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It is well known that the low-temperature plastic deformation of Body-Centred Cubic (BCC) 
metals is controlled by the glide of ½[111] screw dislocations. Their low mobility is caused 
by the delocalized nature of their cores [1] which are extended into several planes in the zone 
of the Burgers vector. This non-planar core spreading has been demonstrated by a number of 
atomistic studies made in the last 46 years [2]. However, attempts at experimental 
observation have been hindered by the Eshelby twist effect [3,4]. The aim of this work is to 
investigate whether the edge and screw displacements associated with ½[111] screw 
dislocations in BCC metals can be detected by optical sectioning in high-angle annular dark-
field (HAADF) Scanning Transmission Electron Microscope (STEM) imaging conditions.  
 
The introduction of spherical-aberration correctors in STEM has allowed an improvement in 
spatial resolution up to the sub-angstrom scale also accompanied by a reduction of the depth 
of focus (due to the increase in probe convergence angles), which in a modern instrument is 
just a few nanometers, thus often less than the sample thickness. This can be exploited to 
extract information along the beam direction by focusing the electron probe at specific depths 
within the sample. This technique has been employed in a recently published work with the 
aim to measure the dissociation distance of a mixed screw dislocation in GaN [5]. 
 
In this work we employ HAADF simulated images of a ½[111] screw dislocation in tungsten 
(W) to study the viability of the technique to resolve both components of the dislocation 
displacements. Screw displacements around the dislocation can be imaged for the dislocation 
lying in the plane perpendicular to the electron beam. Figure 1 shows a focal series of 
HAADF simulated images along [-101] extracted from a 10 nm thick model of W with a 
½[111] screw dislocation placed in the centre of the crystal. It is possible to observe that as 
we focus the electron probe closer to where the screw dislocation is located, a shearing of the 
(-101) atomic planes becomes apparent. This is a tell-tale sign of the helical displacements 
that the atoms follow within the crystal.  
 
In order to reveal the edge components of the dislocation we have created two atomistic 
models, one using the anisotropic linear-elastic displacements around the dislocation and the 
other using the core structure relaxed using the Bond Order Potential for W. Figures 2 a) and 
b) show the respective HAADF simulated images. Figure 2 c) is the RGB image made from 
the (101) component of the Fourier Transform (FT) (shown in Figure 2 d)) of both images. It 
is possible to observe that the shifts in this Fourier component occur along two distinct lines 
lying parallel to [111]. The superposition of both filtered images shows that there is a 
discrepancy on both sides of the core between both models. It is therefore apparent that the 
delocalisation of the core can in principle be detected using electron-optical sectioning [6,7]. 
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