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ON MARKOV CHAIN APPROXIMATIONS FOR COMPUTING
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Abstract

We propose a discrete-time discrete-space Markov chain approximation with a Brownian
bridge correction for computing curvilinear boundary crossing probabilities of a general
diffusion process on a finite time interval. For broad classes of curvilinear boundaries and
diffusion processes, we prove the convergence of the constructed approximations in the
form of products of the respective substochastic matrices to the boundary crossing prob-
abilities for the process as the time grid used to construct the Markov chains is getting
finer. Numerical results indicate that the convergence rate for the proposed approxima-
tion with the Brownian bridge correction is O(n−2) in the case of C2 boundaries and a
uniform time grid with n steps.
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1. Introduction

We consider the problem of approximating the probability for a general diffusion process
to stay between two curvilinear boundaries. Mathematically, the problem is solved: the non-
crossing probability can be expressed as a solution to the respective boundary value problem
for the backward Kolmogorov partial differential equation (this result goes back to the 1930s
[34, 36, 37]). However, simple explicit analytic expressions are confined to the case of the
Wiener process using the method of images [38], and most of the results for diffusion processes
rely on verifying Cherkasov’s conditions [12, 51, 53] and then transforming the problem to that
for the Wiener process by using a monotone transformation. Outside this class of special cases,
we should mostly rely on computing numerical approximations to the desired probabilities.

One popular approach to finding expressions for the first-passage-time density is through
the use of Volterra integral equations. Much work was done on the method of integral equa-
tions for approximating the first-passage-time density for general diffusion processes [10, 11,
20, 32, 52, 53, 55], culminating with [24], which expressed the first-passage-time density of
a general diffusion process in terms of the solution to a Volterra integral equation of the sec-
ond kind. Volterra integral equations of the first kind for the first-passage time for Brownian
motion were derived in [41, 47]. Although the method of integral equations is quite efficient
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Markov chain approximations for boundary crossing probabilities 1387

for computational purposes, a drawback of the method is that the kernel of the integral equa-
tion is expressed in terms of the transition probabilities of the diffusion process. Therefore,
for this method to work, we have to first compute these transition probabilities for all times
on the time grid used. The method proposed in this paper only requires knowledge of the drift
and diffusion coefficients, allowing it to be easily used in the general case. For further details
on the connection between Volterra integral equations and the first-passage-time density, we
refer the reader to [49]. Other computational techniques include Monte Carlo [21, 31], includ-
ing exact simulation methods [4, 5, 27, 28] and continuity corrections employing boundary
shifting to compensate for the ‘discrete monitoring bias’ [9, 22, 58], and numerical solving of
partial differential equations (see, e.g., [48] and references therein).

The classical probabilistic approach to the boundary-crossing problem is the method of
weak approximation, which involves proving that a sequence of simpler processes Xn weakly
converges to the desired diffusion process in a suitable functional space, which entails the con-
vergence of the corresponding non-crossing probabilities. Along with the already mentioned
[34, 36, 37], one can say that this approach was effectively used in [17] in the case of ‘flat
boundaries’ (see also [6, Chapter 2, 11]). More recently, the authors in [19] approximated the
Wiener process with a sequence of discrete Markov chains with absorbing states and expressed
the non-crossing probability as a product of transition matrices. The authors in [33] extended
the results in [19] by approximating a general diffusion with a sequence of Markov chains and
similarly expressed the non-crossing probability as a product of transition matrices. However,
the convergence rates of these approximations were proved to be O(n−1/2), which leaves much
to be desired in practical applications.

Another standard approach is to approximate the true boundary with one for which the
crossing probability is easier to compute. In the one-sided boundary case, [50, 61] used
piecewise-linear approximations and the well-known formula for a one-sided linear boundary
crossing probability for the Brownian bridge process to express the non-crossing probabil-
ity in terms of a multiple Gaussian integral. This was generalised to the case of two-sided
boundaries in [45] and to diffusion processes set up in that case in [62]. In the case of
Brownian motion, a sharp explicit error bound for the approximation of the corresponding
boundary crossing probabilities was obtained in [8] and extended to general diffusion processes
in [15].

The present paper combines piecewise-linear boundary approximations, limit theorems on
convergence of Markov chains to diffusions, and a modification of the matrix multiplication
scheme from [19] to create an efficient and tractable numerical method for computing the
boundary crossing probabilities for time-inhomogeneous diffusion processes in both one- and
two-sided boundary cases. The approach in the paper consists of the following steps:

(i) Transform the original general diffusion process into one with unit diffusion coefficient,
applying the same transformation to the boundaries.

(ii) Approximate the transformed diffusion process with a discrete-time Gaussian Markov
process using a weak Taylor expansion.

(iii) Approximate the discrete-time process from step (ii) with a discrete Markov chain
in discrete time, whose transition probabilities are given by the normalised values of
the transition density of the process from step (ii). The state spaces of the discrete
Markov chain are constructed in such a way that the Markov chain does not overshoot
or undershoot the boundaries when hitting them.
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(iv) Construct a continuous-time process that interpolates the Markov chain from step (iii)
with a collection of Brownian bridges.

(v) Approximate the transformed boundaries with piecewise linear ones and compute the
piecewise linear boundary crossing probability of the interpolated process constructed
in step (iv) using matrix multiplication.

The paper is structured as follows. In Section 2 we describe in detail the above steps.
Section 3 states the main results of the paper. These include convergence in distribution of
our approximating discrete schemes with Brownian bridge interpolations to the original pro-
cess and, as a corollary, convergence of the respective boundary crossing probabilities as well.
That section also contains a sketch of a possible argument showing that the convergence rate of
the boundary crossing probability approximations is O(n−2) provided that the nth time inter-
val partition has rank O(n−1) as n → ∞. In Section 4 we present the proofs of these results.
Section 5 contains numerical examples and a brief discussion of the performance of our method
compared to some existing alternative approaches.

2. Markov chain approximation of a diffusion

2.1. Step (i)

We are interested in the boundary crossing probability of a one-dimensional diffusion
process Y , whose dynamics are governed by the following stochastic differential equation:{

dY(t) =μY (t, Y(t)) dt + σY (t, Y(t)) dW(t), t ∈ (0, 1],

Y(0) = y0,
(1)

where {Wt}t≥0 is a standard Brownian motion process defined on a stochastic basis
(�,F , (Ft)t≥0, P) and y0 is constant. We assume that μY : [0, 1] ×R→R and σY : [0, 1] ×
R→ (0,∞) satisfy the following conditions sufficient for the uniqueness and existence of a
strong solution to (1) [18, pp. 297–298]:

Condition 1. The functionsμY and σY are continuous in both variables and such that, for some
K <∞, xμY (t, x) ≤ K(1 + x2) and σ 2

Y (t, x) ≤ K(1 + x2) for all (t, x) ∈ [0, 1] ×R and, for any
bounded open set U ⊂R, there exists a KU <∞ such that

|μY (t, x) −μY (t, y)| + |σ 2
Y (t, x) − σ 2

Y (t, y)| ≤ KU|x − y|
for all t ∈ [0, 1], x, y ∈ U.

For the unit-diffusion transformation ψt(y) := ∫ y
0 σY (t, u)−1 du to be well defined, we will also

assume the following.

Condition 2. The function σY is continuously differentiable with respect to (t, x) with bounded
partial derivatives, and inf(t,x)∈[0,1]×R σY (t, x)> 0.

