set E ⊆ A. In particular,

Ht (A) > 0

whenever μ(E) > 0.

Theorem 1.6.4 (Frostman Converse-Type Theorem for Packing Measures) Fix
t > 0 arbitrary. Let (X,ρ) be a metric space and μ a Borel probability measure
on X. Fix a Borel set A ⊂ X and assume that there exists c ∈ (0,+∞]
(1/+∞ = 0) such that
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44 Part I Ergodic Theory and Geometric Measures

(1)

lim inf
r→0

μ(B(x,r))

rt
≤ c for all x ∈ A.

Then

μ(E) ≤ �t(E)

for every Borel set E ⊆ A. In particular, if μ(E) > 0, then

�t(E) > 0.

(2) If conversely,

lim inf
r→0

μ(B(x,r))

rt
≥ c for all x ∈ A,

then

�t(E) ≤ c−1μ(E)

for every Borel set E ⊆ A. In particular, if μ(E) < +∞, then

�t(E) < +∞.

In the opposite direction to Frostman Converse Theorems, there is the follow-
ing well-known theorem.

Theorem 1.6.5 (Frostman Direct Lemma) Let X be either a Borel subset of a
Euclidean space Rd , d ≥ 1, or an arbitrary compact metric space. If t > 0
and Ht (X) > 0, then there exists a Borel probability measure μ on X such that

μ(B(x,r)) ≤ rt

for every point x ∈ X and all radii r > 0.

This is a very interesting theorem, although Frostman Converse Theorems
seem to be more suitable for estimating and calculating Hausdorff and packing
measures and dimensions.

1.7 Hausdorff and Packing Dimensions of Measures

In this section, we define the concepts of dimensions, both Hausdorff and
packing, of Borel measures. We then provide tools to calculate and estimate
them. We also establish some relations between them. The dimensions of mea-
sures play an important role in both fractal geometry and dynamical systems.
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1 Geometric Measure Theory 45

We start this section with the following simple but crucial consequence of
Theorem 1.6.3.

Theorem 1.7.1 (Volume Lemma for Hausdorff Measures) Suppose that μ is
a Borel probability measure on a metric space (X,ρ) and that A is a bounded
Borel subset of Rn. Then

(a) If μ(A) > 0 and there exists θ1 such that, for every x ∈ A,

lim inf
r→0

log μ(B(x,r))

log r
≥ θ1,

then HD(A) ≥ θ1.
(b) If there exists θ2 such that, for every x ∈ A,

lim inf
r→0

log μ(B(x,r))

log r
≤ θ2,

then HD(A) ≤ θ2.

Proof (a) Take any 0 < θ < θ1. Then, by assumption,

lim sup
r→0

μ(B(x,r))/rθ = 0.

It, therefore, follows from Theorem 1.6.3(2) that Hθ (A)=+∞. Hence,
HD(A) ≥ θ . Consequently, HD(A) ≥ θ1.

(b) Now take an arbitrary θ > θ2. Then, by assumption,

lim sup
r→0

μ(B(x,r))/rθ = +∞.

Therefore, applying Theorem 1.6.3(1), we obtain that Hθ (A)= 0. Thus,
HD(A) ≤ θ and, consequently, HD(A) ≤ θ2. The proof is finished. �

Similarly, one proves the following consequence of Theorem 1.6.4.

Theorem 1.7.2 (Volume Lemma for Packing Measures) Suppose that μ

is a Borel probability measure on Rn, n ≥ 1, and A is a bounded Borel
subset of Rn.

(a) If μ(A) > 0 and there exists θ1 such that, for every x ∈ A,

lim sup
r→0

log μ(B(x,r))

log r
≥ θ1,

then PD(A) ≥ θ1.
(b) If there exists θ2 such that, for every x ∈ A,

lim sup
r→0

log μ(B(x,r))

log r
≤ θ2,

then PD(A) ≤ θ2.
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46 Part I Ergodic Theory and Geometric Measures

We will now apply Theorem 1.7.1(a) to get quite a general lower bound
for the Hausdorff dimension, the one that is a generalization of a result due
to McMullen [McM1], the proof of which is taken from [U1]. Although this
result is usually applied in a dynamical context, it really does not require any
dynamics to formulate and to prove it.

