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Steady water waves with arbitrary surface
pressure: their recovery from bottom-pressure
measurements
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Equations relating the pressure at a horizontal seabed, the free-surface profile and the
surface pressure are derived for two-dimensional irrotational steady water waves with
arbitrary pressure at the free surface. Special cases include gravity, capillary, flexural
and wind waves. Without approximations, we show that the free-surface recovery from
the bottom pressure requires the resolution of only one first-order ordinary differential
equation independent of the surface pressure, thus providing a new general recovery
method valid for a broad class of water waves. Another equation provides an explicit
expression for the surface pressure as a function of the bottom pressure and of the
free surface. Thus, if unknown, the surface pressure can also be recovered if one extra
measurement is available. This new recovery procedure is illustrated analytically for
the linear approximation of a flexural–capillary–gravity wave, and numerically for fully
nonlinear capillary–gravity waves.
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1. Introduction

In this paper, we present equations relating the surface-wave profile, the surface pressure
and the bottom pressure. This study includes any surface pressure describing various
physical effects, such as capillarity, flexural elasticity, wind stress, etc.

Methods for recovering pure gravity (i.e. with constant pressure at the free surface)
irrotational waves from bottom-pressure gauges have long been proposed. These methods
solve the problem either exactly or under various simplifications; see Constantin (2012),
Oliveras et al. (2012), Clamond & Constantin (2013), Vasan et al. (2017) and the references
therein for reviews and details. Recently, Clamond, Labarbe & Henry (2023) showed that
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an exact recovery is also possible in the presence of constant vorticity. However, to the
present authors’ knowledge, the recovery of capillary, flexural and wind waves (among
many other situations of physical interest) has never been attempted. These phenomena
involve different non-constant surface pressures that can be very complicated (especially
for capillary and flexural waves), and the surface pressure is generally a function of the
free-surface profile that is unknown a priori. Hence, compared with the case with constant
surface pressure (i.e. pure gravity waves) treated in the references cited above, considering
varying surface pressure is a major additional complication, requiring a new method of
resolution for the wave recovery problem.

In this short paper, we describe a new general recovery method valid for any surface
pressure. This is possible because the free-surface recovery from the bottom pressure
requires the resolution of only one first-order ordinary differential equation independent
of the surface pressure. Once known, the surface profile and the bottom pressure yield an
explicit relation for the surface pressure. Thus, the surface profile and the surface pressure
are both determined from the bottom pressure, but modulo an unknown scalar parameter
(e.g. the Bernoulli constant), so one extra relation is required to close the problem. This
can be obtained either by an extra measurement or by the knowledge of the physical effects
at the free surface (i.e. knowing an equation the surface pressure must satisfy).

The paper is organised as follows. Section 2 is devoted to the physical assumptions
and the resulting fundamental equations. Equations for the free-surface and the
surface-pressure recovery from the bottom pressure are derived in § 3. The recovery
procedure is illustrated analytically and numerically in § 4 and § 5, respectively. Finally,
§ 6 outlines some conclusions and perspectives.

2. Preliminaries

In the frame of reference moving with a travelling wave of permanent shape, the flow
beneath the wave is a steady two-dimensional irrotational motion of an inviscid fluid.
Note that the wave phase velocity c is a non-zero constant in any other Galilean frame of
reference. Let (x, y) be a Cartesian coordinate system moving with the wave, x being the
horizontal coordinate and y being the upward vertical one, and let (u(x, y), v(x, y)) be the
velocity field in this moving frame of reference. We denote by y = −d, y = η(x) and y = 0
the equations at the bottom, the free surface and the mean water level, respectively. The
latter equation expresses that 〈η〉 = 0 for a smooth (2π/k)-periodic wave profile η, where
〈·〉 is the Eulerian average operator over one period, i.e.

〈η〉 def= k
2π

∫ π/k

−π/k
η(x) dx = 0. (2.1)

For solitary and more general aperiodic waves, the same averaging operator applies taking
the limit k → 0+.