By Itô’s lemma, the transformed process X = {X(t) := ψt(Y(t))}t∈[0,1] is a diffusion process
with a unit diffusion coefficient (see, e.g., [35, Section 4.7] or [54]),{

dX(t) =μX(t, X(t)) dt + dW(t), t ∈ (0, 1],

X(0) = x0 := ψ0(y0),
(2)

whereμX(t, x) = (∂tψt +μY/σY − 1
2∂xσY ) ◦ψ−1

t (x) andψ−1
t (z) is the inverse of z =ψt(y) in y.
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Denote by C = C([0, 1]) the space of continuous functions x : [0, 1] →R equipped with the
uniform norm ‖x‖∞ := supt∈[0,1]|x(t)|. For a fixed x0 ∈R, consider the class

G := {( f −, f +) : f ± ∈ C, f −(0)< x0 < f +(0), inf
0≤t≤1

( f +(t) − f −(t))> 0}

of pairs of functions from C and introduce the notation

S( f −, f +) := {x ∈ C : f −(t)< x(t)< f +(t), t ∈ [0, 1]}, ( f −, f +) ∈ G.

The problem we deal with in this paper is how to compute the probability of the form
P(Y ∈ S(g−

0 , g+
0 )) for (g−

0 , g+
0 ) ∈ G. Clearly, the desired probability coincides with P(X ∈ G),

G := S(g−, g+), where g±(t) := ψt(g
±
0 (t)), t ∈ [0, 1]. It is also clear that (g−, g+) ∈ G due to

Condition 2. Henceforth, we work exclusively with the process X and the boundaries g±.

2.2. Step (ii)

In the context of curvilinear boundary crossing probabilities, [19] approximated the Wiener
process by discrete Markov chains with transition probabilities computed by first taking the
values of the Wiener process transition densities on a lattice and then normalising these to
obtain a probability distribution on that lattice (there is also a small adjustment of that distri-
bution to perfectly match the first two moments of the original transition probabilities and the
‘discretised’ ones).

In the general diffusion case, due to the absence of closed-form expressions for the transi-
tion density of X, we use transition probabilities of the weak Taylor approximations of X to
construct the approximating discrete process. As the second-order expansion is to be used, we
further require that the following condition is met.

Condition 3. For any fixed x ∈R, μX( · , x) ∈ C1([0, 1]), and for any fixed t ∈ [0, 1], μX(t, · ) ∈
C2(R). Moreover, for any r> 0, there exists a Kr <∞ such that

|μX(t, x)| + |∂tμX(t, x)| + |∂xμX(t, x)| + |∂xxμX(t, x)| ≤ Kr, t ∈ [0, 1], |x| ≤ r.

Next, for any n ≥ 1, let tn,k := k/n, k = 0, 1, . . . , n, be the uniform partition of [0,1] of rank
�n := 1/n. Introduce discrete scheme drift βn,k and diffusion α1/2

n,k coefficients by setting, for
k = 1, 2, . . . , n,

βn,k(x) := (μX + 1
2�n(∂tμX +μX∂xμX + 1

2∂xxμX)
)
(tn,k−1, x), (3)

α
1/2
n,k (x) := 1 + 1

2�n∂xμX(tn,k−1, x). (4)

For each fixed n ≥ 1, the nth second-order weak Taylor approximation of the diffusion (2) is
defined as the discrete-time process ζn := {ζn,k}n

k=0, specified by ζn,0 = x0 and

ζn,k = ζn,k−1 + βn,k(ζn,k−1)�n + α
1/2
n,k (ζn,k−1)�1/2

n Zn,k, k = 1, . . . , n,

where {Zn,k}n
k=1 is a triangular array of independent standard normal random variables. For

more detail on weak Taylor approximations to solutions of stochastic differential equations,
see, e.g., [35, Chapter 14]. Clearly, the conditional distributions of the increments ζn,k − ζn,k−1
given ζn,k−1 are Gaussian, and so the transition probabilities of the discrete-time process ζn

can be easily obtained.
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2.3. Step (iii)

Next, we further approximate the discrete-time continuous state space process ζn with a
discrete-time discrete-state-space Markov chain ξn := {ξn,k}n

k=0, whose transition probabilities
are based on the normalised values of the transition density of ζn.

To improve the convergence rate for our approximations to P(X ∈ G), we construct our
Markov chains ξn choosing, generally speaking, different state spaces for each time step.
Namely, the state space En,k for ξn,k, k = 0, 1, . . . , n, is chosen to be a lattice such that
g±(tn,k) ∈ En,k. This modification improves upon the Markov chain approximation suggested
in [19], and is widely used for accelerating the convergence rate of numerical schemes in
barrier option pricing [13]. More precisely, the spaces En,k are constructed as follows. Let
g±

n,k := g±(tn,k), k = 1, . . . , n, and, for fixed δ ∈ (0, 1
2 ] and γ > 0, set

wn,k :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(g+

n,k − g−
n,k)/�1/2+δ

n

�γ (g+
n,k − g−

n,k)/�1/2+δ
n �

, 1 ≤ k< n,

(g+(1) − g−(1))/�n

�γ (g+(1) − g−(1))/�n� , k = n,

assuming that n is large enough that the integer parts in all the denominators are non-zero. We
set the time-dependent space lattice step sizes to be

hn,k :=
{

wn,k�
1/2+δ
n , 1 ≤ k< n,

wn,n�n, k = n.
(5)

The state space for ξn,k is the hn,k-spaced lattice

En,k := {g+
n,k − jhn,k : j ∈Z}, k = 1, . . . , n. (6)

We also put En,0 := {x0} and En := En,0 × En,1 × · · · × En,n. Note that

max
1≤k≤n

|wn,k − γ−1| → 0 as n → ∞, (7)

and γ−1 ≤ wn,k ≤ 2γ−1 for all 1 ≤ k ≤ n (assuming, as above, that n is large enough).
Further, for k = 1, . . . , n, recalling (3) and (4), we let

μn,k(x) := βn,k(x)�n, σ 2
n,k(x) := αn,k(x)�n, (8)

and define ξn,k, k = 1, . . . , n, n ≥ 1, as a triangular array of random variables, where each row
forms a Markov chain with one-step transition probabilities given by

pn,k(x, y) := P(ξn,k = y | ξn,k−1 = x) = ϕ(y | x +μn,k(x), σ 2
n,k(x))

hn,k

Cn,k(x)

for (x, y) ∈ En,k−1 × En,k, where ϕ(x |μ, σ 2) := (2πσ 2)−1/2e−(x−μ)2/(2σ 2), x ∈R, denotes the
Gaussian density with mean μ and variance σ 2, and

Cn,k(x) :=
∑

y∈En,k

ϕ(y | x +μn,k(x), σ 2
n,k(x))hn,k, x ∈R. (9)
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2.4. Step (iv)

As an initial approximation for P(X ∈ G) we could take P(g−
n,k < X(tn,k)< g+

n,k, k =
1, . . . , n), which can in turn be approximated using the Chapman–Kolmogorov equations by

P(g−
n,k < ξn,k < g+

n,k, k = 1, . . . , n) =
∑

x∈EG
n

n∏
k=1

pn,k(xk−1, xk),

where x = (x0, x1, . . . , xn) and EG
n := En,0 × EG

n,1 × · · · × EG
n,n,

EG
n,k := {x ∈ En,k : g−

n,k < x< g+
n,k}, k = 1, . . . , n.

Without loss of generality, we can assume that n is large enough that none of EG
n,k is empty.

An approximation of this kind was used in [19] to approximate the boundary crossing
probability of the Brownian motion. Such discrete-time approximations of boundary crossing
probabilities are well known to converge slowly to the respective probability in the ‘continu-
ously monitored’ case since they fail to account for the probability of boundary crossing by the
continuous-time process at an epoch inside a time interval between consecutive points on the
time grid used.