As always in this section, let (X,ρ) be a metric space and μ be a Borel
probability upper Ahlfors measure on X, meaning that there exist constants
h > 0 and C ≥ 1 such that, for every x ∈ X and r > 0,

μ(B(x,r)) ≤ Crh. (1.48)

We then call h the exponent of μ. For any integer k ≥ 1, let Ek be a
finite collection of compact subsets of X, each element of which has positive
measure μ. We denote:

K :=
⋃

F∈E1

F . (1.49)

We assume the following.

If k ≥ 1, F,G ∈ Ek , and F �= G, then μ(F ∩G) = 0. (1.50)

Every set F ∈ Ek+1 is contained in a unique element G ∈ Ek . (1.51)

For every integer k ≥ 1 and every set F ∈ Ek , define

density

⎛⎝ ⋃
D∈Ek+1

D,F

⎞⎠ :=
μ

(
D ∩⋃

D∈Ek+1
D

)
μ(F)

(1.52)

and assume that

�k := inf

⎧⎨⎩density

⎛⎝ ⋃
D∈Ek+1

D,F

⎞⎠ : F ∈ Ek

⎫⎬⎭ > 0 (1.53)

for every k ≥ 1. Put also

dk := sup
{
diam(F ) : F ∈ Ek

}
.

Suppose that dk < 1 for every k ≥ 1 and that

lim
k→∞

dk = 0. (1.54)

We then call the collection

{Ek}∞k=1
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1 Geometric Measure Theory 47

a McMullen sequence of sets. Let

E∞ :=
∞⋂

k=1

⋃
F∈Ek

F .

We shall prove the following generalization of a McMullen result from
[McM1], the proof of which is taken from [U1].

Proposition 1.7.3 If {Ek}∞k=1 is a McMullen sequence of subsets of a metric
space (X,ρ) endowed with a Borel probability upper Ahlfors measure μ

having exponent h, then

HD(E∞) ≥ h− lim sup
k→∞

∑k−1
j=1 log �j

log dk

.

Proof We construct inductively a sequence of Borel probability measures
{νk}∞k=1 on K as follows.

Put ν1 := μ and define νk+1 by putting, for each Borel set A ⊆ K ,

νk+1(A) :=
∑

F∈Ek

μ
(
A ∩ F ∩⋃

D∈Ek+1
D

)
μ

(
F ∩⋃

D∈Ek+1
D

) νk(F ). (1.55)

This definition makes sense since, by (1.52) and (1.53), we see that

μ
(
F ∩⋃

D∈Ek+1
D

)
> 0. By induction, we get for every k ≥ 1, that

ν

⎛⎝ ⋃
D∈Ek

D

⎞⎠ = 1, (1.56)

and it follows from properties (1.49)–(1.51) that νk+1 is a Borel probability
measure indeed. In view of (1.55) and (1.50), we have that νk+1(F ) = νk(F )

for each F ∈ Ek . Hence, using (1.50) and (1.51), we conclude by induction
that νn(F ) = νk(F ) for every n ≥ k. Since limk→∞ dk = 0, we, therefore,
obtain a unique probability measure ν on K (being the weak limit of measures
νk) such that

ν(F ) = νk(F ) (1.57)

for every F ∈ Ek . Looking now at (1.56) and the definition of the set E, one
gets

ν(E∞) = 1. (1.58)
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48 Part I Ergodic Theory and Geometric Measures

Making use of (1.55) and (1.57), one easily estimates, for every F ∈ Ek , that

ν(F ) ≤ μ(F)

�k−1, . . . ,�1
. (1.59)

In view of Theorem 1.7.1, the Volume Lemma for Hausdorff Measures, in
order to prove that HD(E) ≥ δ for some δ ≥ 0 it is enough to show that

lim inf
r→0

log ν(B(x,r))

log r
≥ δ (1.60)

for ν-a.e. x ∈ E.
Now consider x ∈ E∞ and 0 < r < supk≥1(dk) arbitrary. Then there exists

an integer k = k(r) ≥ 1 such that dk+1 ≤ r ≤ dk . Let B̃(x,r) be the union of
all sets in Ek+1 which meet B(x,r). Then B̃(x,r) ⊆ B(x,2r) and, using (1.59)
and (1.48), we get

log ν(B(x,r))

log r
≥ log μ(B̃(x,r))−∑k−1

j=1 log �j

log r

≥ log C + h log 2+ h log r

log r
−

∑k−1
j=1 log �j

log dj

.