The flow is governed by the balance between the restoring gravity force, the inertia of
the system and a surface pressure. With constant density ρ > 0 and acceleration due to
gravity g > 0 directed downward, the kinematic and dynamic equations are, for (x, y) ∈
R × [−d, η(x)] (Wehausen & Laitone 1960),

ux + vy = 0, vx − uy = 0, uux + vuy = −Px/ρ, uvx + vvy = −g − Py/ρ,

(2.2a–d)

where P(x, y) denotes the hydrodynamical pressure.
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Recovery of water waves with arbitrary surface pressure

The flat bottom and steady free surface being impermeable, we have

vb = 0, vs = usηx, (2.3a,b)

with ηx
def= dη/dx and where subscripts ‘b’ and ‘s’ denote, respectively, restrictions at the

bottom and at the free surface, e.g. ub(x) = u(x, −d), vs(x) = v(x, η(x)). The pressure at
the free surface is

Ps = Patm + ρps, at y = η(x), (2.4)

where Patm is a constant atmospheric pressure and ps is a varying pressure (divided by the
density). For instance, one can consider a prescribed surface pressure such as a Gaussian
distribution of magnitude p0 and variance λ (Wade et al. 2014),

ps = p0 exp[−x2/(2λ)], (2.5)

or capillary and flexural effects such that (Lamb 1932; Toland 2008)

ps = − d
dx

{
τηx

(1 + η2
x)

1/2 − Dηxxx

(1 + η2
x)

5/2 + 5Dηxη
2
xx

2(1 + η2
x)

7/2

}
, (2.6)

with τ being a surface tension coefficient and D a rigidity parameter (both divided by the
fluid density). Other phenomena can of course be considered, as well as their combination.
Without loss of generality, we take 〈ps〉 = 0 since 〈ps〉 can be absorbed into the definition
of Patm. It is thus convenient to introduce the normalised relative pressure

p(x, y) def= [P(x, y) − Patm]/ρ, (x, y) ∈ R × [−d, η(x)]. (2.7)

The flow being irrotational, the dynamical (Euler) equations (2.2c,d) can be integrated
into a Bernoulli equation:

2( p + gy) + u2 + v2 = B, (x, y) ∈ R × [−d, η(x)], (2.8)

where B is a Bernoulli constant. From (2.1)–(2.4) and (2.8), one gets (Clamond &
Constantin 2013; Clamond et al. 2023)

B = 〈u2
s + v2

s 〉 = 〈u2
b〉, (2.9)

yielding the, here important, relation

〈pb〉 = gd. (2.10)

Finally, (2.2a,b) imply that the complex velocity w def= u − iv is a holomorphic function

of the complex coordinate z def= x + iy, an interesting feature exploited below.

3. Equations for the free-surface and surface-pressure recoveries

For free-surface and surface-pressure recoveries, we present here a simple derivation of
equations generalising those of Clamond (2013) and Clamond & Constantin (2013).
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3.1. General equations
The function w2 being holomorphic, its real and imaginary parts satisfy the
Cauchy–Riemann relations

∂y(u2 − v2) − ∂x(2uv) = 0, ∂x(u2 − v2) + ∂y(2uv) = 0. (3.1a,b)

Integrating over the water column and using the boundary conditions, these relations yield
after some elementary algebra

pb − ps − gh = d
dx

∫ η

−d
uv dy, (ps + gη)

dη

dx
= d

dx

∫ η

−d

u2 − v2 + B
2

dy. (3.2a,b)

Taylor expansions around y = −d can be written (Lagrange 1781; Fenton 1972; Clamond
2022)

u2 − v2 = cos[( y + d)∂x]u2
b = −2 cos[( y + d)∂x](pb − gd), (3.3)

2uv = − sin[( y + d)∂x]u2
b = 2 sin[( y + d)∂x](pb − gd) (3.4)

or in complex form

w(z)2 = exp[i( y + d)∂x]ub(x)2 = ub(z + id)2 = B + 2gd − 2pb(z + id). (3.5)

(For any real function F(x) continuable in the complex plane, F(x + ih) = exp[ih∂x]F(x)

is the Taylor expansion around h = 0.) Hence, with h def= d + η, we have∫ η

−d
uv dy = [1 − cos (h∂x)] ∂−1

x (pb − gd), (3.6a)

∫ η

−d

u2 − v2 + B
2

dy = − sin (h∂x) ∂−1
x (pb − gd), (3.6b)

so (3.2) yield

ps + gη = ∂x cos (h∂x) ∂−1
x (pb − gd) = [cos (h∂x) − ηx sin (h∂x)] (pb − gd), (3.7)

(B − ps − gη)ηx = ∂x sin (h∂x) ∂−1
x (pb − gd) = [sin (h∂x) + ηx cos (h∂x)] (pb − gd).