In order to correct for this, so-called ‘continuity corrections’ have been studied in the con-
text of sequential analysis [58] and, more recently, in the context of barrier option pricing [9].
These types of corrections have also been used in [50] to correct for discrete-time monitoring
bias in Monte Carlo estimates of the boundary crossing probabilities of the Brownian motion.
Without such a correction, using the classical result from [43, 44], the convergence rate of
the approximation from [19] was shown to be O(n−1/2). However, as our numerical experi-
ments demonstrate, using our more accurate approximations of the transition probabilities in
conjunction with the Brownian bridge correction greatly improves it from O(n−1/2) to O(n−2).

In the case of standard Brownian motion, the correction consists of simply multiplying the
one-step transition probabilities by the non-crossing probability of a suitably pinned Brownian
bridge. Due to the local Brownian nature of a diffusion process, it was shown in [3] that the
leading-order term of the diffusion bridge crossing probability is given by an expression close
to that of the Brownian bridge. Thus, to account for the possibility of the process X cross-
ing the boundary inside time intervals [tn,k−1, tn,k], we define a process X̃n := {X̃n(t)}t∈[0,1]
which interpolates between the subsequent nodes (tn,k, ξn,k) with a collection of independent
Brownian bridges:

X̃n(t) := B
ξn,k−1,ξn,k
n,k (t), t ∈ [tn,k−1, tn,k], k = 1, . . . , n, (10)

where Bx,y
n,k(t) := B◦

n,k(t) + x + n(t − tn,k−1)(y − x), x, y ∈R, and B◦
n,k(t), t ∈ [tn,k−1, tn,k], are

independent Brownian motions ‘pinned’ at the time–space points (tn,k−1, 0) and (tn,k, 0),
these Brownian bridges being independent of ξn. Analogous to [45, Theorem 1], using the
Chapman–Kolmogorov equations, the non-crossing probability of the boundaries g± for X̃n

can be expressed as

P(X̃n ∈ G) =E

n∏
k=1

(
1 − πn,k(g−, g+ | ξn,k−1, ξn,k)

)
, (11)

where

πn,k(g−, g+ | x, y) := P

(
sup

t∈[tn,k−1,tn,k]
(Bx,y

n,k(t) − g+(t))(Bx,y
n,k(t) − g−(t)) ≥ 0

)

https://doi.org/10.1017/jpr.2023.11 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2023.11


1392 V. LIANG AND K. BOROVKOV

is the probability that the trajectory of a Brownian motion process pinned at the points
(tn,k−1, x) and (tn,k, y) will be outside of the ‘corridor’ between the boundaries g±(t) at some
point during the time interval [tn,k−1, tn,k].

2.5. Step (v)

The above representation can be equivalently written as a matrix product:

P(X̃n ∈ G) = Tn,1Tn,2 · · · Tn,n1
, (12)

where 1 = (1, . . . , 1) is a row vector of length |EG
n,n|, and the sub-stochastic matrices Tn,k of

dimensions |EG
n,k−1| × |EG

n,k| have entries equal to the respective taboo transition probabilities

(1 − πn,k(g−, g+ | x, y))pn,k(x, y), (x, y) ∈ EG
n,k−1 × EG

n,k.

Unfortunately, closed-form expressions for curvilinear boundary Brownian bridge crossing
probabilities πn,k(g−, g+ | x, y) are known in a few special cases only, so we approximate the
original boundaries g± with piecewise linear functions f ±

n , which linearly interpolate between
the subsequent nodes (tn,k, g±

n,k) for k = 0, . . . , n. In the special case of a one-sided boundary
(when g− = −∞), the expression for the linear boundary crossing probability of the Brownian
bridge is well known [7, p. 63]:

πn,k(−∞, f +
n | x, y) = exp

{−2

�n
(g+

n,k−1 − x)(g+
n,k − y)

}
, x< g+

n,k−1, y< g+
n,k.

In the case when both the upper and lower boundaries f ±
n are linear, if the time interval �n is

sufficiently small, we can approximate the Brownian bridge crossing probability with the sum
of one-sided crossing probabilities:

πn,k( f −
n , f +

n | x, y) = πn,k( f −
n ,∞ | x, y) + πn,k(−∞, f +

n | x, y) − ϑ(x, y, �n),

where the positive error term ϑ admits the obvious upper bound

ϑ(x, y, �n) ≤ πn,k( f −
n ,∞ | x, y) max

t∈[tn,k−1,tn,k]
Pt,f −

n (t);tn,k,y

(
sup

s∈[t,tn,k]
(W(s) − f +

n (s)) ≥ 0

)
+ πn,k(−∞, f +

n | x, y) max
t∈[tn,k−1,tn,k]

Pt,f +
n (t);tn,k,y

(
inf

s∈[t,tn,k]
(W(s) − f −

n (s)) ≤ 0

)
,

where Ps,a;t,b( · ) := P( · | W(s) = a,W(t) = b). An infinite series expression for πn,k( f −
n , f +

n |
x, y) can be found, e.g., in [2, 25].

We can further apply our method to approximate probabilities of the form P(X ∈ G, X(1) ∈
[a, b]) for some [a, b] ⊆ [g−(1), g+(1)]. We first replace the final space grid EG

n,n with

E[a,b]
n,n :=

{
a ≤ x ≤ b : x = b − j

b − a

�γ (b − a)/�n� , j ∈Z

}
.

Then, instead of (12) we have P(X̃n ∈ G, X̃n(1) ∈ [a, b]) = Tn,1Tn,2 · · · Tn,n1

[a,b], where Tn,n

is now of dimension |EG
n,n−1| × |E[a,b]

n,n | and 1[a,b] = (1, . . . , 1) is a row vector of length |E[a,b]
n,n |.

https://doi.org/10.1017/jpr.2023.11 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2023.11


Markov chain approximations for boundary crossing probabilities 1393

2.6. Remarks

We conclude this section with several remarks aimed at clarifying the choices we made in
our construction and the connections of our method with existing approaches in the literature.

Remark 1. Our main results actually hold in a more general setting where, instead of using
uniform partitions, we employ general ones 0 = tn,0 < tn,1 < · · ·< tn,n = 1 subject to the
condition that, for some constants η2 ≥ η1 > 0 and all n ≥ 1,

η1

n
≤ tn,k − tn,k−1 ≤ η2

n
, k = 1, 2, . . . , n. (13)

All the proofs extend to this case in a straightforward way.

Using a more general sequence of partitions satisfying (13) helps to improve convergence
rates by choosing a higher frequency of partition nodes on time intervals where the second
derivatives of the boundaries g± are large.

Remark 2. Note that the fact that the transition probabilities of the ‘time-discretised’ process
ζ are Gaussian is important. High-order approximation of transition semigroups is achieved
by matching sufficiently many moments for one-step transition probabilities (see, e.g., [29,
Theorem 11.6.3] and [1]), and in the case of Gaussian distributions, the moments are available.
When the transition kernels are Gaussian, for the discrete-space approximation used in our
paper, convergence is extremely fast (cf. Lemma 3).

Observe also that directly using a weak Taylor expansion for a general diffusion process
with a space-dependent diffusion coefficient results in a non-central χ2 distribution for the
transition probabilities [16], which artificially limits the domain of the approximating process.

For other approaches to approximating the transition density of a general diffusion process,
see, e.g., [30, 39] and the references therein.