Since limr→0 k(r) = ∞, we, therefore, obtain that

lim inf
r→0

log ν(B(x,r))

log r
≥ h− lim sup

k→∞

∑k−1
j=1 log �j

log dk

.

In view of (1.58) and by applying Theorem 1.7.1(a), this finishes the proof. �

Now we define the following main concepts of this section.

Definition 1.7.4 Let μ be a Borel measure on a metric space (X,ρ). We write

HD�(μ):= inf{HD(Y ) : μ(Y )>0} and HD�(μ) = inf{HD(Y ) : μ(X\Y )=0}.
Of course,

HD�(μ) ≤ HD�(μ),

and, in the case when HD�(μ) = HD�(μ), we call this common value the
Hausdorff dimension of the measure μ and we denote it by HD(μ).

An analogous definition can be formulated for packing dimensions, with
respective notation PD�(μ), PD�(μ), and PD(μ), and the name packing
dimension of the measure μ.

The next definition introduces concepts that are effective tools to calculate
the dimensions introduced above.
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Definition 1.7.5 Let μ be a Borel probability measure on a metric space
(X,ρ). For every point x ∈X, we define the lower and upper pointwise
dimensionof the measure μ at the point x ∈ X, respectively, as

dμ(x) := lim inf
r→0

log μ(B(x,r))

log r
and dμ(x) := lim sup

r→0

log μ(B(x,r))

log r
.

In the case when both numbers dμ(x) and dμ(x) are equal, we denote their
common value by dμ(x). We then obviously have that

dμ(x) = lim
r→0

log μ(B(x,r))

log r
,

and we call dμ(x) the pointwise dimension of the measure μ at the point
x ∈ X.

The following theorem about Hausdorff and packing dimensions of a Borel
measure μ follows easily from Theorems 1.7.1 and 1.7.2.

Theorem 1.7.6 If μ is a Borel probability measure on a metric space (X,ρ),
then

HD�(μ) = ess inf dμ, HD�(μ) = ess sup dμ

and

PD�(μ) = ess inf dμ, PD�(μ) = ess sup dμ.

Proof Recall that the μ-essential infimum ess inf of a measurable function
φ and the μ-essential supremum ess sup of this function are, respectively,
defined by

ess inf(φ) := sup
μ(N)=0

inf
x∈X\N

φ(x) and ess sup(φ) := inf
μ(N)=0

sup
x∈X\N

φ(x).

Put φ∗ ::= ess inf φ. We shall prove that

μ(φ−1((0,φ∗))) = 0 and μ(φ−1((0,θ))) > 0 (1.61)

for all θ > φ∗. Indeed, if we had μ(φ−1((0,φ∗))) > 0, then there would exist
θ < φ∗ with μ(φ−1((0,θ ]) > 0. Hence, for every measurable set N ⊆ X with
μ(N) = 0, we would have that infX\N φ ≤ θ . Thus, ess inf φ ≤ θ , which is a
contradiction, and the first part of (1.61) is proved.

For the second part, proceeding also by way of contradiction, assume that
there exists θ > φ∗ with

μ(φ−1((0,θ)) = 0.
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Then for N := φ−1((0,θ)), we would have that infX\N(φ) ≥ θ . Hence,
ess inf φ ≥ θ , which is a contradiction, and this finishes the proof of (1.61).
This formula, applied to the function φ := dμ, tells us that, for every Borel
set A ⊆ X, with μ(A) > 0, there exists a Borel set A′ ⊆ A with μ(A′) =
μ(A) > 0 such that, for every x ∈ A′, we have that dμ(x) ≥ dμ∗. Hence,

HD(A) ≥ HD(A′) ≥ dμ∗

by Theorem 1.7.1(a). Thus,

HD�(μ) ≥ dμ∗. (1.62)

On the other hand, for every θ > θ1, we have that μ
({x ∈ X : dμ(x) < θ}) > 0.

Hence, by Theorem 1.7.1(b),

HD({x : dμ(x) < θ}) ≤ θ .

Therefore, HD�(μ) ≤ θ . So, letting θ ↘ θ1, we get

HD�(μ) ≤ dμ∗.

Along with (1.62), we, thus, conclude that HD�(μ) = dμ∗.
One should proceed similarly to prove that HD�(μ) = ess sup dμ(x) and to

obtain corresponding results for packing dimensions. For the latter, one should
refer to Theorem 1.7.2 instead of Theorem 1.7.1. �

Definition 1.7.7 A Borel probability measure μ on a metric space (X,ρ) is
called dimensional exact if and only if, for μ-a.e. x ∈ X, dμ(x), the pointwise
dimension of the measure μ at x exists and is μ-a.e. constant.