(3.8)

After one integration, (3.8) becomes

Bη − 1
2 gη2 − ∂−1

x (psηx) = sin (h∂x) ∂−1
x (pb − gd). (3.9)

With the special surface pressure (2.5) the term ∂−1
x psηx cannot be obtained in closed

form, but with (2.6) we have

∂−1
x (psηx) = τ

(1 + η2
x)

1/2 − τ + Dηxηxxx − 3Dη2
xx

(1 + η2
x)

5/2 + 5Dη2
xx

2(1 + η2
x)

7/2 + constant, (3.10)

where the integration constant must be determined by the mean level condition (2.1), i.e.
imposing 〈1

2 gη2 + ∂−1
x (psηx) + sin(h∂x)∂

−1
x (pb − gd)

〉 = 0. (3.11)

Note that the value of the integration constant in ∂−1
x (pb − gd) does not matter here

because this constant vanishes after application of the pseudo-differential operator
sin(h∂x).
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Recovery of water waves with arbitrary surface pressure

Equations (3.7), (3.8) and (3.9) are generalisations for ps /= 0 of the relations derived by
Clamond & Constantin (2013, equation (3.5)–(3.6)) and by Clamond (2013, equation (4.4))

when ps = 0. (This is obvious introducing the holomorphic function 𝔓(z) def= pb(z + id)

and 𝔔(z) def= ∫
[𝔓(z) − gd] dz.)

3.2. Generic equation for the free-surface recovery
When ps = 0 (pure gravity waves), η can be obtained from pb solving the ordinary
differential equation (3.8) (Clamond & Constantin 2013) or, more easily, solving the
algebraic equation (3.9) (Clamond 2013). When ps /= 0 is a function of x and/or η,
such as (2.5) and (2.6), in general (3.9) is a complicated highly nonlinear high-order
integro-differential equation for η due to the term ∂−1

x (psηx) (see relation (3.10) for an
example of practical interest). This is not a problem for recovering the free surface η from
the bottom pressure pb because the surface pressure ps can be eliminated between (3.7)
and (3.8), yielding

Bηx = [(1 − η2
x) sin(h∂x) + 2ηx cos(h∂x)](pb − gd), (3.12)

or in complex form, introducing �̃�(z) def= pb(z + id) − gd,

Bηx = (1 − η2
x) Im{�̃�s} + 2ηx Re{�̃�s}, (3.13)

that is, a (nonlinear) first-order ordinary differential equation for η. Equation (3.13) being
algebraically quadratic for ηx, it can be solved explicitly for ηx; thus one gets

Re{�̃�s} − ηx Im{�̃�s} = 1
2 B ± 1

2 |B − 2�̃�s|. (3.14)

Since the free surface is flat if the bottom pressure is constant (and because B > 0), the
minus sign must be chosen. Moreover, the condition (2.9) rewritten in terms of �̃� yielding
B = 〈|B − 2�̃�s|〉, the average of the right-hand side of (3.14) is zero, so is the left-hand
side.

Equation (3.14) is a priori not suitable if η is (nearly) not differentiable (limiting waves).
It is thus more efficient to solve its antiderivative

Re{𝔔s} − K = 1
2∂−1

x (B − |B − 2�̃�s|), (3.15)

where K is an integration constant and where 𝔔(z) def= qb(z + id), with qb(x)
def= ∂−1

x (pb −
gd). Assuming 〈qb〉 def= 0 (without loss of generality), it yields ∂x Re{𝔔s} = Re{�̃�s} −
ηx Im{�̃�s} and 〈(1 + iηx)𝔔s〉 = 0. The right-hand side of (3.15) being the antiderivative

of a zero-average quantity, we conveniently choose 〈∂−1
x (B − |B − 2�̃�s|)〉 def= 0, hence

K = 〈Re{𝔔s}〉. Thus, a numerical resolution of (3.15) does not require the computation
of ηx, which is an interesting feature for steep waves.