Remark 3. The choice of the lattice spans in (5) can be explained as follows. Our approxi-
mation scheme involves replacing the original boundaries with piecewise linear ones (in Step
(v)), which introduces an error of the order O(n−2) (under assumption (13) and given that
the functions g± are twice continuously differentiable). Therefore, there is no point in using
hn,k smaller than necessary to achieve the above precision. At the end of Section 3 we present a
sketch of an argument indicating that the convergence rate for the boundary crossing probabili-
ties is O(n−2). It shows that it suffices to choose hn,n � n−1, whereas hn,k � n−1/2−δ , k< n, can
be much larger. This is so because our Markov chain computational algorithm can be viewed
as repeated trapezoidal quadrature and the partial derivative in y of the taboo (on boundary
crossing) joint density of (X(tn,k−1), X(tn,k+1)) given X(tn,k) = y at the boundary y = g(tn,k) at
all time steps before the terminal time is zero, ensuring a higher approximation rate at these
steps compared to the terminal one (cf. the Euler–Maclaurin formula).

Remark 4. If we used δ = 0 in (5), there would be no convergence of the sequence of pro-
cesses {ξn}n≥1 to the desired diffusion limit. This is because there would be no convergence of
the moments of the increments (cf. Lemma 3). Note also that, instead of using the power
function (5), we could take hn,k := wn,k(�n)1/2ψ(�n) for some ψ(x) → 0 as x ↓ 0, with
wn,k := vn,k/�vn,k�, where

vn,k := g+
n,k − g−

n,k

(�n)1/2ψ(�n)
,

(in our case, ψ(x) = xδ/γ ). We chose the power function for simplicity’s sake.
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Remark 5. Choosing suitable δ < 1
2 and γ > 0 in the definition of hn,k for k< n can be used

to reduce the computational burden. In our numerical experiments, we found that reducing
the value of δ ∈ (0, 1

2

)
did not negatively affect the empirical convergence rates for boundary

crossing probabilities if γ is sufficiently large (γ ≥ 1.5). In the case δ = 0, our proposed scheme
no longer converges since the infinitesimal moments do not converge (cf. Lemma 3). To restore
convergence, we could use the adjusted transition probabilities suggested in [19]. However, we
would not be able to apply the shifting state space methodology above since the approximation
in [19] relies on adjusting the transition probabilities on a state space that is not changing each
time step.

Remark 6. In the standard Brownian motion case, the matrix multiplication scheme in (12)
can be seen as recursive numerical integration using the trapezoidal rule (cf. [45, Remark 3]).
We may be tempted to employ higher-order quadrature methods instead. However, construct-
ing a Markov chain approximation based on numerical integration techniques that use variable
node positioning (e.g. Gauss–Legendre quadrature) would require interpolation of the result-
ing evolved transition density, causing the matrix multiplication in (11) to lose its probabilistic
meaning. An alternative approach using efficient numerical integration techniques based on
analytic mappings (e.g. double-exponential quadrature [60]) that maintain the positions of
nodes is numerically feasible. However, verifying theoretical weak convergence for the result-
ing sequence of Markov chains is more difficult. Furthermore, using the trapezoidal rule allows
us to use the Euler–Maclaurin summation formula to improve the convergence rate. From our
numerical experimentation, the one-dimensional trapezoidal rule that we propose in this paper
strikes a good balance between simplicity, flexibility, and numerical efficiency.

3. Main results

Set νn(t) := max{k ≥ 0: t ≥ tn,k}, t ∈ [0, 1], and introduce an auxiliary pure jump process

Xn(t) := ξn,νn(t), t ∈ [0, 1]. (14)

Clearly, the trajectories of the process Xn belong to the Skorokhod space D = D([0, 1]), which
we will endow with the first Skorokhod metric,

d(x, y) = inf
λ∈�

{
ε≥ 0: sup

t∈[0,1]
|x(t) − y(λ(t))| ≤ ε, sup

t∈[0,1]
|λ(t) − t| ≤ ε

}
, x, y ∈ D,

where � denotes the class of strictly increasing continuous mappings of [0, 1] onto itself
[6, Chapter 3]. We will use ⇒ to denote convergence in distribution of random elements
of (D, d).

Theorem 1. Under Condition [3], Xn⇒X as n → ∞.

Due to the small amplitude of the interpolating Brownian bridges’ oscillations, it is
unsurprising that the sequence of processes {X̃n} also converges weakly to X.

Corollary 1. X̃n⇒X as n → ∞.

The following result is a theoretical justification of the Markov chain approximation method
proposed in this paper.

Corollary 2. Let (g−, g+), (g−
n , g+

n ), n ≥ 1, be elements of G such that ‖g±
n − g±‖∞ → 0 as

n → ∞, Gn := S(g−
n , g+

n ). Then, for any Borel set B with ∂B of zero Lebesgue measure,

lim
n→∞ P(X̃n ∈ Gn, X̃n(1) ∈ B) = P(X ∈ G, X(1) ∈ B). (15)
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It immediately follows from this corollary that, for any piecewise continuous f : [g−(1),
g+(1)] →R, limn→∞ Ef (X̃n(1))1{X̃n ∈ Gn} =Ef (X(1))1{X ∈ G}. This relation can be used, for
instance, for computing risk-neutral prices of barrier options [8].

The above results establish the validity of the proposed approximation scheme. However,
numerical studies strongly suggest that, under suitable conditions (including g± ∈ C2), the
convergence rate in (15) is O(n−2) (cf. the classical much slower convergence rate O(n−1/2)
in the boundary crossing problem in the invariance principle from [43, 44], establishing which
required a very technical lengthy argument). Unsurprisingly, proving such a sharp result turned
out to be a very challenging task that requires making quite a few difficult steps and is still a
work in progress even in the simplest standard Brownian motion process case. To provide
some insight into why such a high convergence rate holds true for our scheme for diffusions
(2), we now give a sketch of a possible argument leading to the desired bound. To simplify the
argument, we assume that closed-form expressions for the ‘taboo transition densities’

φn,k(x, y) := ∂yP
(
g−(t)< X(t)< g+(t), t ∈ [tn,k−1, tn,k]; Xtn,k ≤ y | Xtn,k−1 = x

)
are available (note that, say, φn,k(x, y) = 0 if x �∈ (g−(tn,k−1), g+(tn,k−1))). Therefore, we can
and do skip approximation of these densities.

Recalling the definition (6) of the grids En,k, denote the ‘taboo transition semigroup’ for the
discrete-time ‘skeleton’ of our process X and its discrete approximation by

(Tn,k f )(x) :=
∫ g+(tn,k)

g−(tn,k)
φn,k(x, y) f (y) dy, (Sn,k f )(x) :=

∑
y∈En,k

φn,k(x, y) f (y)hn,k,

respectively.

Conjecture 1. Assume that g± ∈ C2([0, 1]). Then, for any bounded continuous function
f : R→R and any x ∈ (g−(0), g+(0)), as n → ∞,

(Sn,1 · · · Sn,n − Tn,1 · · · Tn,n) f (x) = O(n−2).

f ≡ 1 yields the desired convergence rate for the boundary crossing probabilities.

A possible approach to proving the above conjecture can be outlined as follows. First, with-
out loss of generality, we can assume that x = 0 in this argument. Second, using the bound from
[8], we replace the original boundaries g± with their polygonal approximations ĝ± with nodes
at the points (tn,k, g±(tn,k)), k = 0, 1, . . . , n, which introduces an error of the order O(n−2).
Next, using the method of compositions approach [56], we get

Sn,1 · · · Sn,n f − Tn,1 · · · Tn,n f =
n∑

k=1

fn,k + εn, (16)

where

fn,k := Tn,1 · · · Tn,k−1(Sn,k − Tn,k)Tn,k+1 · · · Tn,n f ,

εn :=
n∑

k=2

(Sn,1 · · · Sn,k−1 − Tn,1 · · · Tn,k−1)(Sn,k − Tn,k)Tn,k+1 · · · Tn,n f .