As an immediate consequence of Theorem 1.7.6, we get the following.

Proposition 1.7.8 If μ is a Borel probability dimensional exact measure on a
metric space (X,ρ), then both HD(μ) and PD(mu) exist; moreover

HD(μ) = PD(μ) = dμ,

where dμ is the μ-a.e. constant value of the pointwise dimension of μ.

1.8 Box-Counting Dimensions

We shall now examine a slightly different type of dimension; namely, the box-
counting dimension. This dimension, as we will shortly see, is not given by
means of any outer measure. It behaves worse: it is not σ -stable and a set and
its closure have the same box-counting dimension. Its definition is, however,
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substantially simpler than those of Hausdorff and packing dimensions and
is frequently easier to calculate or to estimate; it also frequently agrees with
Hausdorff and packing dimensions and is widely used in the physics literature.

Definition 1.8.1 Let 0 < r < 1 and A ⊆ X be a bounded set. Define N(A,r)

to be the minimum number of balls of radius at most r with centers in A needed
to cover A. Then the upper and lower box-counting (or, more simply, box)
dimensions of A are, respectively, defined to be

BD(A) := lim sup
r→0

log N(A,r)

− log r

and

BD(A) := lim inf
r→0

log N(A,r)

− log r
.

If these two quantities are equal, their common value is called the box-counting
dimension, or simply the box dimension, of A, and we denote it by BD(A).

As said, the box-counting dimensions do not share all the congenial properties
of the Hausdorff dimensions. In particular, they are not σ -stable. To see this,
observe that

BD(Q ∩ [0,1]) = 1 �= 0 = sup{BD({q}) : q ∈ Q ∩ [0,1]}.
The box-counting dimension is, however, easily seen to be finitely stable; see
Proposition 1.8.2.

Proposition 1.8.2 If (X,ρ) is a metric space and F1, F2,. . . ,Fn is a finite
collection of subsets of X, then

BD
(
F1 ∪ F2 ∪ · · · ∪ Fn

) = max
{
BD(F1),BD(F2), . . . ,BD(Fn)

}
and the same formula holds for the lower box-counting dimension.

The terminology “box counting” comes from the fact that in Euclidean spaces
we may use boxes from a lattice rather than balls to cover the set under scrutiny.
Indeed, let n ≥ 1, X = Rn, and L(r) be any lattice in Rn consisting of cubes
(boxes) with edges of length r . For any A ⊆ X, define

L(A,r) = card{C ∈ L(r) : C ∩ A �= ∅}.
Proposition 1.8.3 If A is a bounded subset of Rn, then

BD(A) = lim sup
r→0

log L(A,r)

− log r
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and

BD(A) = lim inf
r→0

log L(A,r)

− log r
.

Proof Without loss of generality, let 0 < r < 1. Select points xi ∈ A so that

A ⊆
N(A,r)⋃

i=1

B(xi,r).

Fix 1 ≤ i ≤ N(A,r) momentarily. If C ∈ L(r) is such that d(C,xi) < r ,
where d denotes the standard Euclidean metric on Rn, one immediately
verifies that C ⊆ B(xi,r + r

√
n) = B(xi,(1 + √n)r). Thus, for any given

1 ≤ i ≤ N(A,r), we have that

#{C ∈ L(r) : d(C,xi) < r} = λ(B(xi,(1+√n)r))

λ(cube of side r)
≤ cn

[
(1+√n)r

]n

rn

= cn(1+√n)n,

where λ denotes the Lebesgue measure on Rn and cn denotes the volume of the
unit ball in Rn. Since every C ∈ L(A,r) admits at least one number 1 ≤ i ≤
N(A,r) such that d(C,xi) < r , we deduce that L(A,r) ≤ N(A,r)cn(1+√n)n.
Therefore,

log L(A,r) ≤ log
(
cn(1+√n)n

)+ log N(A,r).

Hence,

log L(A,r)

− log r
≤ log

(
cn(1+√n)n

)
− log r

+ log N(A,r)

− log r
.

So,

lim sup
r→0

log L(A,r)

− log r
≤ BD(A) and lim inf

r→0

log L(A,r)

− log r
≤ BD(A).