3.3. Recovery of the surface pressure
The free surface η being obtained after the resolution of (3.14) or (3.15), the surface
pressure ps is obtained explicitly at once from (3.7):

ps = ∂x Re{𝔔s} − gη = Re{�̃�s} − ηx Im{�̃�s} − gη. (3.16)

985 R2-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

31
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.315


D. Clamond and J. Labarbe

Thus, as η, ps is known modulo the Bernoulli constant B. Relation (2.10) holds as a
definition of the mean depth d, leaving us with only one scalar quantity to be determined
(i.e. B).

3.4. Closure relation
In order to fully recover both the free surface and the surface pressure, knowing the bottom
pressure is not sufficient and one extra piece of information is needed. We consider here
two possibilities of practical interest.

A first possibility is when we have access to one independent extra measurement, for
instance the mean velocity at the bottom (or elsewhere), the mean pressure somewhere
above the seabed, the phase speed, the wave height, etc. In that case, the Bernoulli constant
B is chosen such that the recovered wave matches this measurement. Thus, the free surface
and the surface pressure can be both fully recovered.

If no extra measurements are available (only the bottom pressure is known), the free
surface can nevertheless be fully recovered with the knowledge of the physical nature of
the surface pressure, for instance given by (2.5) or (2.6) (among many other possibilities).
The missing parameter can then be obtained minimising an error (quadratic or minimax,
for example) between the recovered surface pressure psr obtained from (3.16) and the
theoretical surface pressure pst given, say, by (2.6).

3.5. Remarks
The fact ps can be eliminated is not surprising. Indeed, pb too can be eliminated between
(3.7) and (3.8), yielding the equation

ps + gη = ∂x cos(h∂x) sin(h∂x)
−1[Bη − 1

2 gη2 − ∂−1
x (psηx)], (3.17)

or, after inversion of the pseudo-differential operator,

Bη − 1
2 gη2 − ∂−1

x (psηx) = sin (h∂x) cos (h∂x)
−1 ∂−1

x (ps + gη). (3.18)

Relation (3.18) with ps = 0 is an Eulerian counterpart of the Babenko (1987) equation
(Clamond 2018). A more involved Eulerian equation, somehow similar to (3.17) with
ps = 0, was derived by Fenton (1972, equation (10)).

Note that, in its present form, (3.18) is not suitable for accurate numerical computations
of η due to the complicated pseudo-differential operator. For this purpose, its integral
formulation is better suited (Clamond 2018, § 6). However, (3.17) and (3.18) are convenient
to derive analytic approximations (cf. § 4 where surface recovery is performed analytically
for linear flexural–capillary–gravity waves in order to illustrate the procedure).

4. Example 1: recovery of linear flexural–capillary–gravity waves

Here, we illustrate the recovery procedure for an infinitesimal flexural–capillary–gravity
wave that is analytically tractable via its linear approximation.

4.1. Linear approximation of a travelling wave
For infinitesimal waves, the surface pressure (2.6) and the Babenko-like equation (3.17)
are linearised as

ps ≈ Dηxxxx − τηxx, ps + gη ≈ ∂x cos (d∂x) sin (d∂x)
−1 Bη. (4.1a,b)
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Recovery of water waves with arbitrary surface pressure

The (2π/k)-periodic solutions are thus η ≈ a cos(kx − ϕ) (a the constant amplitude with
ka � 1 and ϕ a constant phase shift) with the (linear) dispersion relation

B ≈ (g + τk2 + Dk4)k−1 tanh(kd). (4.2)

The linear approximation of the bottom pressure can then be obtained as

pb ≈ gd + 𝔭 cos(kx − ϕ), 𝔭 = a(g + τk2 + Dk4) sech(kd) = kaB csch(kd), (4.3a,b)

and the horizontal velocity at the bottom as

ub ≈ ±
√

B[1 − B−1𝔭 cos(kx − ϕ)] =⇒ 〈ub〉 ≈ ±
√

B. (4.4)

This relation shows that, to this order of approximation, the Bernoulli constant B can be
replaced by 〈ub〉2. Moreover, the sign of 〈ub〉 gives the direction of propagation. Thus, in
terms of parameters measurable at the bottom, the (linearised) free surface is