As εn is a sum of terms involving compositions of the ‘small operator differences’
Sn,1 · · · Sn,k−1 − Tn,1 · · · Tn,k−1 and Sn,k − Tn,k, we can expect that its order of magnitude is

https://doi.org/10.1017/jpr.2023.11 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2023.11


1396 V. LIANG AND K. BOROVKOV

higher than that of fn,k. Unfortunately, a formal proof of that claim appears to be a rather
difficult technical task. For the rest of this semi-formal argument, we will ignore the term εn.

Now set φn,k;z(y) := φn,k(y, z), and let un,k(z) := (Tn,1 · · · Tn,k−1φn,k;z)(0), vn,k(z) :=
(Tn,k+1 · · · Tn,n f )(z). Using the Euler–Maclaurin summation formula [46, Section 8.1], we get,
for 1 ≤ k ≤ n − 1,

((Sn,k − Tn,k)vn,k)(x) ≈ h4
n,k

B4

4! ∂zzz(φn,k(x, z)vn,k(z))
∣∣z=g+(tn,k)
z=g−(tn,k),

where Bj denotes the jth Bernoulli number, and we used the boundary conditions

un,k(g±(tn,k)) = vn,k(g±(tn,k)) = 0, k ≤ n − 1, (17)

assumed the existence of the limits of the third derivatives in the above formula, and retained
the first term in the asymptotic expansion.

By the linearity of the operators Sn,k and Tn,k, changing the order of integration and
differentiation, we have, for k ≤ n − 1,

(Tn,1 · · · Tn,k−1(Sn,k − Tn,k)vn,k)(0) ≈ h4
n,k

B4

4! (un,k(z)vn,k(z))′′′
∣∣z=g+(tn,k)
z=g−(tn,k). (18)

Using the product rule and the boundary conditions (17) yields, for 1 ≤ k ≤ n − 1,

(un,k(z)vn,k(z))′′′
∣∣
z=g±(tn,k) = 3u′′

n,k(g±(tn,k))v′
n,k(g±(tn,k)) + 3u′

n,k(g±(tn,k))v′′
n,k(g±(tn,k)).

(19)
From classical diffusion theory, the functions un,k(z) and vn,k(z) coincide with u(tn,k, z) and
v(tn,k, z), respectively, where u(t,z) and v(t,z) are solutions of the following boundary value
problems for Kolmogorov equations in the domain D := {(t, z) : t ∈ (0, 1), z ∈ (̂g−(t), ĝ+(t))}:

(∂t + L)v = 0, v(t, ĝ±(t)) = 0, v(1, z) = f (z), (20)

(∂t − L∗)u = 0, u(t, ĝ±(t)) = 0, u(0, z) = δ0(z), (21)

where

(Lw)(t, z) := μ(t, z)∂zw(t, z) + 1
2∂zzw(t, z),

(L∗w)(t, z) := −∂z(μ(t, z)w(t, z)) + 1
2∂zzw(t, z).

Using the boundary conditions on u and v on ĝ = ĝ± and the chain rule, we can show that, for
both �(t) := v(t, ĝ(t)) and �∗(t) := u(t, ĝ(t)),

0 = d

dt
�(t+) = ∂tv(t, ĝ(t)) + ĝ′(t+)∂zv(t, ĝ(t)),

0 = d

dt
�∗(t−) = ∂tu(t, ĝ(t)) + ĝ′(t−)∂zu(t, ĝ(t)).

Here and in what follows, we use notation conventions of the form ∂tv(t, ĝ+(t)) =
limz↑̂g+(t) ∂tv(t, z), etc. With this in mind, we now get, from (20) and (21), the relations

−(Lv)(t, ĝ(t)) + ĝ′(t+)∂zv(t, ĝ(t)) = 0, (22)

(L∗u)(t, ĝ(t)) + ĝ′(t−)∂zu(t, ĝ(t)) = 0. (23)
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Rearranging (23), using the product rule and the boundary condition u(t, ĝ(t)) = 0,

1
2∂zzu(t, ĝ(t)) = ∂z(μu)(t, ĝ(t)) − ĝ′(t−)∂zu(t, ĝ(t))

= ((∂zμ)u +μ∂zu − ĝ′(t−)∂zu)(t, ĝ(t))

= (μ(t, ĝ(t)) − ĝ′(t−))∂zu(t, ĝ(t)). (24)

Similarly, using (22),

1
2∂zzv(t, ĝ(t)) = −(μ(t, ĝ(t)) − ĝ′(t+))∂zv(t, ĝ(t)). (25)

Substituting (24) and (25) into (19), since g is twice continuously differentiable,

(un,k(z)vn,k(z))′′′
∣∣
z=g(tn,k) = 6

[
(μ(tn,k, z) − ĝ′(t−))u′

n,k(z)v′
n,k(z)

− (μ(tn,k, z) − ĝ′(tn,k+))u′
n,k(z)v′

n,k(z)
]

z=g(tn,k)

= 6(̂g′(tn,k+) − ĝ′(tn,k−))u′
n,k(g(tn,k))v′

n,k(g(tn,k))

= 6g′′(θn,k)u′
n,k(g(tn,k))v′

n,k(g(tn,k))�n

for some θn,k ∈ [tn,k−1, tn,k+1]. Substituting the above expression into (18) and letting, for
convenience of summation, g1(t) := g−(t) and g2(t) := g+(t), we have, for k ≤ n − 1,

fn,k ≈ B4

4
h4

n,k

2∑
i=1

(−1)ig′′
i (θn,k)u′

n,k(gi(tn,k))v′
n,k(gi(tn,k))�n,

where we can replace hn,k on the right-hand side with hn,1 in view of (5) and (7). Substituting
the resulting expression for fn,k into (16), and assuming that the emerging Riemann sums
converge as n → ∞ and that, when tn,k → t,

u′
n,k(gi(tn,k)) = ∂z̃u(tn,k, gi(tn,k)) → ∂z̃u(t, gi(t)),

where ũ is the solution to the boundary value problem (21) with ĝ± replaced with g±, and that
similar convergence holds for v′

n,k and ṽ (the latter solving (20) with g± instead of ĝ±), we
have

n−1∑
k=1

fn,k ≈ B4

4
h4

n,1

2∑
i=1

(−1)i
∫ 1

0
g′′

i (t)∂z̃u(t, gi(t))∂z̃v(t, gi(t)) dt.

We can show that the integrals on the right-hand side are finite using the observations that
∂z̃v(t, g(t)) = O((1 − t)−1/2) as t → 1 and that ∂z̃u(t, g(t)) is uniformly bounded. Our numerical
computations indicate that the above conjecture on the behaviour of the Riemann sums is
correct.

For k = n, since un,n(g(1)) = 0, using the Euler–Maclaurin summation formula we have

Tn,1 · · · Tn,n−1(Sn,n − Tn,n) f ≈ B2

2! h2
n,n(un,n(z) f (z))′

∣∣z=g2(1)
z=g1(1) = h2

n,n

12
u′

n,n(z) f (z)
∣∣z=g2(1)
z=g1(1).

It now follows from (16) that (Sn,1 · · · Sn,n − Tn,1 · · · Tn,n) f ≈ C1h4
n,1 + C2h2

n,n, with the
constants

C1 := −1

120

2∑
i=1

(−1)i
∫ 1

0
g′′

i (t)∂z̃u(t, gi(t))∂z̃v(t, gi(t)) dt, C2 := 1

12
u′

n,n(z) f (z)
∣∣z=g2(1)
z=g1(1).