For the opposite inequality, again let 0 < r < 1 and, for each C ∈ L(A,r),
choose xC ∈ C ∩ A. Then C ∩ A ⊆ B(xC,r

√
n). Thus, the family of balls{

B(xC,r
√

n) : C ∈ L(A,r)
}

covers A. Therefore, N(A,r
√

n) ≤ L(A,r). It then follows that

BD(A) ≤ lim sup
r→0

log L(A,r)

− log r
and BD(A)(A) ≤ lim inf

r→0

log L(A,r)

− log r
.

�
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Now we return to our general setting. Let (X,ρ) be again a metric space,
A ⊆ X, and r > 0. Further, define P(A,r) to be the supremum of the cardi-
nalities of all packings of A of the form {B(xi,r)}∞i=1, so

P(A,r) := sup
{
#{B(xi,r)}∞i=1

}
.

Such packings will be called r-packings of A in what follows. We shall prove
the following technical, though interesting in itself, fact.

Lemma 1.8.4 If A ⊆ X and r > 0, then N(A,2r) ≤ P(A,r) ≤ N(A,r).

Proof The first inequality certainly holds if P(A,r) = ∞. So, assume that
this is not the case and let {(xi,r)}ki=1 be an r-packing of A that is maximal in
the sense of inclusion. Then {B(xi,2r)}ki=1 is a cover of A and, consequently,
N(A,2r) ≤ P(A,r). For the second inequality, there is nothing to prove
if N(A,r) = ∞. So, again, let {(xi,r)}ki=1 be a finite r-packing of A and
assume that

{B(yj,r)}�j=1

is a finite cover of A with centers in A. Then, for each 1 ≤ i ≤ k, there exists
1 ≤ j (i) ≤ � such that

xi ∈ B
(
yj (i),r

)
.

We will show that k ≤ �. In order to do this, it is enough to show that the
function i �→ j (i) is injective. But, for each 1 ≤ j ≤ �, the cardinality of
the set {

{xi}ki=1 ∩ B(yj,r)
}

is at most 1 (otherwise, {(xi,r)}ki=1 would not be an r-packing), and so the
function i �→ j (i) is injective, as required. Thus, P(A,r) ≤ N(A,r). �

These inequalities have the following immediate implications.

Corollary 1.8.5 If X is a metric space and A ⊆ X, then

BD(A) = lim sup
r→0

log P(A,r)

− log r

and

BD(A) = lim inf
r→0

log P(A,r)

− log r
.

As an immediate consequence of this corollary and of the second part of
Definition 1.8.1, we obtain the following.
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Corollary 1.8.6 If X is a metric space and A ⊆ X, then

HD(A) ≤ BD(A) ≤ PD(A) ≤ BD(A).

We end this section with the following.

Proposition 1.8.7 Let (X,ρ) be a metric space endowed with a finite Borel
measure μ such that

μ(B(x,r)) ≥ Crt

for some constant C > 0, all x ∈ X, and all radii 0 ≤ r ≤ 1. Then

BD(X) ≤ t .

If, on the other hand, μ(X) > 0 and

μ(B(x,r)) ≤ Crt

for some constant C < +∞, all x ∈ X, and all radii 0 ≤ r ≤ 1, then

BD(X) ≥ HD(X) ≥ t .

Finally, if μ(X) > 0 and

C−1rt ≤ μ(B(x,r)) ≤ Crt

for some constant C ∈ [1,+∞), all x ∈ X, and all radii 0 ≤ r ≤ 1, then

BD(X) = PD(X) = HD(X) = t .

Proof We start with the first inequality. Let {B(x,r)}ki=1 be an r-packing of
X. Then

krt ≤ C−1
k∑

i=1

μ(B(xi,r)) ≤ C−1.

Hence, k ≤ C−1r−t . Therefore, P(X,r) ≤ C−1r−t . Consequently,

log P(X,r) ≤ − log C − t log r .

In conjunction with the first formula of Corollary 1.8.5, this yields

BD(X) ≤ t .

The second assertion of our proposition directly follows from the first inequal-
ity of Corollary 1.8.6 and from item (2) of the Frostman Converse-Type
Theorem for Hausdorff Measures (Theorem 1.6.3).

The last assertion of our proposition is now an immediate consequence of
the two first assertions and Corollary 1.8.6. �
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