η ≈ k−1 〈ub〉−2 𝔭 sinh(kd) cos(kx − ϕ). (4.5)

4.2. Free-surface and surface-pressure recoveries
Suppose that data of the bottom pressure can be well approximated by the ansatz (4.3a).
A least squares (for example) minimisation between the data and (4.3a) gives gd, k, ϕ and
𝔭; these parameters are now definitely known. We have to the first-order in η

�̃�s ≈ 𝔭 cos(kx − ϕ + ikd) − i𝔭 sin(kx − ϕ + ikd)kη, (4.6)

𝔔s ≈ k−1𝔭 sin(kx − ϕ + ikd) + i𝔭 cos(kx − ϕ − ikd)η, (4.7)

and, for infinitesimal waves, both 𝔭 and η are small quantities of the same order. Thus, to
the leading order, the recovery formula (3.14) yields

𝔭 sinh(kd) sin(kx − ϕ) + Bηx ≈ 0 =⇒ η = (kB)−1𝔭 sinh(kd) cos(kx − ϕ), (4.8)

where the resolution is performed under the condition (2.1). Similarly, to the leading order,
the relation (3.16) yields the surface pressure

ps ≈ [cosh(kd) − g(kB)−1 sinh(kd)]𝔭 cos(kx − ϕ) = [kB coth(kd) − g]η. (4.9)

With (4.8) and (4.9), the free surface and the surface pressure, respectively, are recovered
modulo only one yet unknown parameter: the Bernoulli constant B. If, for instance, 〈ub〉
has also been measured, then we have B ≈ 〈ub〉2 and the solution (4.5) is recovered.
If no extra measurements are available, but if we know that we are dealing with
flexural–capillary–gravity waves, the relation (2.6) should apply. Thus, the quadratic error
E between (2.6) and (4.9) is, to the leading order,

E ≈ 1
2𝔭

2 cosh(kd)2[1 − (g + τk2 + Dk4)k−1B−1 tanh(kd)]2, (4.10)

so this error is minimum if B = (g + τk2 + Dk4)k−1 tanh(kd), as expected. Alternatively,
from the recovered surface pressure psr given by (4.9), we have max(psr) − min(psr) =
2(coth(kd) − g/kB) sinh(kd)𝔭, while the theoretical surface pressure pst (2.6) yields
max(pst) − min(pst) ≈ 2(τk2 + Dk4) sinh(kd)𝔭/(kB). Equating these two quantities gives
the expected dispersion relation.
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Figure 1. Recovery of a nonlinear capillary–gravity wave with period L = 6πd, Froude number square
B/(gd) = 1.01568 and Bond number τ/(gd2) = 1/3. (a) Bottom pressure treated as a ‘measurement’ for the
recovery procedure. (b,c) Respectively, recovered surface pressure and profile (blue circles) vs the exact solution
(red line).

5. Example 2: recovery of nonlinear capillary–gravity waves

We now consider the fully nonlinear recovery problem for capillary–gravity waves. Since
we do not have experimental data for this problem, we first compute a travelling wave
from which we extract the bottom pressure numerically. The algorithm used for such a
computation is an adaptation of the method described in Clamond (2018) and Labarbe &
Clamond (2023) when arbitrary pressure is present at the free surface. Once computed,
this accurate numerical solution is taken as data for the bottom pressure to reconstruct the
wave profile, the surface pressure and various hydrodynamic parameters.

Following Clamond (2013), we start by expanding the pressure data in truncated Fourier
series (collocated at a set of equispaced points) and perform analytic continuation in the
complex plane (Clamond 2013)

�̃�(z) = pb(z + id) − gd ≈
N∑

|n|>0

𝔭neink(z+id) =
N∑

|n|>0

𝔭ne−nkdeinkz. (5.1)

From the above definition, we compute the antiderivative at the surface

𝔔s(x) =
∫ x

0
�̃�s(x

′) dx′ ≈
N∑

|n|>0

i𝔭n

nk
e−nka − eink(x+iη)

enkd . (5.2)
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Figure 2. Same panels as figure 1 for the period L/d = 2π, the Froude number square B/(gd) = 2.28113 and
the Bond number τ/(gd2) = 2.