Since hn,1 = o(n−1/2) and hn,n = O(n−1), we have obtained the claimed convergence rate.
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FIGURE 1. On this log–log plot, the bullets • show the absolute errors between Markov chain approxima-
tions with γ = 1, δ = 0 and normalising factors Cn,k(x) replaced with 1, and the true boundary crossing
probability of the standard Brownian motion process of boundaries (28). The dashed line corresponds to

the straight line 2ne−2π2γ 2
.

Remark 7. To accelerate the numerical evaluation of P(X̃n ∈ Gn), we can ignore the normal-
ising factors Cn,k(x) as they are very close to 1. Indeed, let T̂n,k be |EG

n,k−1| × |EG
n,k| matrices

with entries

qn,k(x, y) := (1 − πn,k( f −
n , f +

n | x, y))ϕ(y | x +μn,k(x), σ 2
n,k(x))hn,k (26)

for (x, y) ∈ EG
n,k−1 × EG

n,k. These matrices differ from the Tn,k from (12) in that they do not
involve the factors Cn,k(x). For M and c0 defined in Lemma 2, we show below that∣∣P(X̃n ∈ Gn) − T̂n,1T̂n,2 · · · T̂n,n1
∣∣≤ c0nρn−1

n exp{−Mn2δ}, (27)

where ρn := 1 ∨ max1≤j≤n sup|x|≤r Cn,j(x). Note that some care must be exercised when choos-
ing γ and δ. Using small values of γ and δ will result in the error from replacing the
normalising factors with 1 becoming non-negligible. It will be seen from the derivation of
(3.3) that when δ = 0 the leading term of the error of the left-hand side is equal to 2ne−2π2γ 2

.
Figure 1 illustrates this observation numerically in the case of the standard Brownian motion
process and boundaries

g±(t) = ± t

3
cosh−1 (2e9/(2t)), t ≥ 0. (28)

4. Proofs

The proof of Theorem 1 is based on several auxiliary results. For the reader’s conve-
nience, we will first state them as separate lemmata. Recall the quantity Kr that appeared in
Condition 3, and also β and α1/2 from (3) and (4).

Lemma 1. For r> |x0|, max1≤k≤n sup|x|≤r

(|βn,k(x)| ∨ αn,k(x)
)≤ K′

r, where K′
r := (Kr +

1
2 Kr
( 3

2 + Kr
))∨ (1 + 1

2 Kr
)2

.
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The result is directly obtained by substituting the upper bound on the partial derivatives of
μX from Condition 3 into the definitions of β and α in (3) and (4), respectively.

Lemma 2. For any r> |x0| and n> 1 + 2Kr, for the normalising factors Cn,k(x) from (9) we

have max1≤k≤n supx∈En,k(r)|Cn,k(x) − 1| ≤ c0e−Mn2δ
, where

En,k(r) := En,k−1 ∩ [ − r, r], r> 0, (29)

δ is the quantity appearing in (5), M = M(γ ) := γ 2π2/4, and c0 := 2/(1 − e−M).

Proof of Lemma 2. For brevity, let μ := μn,k(x) and σ 2 := σ 2
n,k(x). Set

ϕ̂σ (s) :=
∫ +∞

−∞
ϕ(x | 0, σ 2)e−2π isx dx = e−2π2s2σ 2

, s ∈R. (30)

Since both ϕ( · | 0, σ 2) and ϕ̂σ ( · ) decay at infinity faster than any power function, we can
apply the Poisson summation formula [59, p. 252] to obtain

Cn,k(x) =
∑
j∈Z

ϕ(jhn,k + g+(tn,k) | x +μ, σ 2)hn,k

= 1 +
∑

�∈Z\{0}
ϕ̂σ (�/hn,k)e−2π i(x+μ−g+(tn,k))�/hn,k

= 1 + 2
∞∑
�=1

ϕ̂σ (�/hn,k) cos (2π (x +μ− g+(tn,k))�/hn,k), x ∈ En,k−1,

since ϕ̂σ (0) = 1. It follows that |Cn,k(x) − 1| ≤ 2
∑∞
�=1|ϕ̂σ (�/hn,k)|. Using (30) and the

elementary inequality e−a�2 ≤ e−a�, �≥ 1, a> 0, we obtain

|Cn,k(x) − 1| ≤ 2
∞∑
�=1

e−2π2�σ 2/h2
n,k = 2e−2π2σ 2/h2

n,k

1 − e−2π2σ 2/h2
n,k

. (31)

By Condition 3, for n> 2Kr we have

inf|x|≤r
αn,k(x) = inf|x|≤r

(
1 + 1

2�n∂xμX(tn,k−1, x)
)2

≥ 1 −�n sup
|x|≤r

|∂xμX(tn,k−1, x)| ≥ 1 − Kr/n ≥ 1
2 . (32)

Substituting σ 2 = σ 2
n,k(x) = αn,k(x)�n ≥�n/2 into (31) and using the inequality

min
1≤k≤n

�n

h2
n,k

= 1

w2
n,n�n

∧ min
1≤k≤n−1

1

w2
n,k�

2δ
n

≥ γ 2

4
(n ∧ n2δ) = γ 2n2δ

4
, (33)

which holds since max1≤k≤n|wn,k| ≤ 2γ−1, δ < 1
2 , we obtain

max
1≤k≤n

sup
|x|≤r

|Cn,k(x) − 1| ≤ 2e−Mn2δ

1 − e−Mn2δ ≤ c0e−Mn2δ
.

�
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Lemma 3. Let Z be a standard normal random variable independent of {ξn,k}n
k=1. Set

Zn,k(x) := μn,k(x) + σn,k(x)Z, k = 1, . . . , n, x ∈R, (34)

and let �ξn,k := ξn,k − ξn,k−1. Denote by Ek,x the conditional expectation given ξn,k−1 = x,
and set, for r> |x0| and sub-grids En,k(r) from (29),

en,k(m, r) := sup
x∈En,k(r)

|Ek,x(�ξn,k)m −EZm
n,k(x)|, m = 1, 2, . . . (35)

Then max1≤k≤n en,k(m, r) ≤ cme−Mn2δ
for n> (1 + 2Kr) ∨ M−1/(2δ), where cm ∈ (0,∞) is a

constant whose explicit value is given in (40).

Proof of Lemma 3. For brevity, we will often supress dependence on m, n, k, and x.
This should cause no confusion. Set C = Cn,k(x), λ := Ek,x(�ξn,k)m, λ̃ := EZm

n,k(x), for m =
1, 2, . . . Using the triangle inequality,

|λ− λ̃| =
∣∣∣∣1 − C

C
λ̃+ 1

C
(Cλ− λ̃)

∣∣∣∣≤ ∣∣∣∣C − 1

C

∣∣∣∣|̃λ| + 1

C
|Cλ− λ̃|. (36)

The term Cλ= CEk,x(�ξn,k)m can be viewed as a trapezoidal approximation of λ̃=EZm
n,k(x),

so after rewriting λ̃ as an integral, we can express Cλ− λ̃ as the quadrature error

εk(x) := Cλ− λ̃=
∑
j∈Z

(jhn,k + g+(tn,k) − x)mϕ(jhn,k + g+(tn,k) − x |μ, σ 2)hn,k

−
∫ +∞

−∞
(u + g+(tn,k) − x)mϕ(u + g+(tn,k) − x |μ, σ 2) du,

where μ=μn,k(x) and σ 2 = σ 2
n,k(x). We further note that, due to (4), the condition n ≥ 2Kr

ensures that σ 2 > 0. For s ∈R, set

p̂(s) :=
∫ +∞

−∞
(v +μ)mϕ(v | 0, σ 2)e−2π isv dv =

m∑
l=0

(
m

l

)
μm−l

∫ +∞

−∞
vlϕ(v | 0, σ 2)e−2π isv dv

=
m∑

l=0

(
m

l

)
μm−l(−iσ )lHl(2πsσ )e−2π2s2σ 2

,

(37)

where Hl(x) := (−1)lex2/2(dl/dxl)e−x2/2, x ∈R, l ≥ 1, is the lth Chebyshev–Hermite polyno-
mial. Since both ( · −x)mϕ( · −x |μ, σ 2) and p̂( · ) decay at infinity faster than any power
function, using the Poisson summation formula [59, p. 252] and the change of variables
v = uhn,k + g+(tn,k) − x in (37), we obtain

εk(x) =
∑

�∈Z\{0}
p̂(�/hn,k) exp{−2π i(−g+(tn,k) + x +μ)�/hn,k}

= 2
∞∑
�=1

Re
[̂
p(�/hn,k) exp{−2π i(−g+(tn,k) + x +μ)�/hn,k}

]
.
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Since |Rez| ≤ |z|, z ∈C, and |eis| ≤ 1, s ∈R, we obtain |εk(x)| ≤ 2
∑∞
�=1 |̂p(�/hn,k)|. Note that

|Hl(u)| ≤ C′
l(|u|� + 1), u ∈R, l = 1, 2, . . ., where C′

l is a constant that depends on l only
and we can assume without loss of generality that {C′

l}l≥1 is a non-decreasing sequence.
Therefore, we have |(−iσ )lHl(2πsσ )| ≤ Cl(slσ 2l + σ l), s ≥ 1, where Cl := (2π )lC′

l. Using
μm−l(�σ 2/hn,k)l = βm−l

n,k (x)αl
n,k(x)�m�n

m/(hl
n,k�

m−l), and the fact that h−l
n,k�

−(m−l) ≤ h−m
n,k for

l ≤ m as hn,k < 1, we obtain from (37) that

|εk(x)| ≤ 2
∞∑
�=1

m∑
l=0

(
m

l

)
Cl|μ|m−l

((
�σ 2

hn,k

)l

+ σ l
)

e−2π2σ 2�2/h2
n,k

≤ 2
∞∑
�=1

m∑
l=0

(
m

l

)
Cl

((
�n

hn,k

)m

|βm−l
n,k (x)|αl

n,k(x)�m

+ |βm−l
n,k (x)|αl/2

n,k(x)�m−l/2
n

)
e−2π2σ 2�2/h2

n,k .

Since Cl is non-decreasing in l,

sup
x∈En,k(r)

m∑
l=0

(
m

l

)
Cl

(
�n

hn,k

)m

|βm−l
n,k (x)|αl

n,k(x) ≤ 2mCm(2K′
r)m =: Lm,r,

where we used Lemma 1 and the inequality max1≤k≤n �n/hn,k ≤ 2, which follows from
min1≤k≤n hn,k ≥ min{(1/n)1/2+δ, 1/n}/2 = 1/2n. Again using Lemma 1 and the trivial bound
�

m−l/2
n ≤ 1, 0 ≤ l ≤ m, we have

sup
x∈En,k(r)

m∑
l=0

(
m

l

)
Cl|βm−l

n,k (x)|αl/2
n,k(x)(�n)m−l/2 ≤ 2mCm(K′

r)m ≤ Lm,r.

Hence,

sup
x∈En,k(r)

|εk(x)| ≤ 2Lm,r

∞∑
�=1

(�m + 1)e−2π2σ 2�2/h2
n,k ≤ 4Lm,r

∞∑
�=1

�me−�Mn2δ
,

where we used (32), (33) and the bound e−a�2 ≤ e−a�, �≥ 1, a> 0, in the second inequality.
Note that

∑∞
�=1 �

mz� ≤ amz, z ∈ [0, e−1], where am := ∑∞
�=1 �

me−�+1 <∞. As Mn2δ > 1, we
obtain from here that

max
1≤k≤n

sup
x∈En,k(r)

|εk(x)| ≤ 4amLm,re−Mn2δ
. (38)

From Lemma 2,

sup
x∈En,k(r)

∣∣∣∣Cn,k(x) − 1

Cn,k(x)

∣∣∣∣≤ c0e−Mn2δ

1 − c0
. (39)

Using inequalities (38) and (39) in (36), we get

max
1≤k≤n

sup
x∈En,k(r)

|en,k(m, r)| ≤ cme−Mn2δ
,

where

cm := c0

1 − c0
max
1≤k≤n

sup
x∈En,k(r)

|EZm
n,k(x)| + 4amLm,r

1 − c0
. (40)
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The boundedness of max1≤k≤n supx∈En,k(r)|EZm
n,k(x)| can be proved by applying the inequality

|x + y|m ≤ 2m−1(|x|m + |y|m), x, y ∈R, m ≥ 1, to obtain

sup
x∈En,k(r)

|EZm
n,k(x)| ≤ 2m−1 sup

|x|≤r
(|βn,k(x)�n|m + |αn,k(x)�n|m/2E|Z|m)

≤ 2m−1
(

(K′
r)m + (2K′

r)m/2π−1/2�

(
m + 1

2

))
<∞,

where � is the gamma function. Lemma 3 is proved. �

To prove the convergence stated in Theorem 1 we will use the martingale characterisa-
tion method, verifying the sufficient conditions for convergence from [18, Theorem 4.1 in
Chapter 7] (to be referred to as the EK theorem in what follows). For x ∈ En,k−1, let

bn,k(x) := 1

�n
E[�ξn,k | ξn,k−1 = x], an,k(x) := 1

�n
var[�ξn,k | ξn,k−1 = x].

Using the standard semimartingale decomposition of Xn (see (14)), we set

Bn(t) :=
νn(t)∑
k=1

bn,k(ξn,k−1)�n, An(t) :=
νn(t)∑
k=1

an,k(ξn,k−1)�n,

and let Mn := Xn − Bn. With respect to the natural filtration

Fn := {σ (Xn(s), Bn(s), An(s) : s ≤ t) : t ≥ 0} = {σ (ξn,k : k ≤ νn(t), t ≥ 0)},
our Bn, An, and Mn are the predictable drift, angle bracket, and martingale component,
respectively, of the process Xn.

The EK theorem is stated for time-homogeneous processes. To use it in our case, we
consider the vector-valued processes Xn(t) := (t, Xn(t)) and, for a fixed r> 0, let τ r

n be local-
ising Fn-stopping times, τ r

n := inf{t : ‖Xn(t)‖ ∨ ‖Xn(t−)‖ ≥ r}, ‖u‖ = |u1| ∨ |u2| being the
maximum norm of u = (u1, u2).

Lemma 4. For each fixed r> |x0|, as n → ∞,

sup
t≤1∧τ r

n

∣∣∣∣Bn(t) −
∫ t

0
μX(s, Xn(s)) ds

∣∣∣∣ a.s.−→ 0, sup
t≤1∧τ r

n

|An(t) − t| a.s.−→ 0.