We note that N = 256 is sufficient enough to accurately resolve the Fourier spectrum (up
to computer precision) of the bottom-pressure data. Once the holomorphic functions are
computed, we solve (3.15) by imposing the total height of the wave as a closure relation
within the built-in iterative solver fsolve from MATLAB (Clamond et al. 2023). As an
initial guess, we use the linear approximation given by (4.8). The algorithm only takes a
few seconds to run on a classical desktop and achieves a tolerance criterion of ε < 10−12

on the residual.
We present in figures 1 and 2 two examples of nonlinear capillary–gravity waves.

The primary possesses a surface tension coefficient with critical Bond number Bo def=
τ/(gd2) = 1/3, whereas the second is subject to strong capillary effects with Bo = 2.
The first configuration displayed in figure 1 is in rather shallow water, with Froude

number squared Fr2 def= B/(gd) = 1.01568. As clearly demonstrated in figure 1(a,b), both
highlight excellent agreement between the recovered surface pressure and wave profile
with the solutions of reference. For the first case, the numerical error between recovered
(r) and theoretically predicted (t) fields are as follows: ‖ηr − ηt‖∞ = 6.5289 × 10−9,
‖psr − pst‖∞ = 2.8887 × 10−8 and |Br − Bt| = 2.5233 × 10−7. Similarly, the second
case represents waves over a significantly deep layer, where the inverse problem is
essentially more difficult to solve as it is mathematically ill-posed. Nevertheless, it
also shows remarkable agreement in the recovered data. Regarding numerical errors
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for this case, it yields ‖ηr − ηt‖∞ = 1.3882 × 10−9, ‖psr − pst‖∞ = 1.8098 × 10−8 and
|Br − Bt| = 2.1645 × 10−7. We note that the Froude number square is B/(gd) = 2.28113
in this case.

These recoveries were obtained assuming no a priori knowledge of the physical nature
of the surface pressure, but assuming that the total wave height has been measured in
addition to the bottom pressure. If instead of the total wave height we consider, say, the
mean horizontal velocity at the bottom, we were also able to recover both the free surface
and surface pressure, with similar accuracy for η (∼10−8) and B (∼10−10).

With knowledge of the physical nature of the surface pressure, we were also able to
recover the free surface without extra measurements besides the bottom pressure. This is
obtained by minimising an error between the reconstructed and theoretical surface pressure
as explained in § 3.4. Our preliminary numerical investigations seem to indicate that the
choice of the error to minimise plays a role in the speed and accuracy of the recovery
procedure. A thorough numerical investigation of this optimisation problem is way beyond
the scope of this short paper, of which the purpose is a proof of concept to attest the
possibility to recover both the free surface and the surface pressure.

6. Discussion

We derived expressions for free-surface and surface-pressure recoveries, assuming the
physical effects at the free surface or considering additional measurements. Then, we
illustrated the practical procedure with a fast and simple numerical algorithm. The method
proposed here is more general in substance than previous studies by Clamond (2013),
Clamond & Constantin (2013), Clamond & Henry (2020), and can be generalised to
incorporate linear shear currents along the lines of Clamond et al. (2023). This approach
can further be extended to accommodate overhanging waves (existing in the presence of
capillary and/or vorticity) as recently shown by Labarbe & Clamond (2023).

So far, we have considered recovery procedures from bottom-pressure measurements,
but similar relations could be derived considering the pressure at another depth, as
well as other measured physical quantities. Further extensions to configurations with
non-permanent wave motions or arbitrary vorticity, for example, are also of great interest,
but present technical challenges beyond the scope of this current work.

In this short paper, we demonstrated the possibility to recover the free surface with an
arbitrary surface pressure, and we briefly illustrated the procedure with a few examples.
We did not address the (difficult) question of uniqueness of the free surface from a given
bottom pressure. Indeed, for instance, capillary–gravity waves are not unique for identical
physical parameters (Buffoni, Groves & Toland 1996; Clamond, Dutykh & Durán 2015).
This example indicates, although the recovery from bottom measurements is a slightly
different problem, that the question of uniqueness is important, both theoretically and
practically, and it should be the subject of future investigations.
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