Proof of Lemma 4. Since on each of the time intervals [tn,k−1, tn,k), k = 1, . . . , n, the process
Xn is equal to ξn,k−1, we have the following decomposition:

Bn(t) −
∫ t

0
μX(s, Xn(s)) ds

=
νn(t)∑
k=1

[
bn,k(ξn,k−1)�n −

∫ tn,k

tn,k−1

μX(s, Xn(s)) ds

]
−
∫ t

tn,νn(t)

μX(s, Xn(s)) ds

=
νn(t)∑
k=1

(bn, k(ξn,k−1) − βn,k(ξn,k−1))�n +
νn(t)∑
k=1

(βn,k(ξn,k−1) −μX(tn,k−1, ξn,k−1))�n

+
νn(t)∑
k=1

∫ tn,k

tn,k−1

[μX(tn,k−1, Xn(s)) −μX(s, Xn(s))] ds −
∫ t

tn,νn(t)

μX(s, ξn,νn(t)) ds. (41)
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Due to the stopping-time localisation, the first term on the right-hand side of (41) has the
following upper bound (see (8), (34), and (35)):

sup
t≤1∧τ r

n

∣∣∣∣∣
νn(t)∑
k=1

(bn,k(ξn,k−1) − βn,k(ξn,k−1))�n

∣∣∣∣∣
= sup

t≤1∧τ r
n

∣∣∣∣∣
νn(t)∑
k=1

(E[�ξn,k | ξn,k−1] −E[Zn,k(ξn,k−1) | ξn,k−1])

∣∣∣∣∣
≤

n∑
k=1

sup
x∈En,k(r)

|Ek,x�ξn,k −EZn,k(x)| ≤
n∑

k=1

en,k(1, r). (42)

To bound the second term on the right-hand side of (41), we use the definition of βn,k in (3)
and Condition 3 to get following inequality:

sup
x∈En,k(r)

|βn,k(x) −μX(tn,k−1, x)| ≤ 1
2�n sup

|x|≤r

∣∣(∂tμX +μX∂xμX + 1
2∂xxμX

)
(tn,k−1, x)

∣∣
≤ 1

2�nKr
(
Kr + 3

2

)
. (43)

The second-last term in (41) can be bounded from above by using the bound for ∂tμX from
Condition 3:

sup
t≤1∧τ r

n

νn(t)∑
k=1

∣∣∣∣ ∫ tn,k

tn,k−1

[μX(tn,k−1, Xn(s)) −μX(s, Xn(s))] ds

∣∣∣∣≤ Kr�n. (44)

Again using Condition 3, the last term in (41) is bounded as follows:

sup
t≤1∧τ r

n

∣∣∣∣ ∫ t

tn,νn(t)

μX(s, Xn,νn(t)) ds

∣∣∣∣≤ Kr�n. (45)

Using inequalities (42)–(45) in the decomposition (41), we obtain

sup
t≤1∧τ r

n

∣∣∣∣Bn(t) −
∫ t

0
μX(s, Xn(s)) ds

∣∣∣∣≤ n∑
k=1

en,k(1, r) + Kr
( 1

2 Kr + 11
4

)
�n.

Since �n → 0 as n → ∞, the first half of the lemma follows after applying Lemma 3 with
m = 1.

Similarly,

An(t) − t =
νn(t)∑
k=1

(an,k(ξn,k−1) − αn,k(ξn,k−1))�n +
νn(t)∑
k=1

(αn,k(ξn,k−1) − 1)�n −
∫ t

tn,νn(t)

ds.

(46)
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To bound the first term on the right-hand side of (46), we use Var[Y | X] =E[Y2 | X] − (E[Y |
X])2 for a square-integrable random variable Y to obtain

sup
t≤1∧τ r

n

∣∣∣∣∣
νn(t)∑
k=1

(an,k(ξn,k−1) − αn,k(ξn,k−1))�n

∣∣∣∣∣
= sup

t≤1∧τ r
n

∣∣∣∣∣
νn(t)∑
k=1

(Var[�ξn,k | ξn,k−1] − Var[Zn,k(ξn,k−1) | ξn,k−1])

∣∣∣∣∣
≤ sup

t≤1∧τ r
n

νn(t)∑
k=1

∣∣E[(�ξn,k)2 | ξn,k−1] −E[Zn,k
2(ξn,k−1) | ξn,k−1]

∣∣
+ sup

t≤1∧τ r
n

νn(t)∑
k=1

∣∣(E[�ξn,k | ξn,k−1])2 − (E[Zn,k(ξn,k−1) | ξn,k−1])2
∣∣

≤
n∑

k=1

en,k(2, r) + 2
n∑

k=1

en,k(1, r)

(
en,k(1, r) + sup

x∈En,k(r)
|EZn,k(x)|

)
, (47)

where we used the elementary bound

|x2 − y2| ≤ |x − y|(|x − y| + 2|y|) (48)

in the final inequality. Furthermore,

max
1≤k≤n

sup
x∈En,k(r)

|EZn,k(x)| ≤ max
1≤k≤n

sup
|x|≤r

|βn,k(x)|�n ≤ K′
r.

Lemma 3 with m = 1 and m = 2 implies that the expression in the last line of (47) vanishes
as n → ∞. The second term on the right-hand side of (46) is bounded from above using (4),
Lemma 1, and Condition 3:

sup
t≤1∧τ r

n

νn(t)∑
k=1

|αn,k(ξn,k−1) − 1|�n ≤ max
1≤k≤n

sup
x∈En,k(r)

∣∣α1/2
n,k (x) − 1

∣∣(α1/2
n,k (x) + 1

)
≤ 1

2�nKr(
√

K′
r + 1). (49)

For the last term in (46) we have

sup
t≤1∧τ r

n

∣∣∣∣ ∫ t

tn,νn (t)
ds

∣∣∣∣≤�n. (50)

Applying inequalities (47)–(50) to (46), we complete the proof of Lemma 4.

Lemma 5. For each fixed r> |x0|,
lim

n→∞ E sup
t≤1∧τ r

n

|Bn(t) − Bn(t−)|2 = 0, (51)

lim
n→∞ E sup

t≤1∧τ r
n

|An(t) − An(t−)| = 0, (52)

lim
n→∞ E sup

t≤1∧τ r
n

|Xn(t) − Xn(t−)|2 = 0. (53)
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Proof of Lemma 5. Set ξn := max1≤k≤n|ξn,k| and

χ r
n := min{k ≤ n : |ξn,k| ≥ r}1{ξn ≥ r} + n1{ξn < r}.

The jumps of Bn are given by the conditional means of the increments, so

E sup
t≤1∧τ r

n

|Bn(t) − Bn(t−)|2 =E max
k≤χ r

n

(E[�ξn,k | ξn,k−1])2 ≤E max
1≤k≤n

sup
x∈En,k(r)

(Ek,x�ξn,k)2.

By the triangle inequality, for x ∈ En,k(r),

|Ek,x�ξn,k| ≤ |Ek,x�ξn,k −EZn,k(x)| + |EZn,k(x)| ≤ en,k(1, r) + |βn,k(x)|�n.

By inequality (13) and Lemmata 1 and 3, we obtain (51). The jumps of An are given by the
conditional variances of the increments, so

E sup
t≤1∧τ r

n

|An(t) − An(t−)| =E max
k≤χ r

n

Var[�ξn,k | ξn,k−1] ≤E max
1≤k≤n

sup
x∈En,k(r)

Vark,x�ξn,k,

where Vark,x[ · ] := Var[ · | ξn,k−1 = x]. Using (48), we obtain, for x ∈ En,k(r),

|Vark,x�ξn,k| ≤ |Vark,x�ξn,k − VarZn,k(x)| + VarZn,k(x)

≤ |Ek,x(�ξn,k)2 −EZ2
n,k(x)| + |(Ek,x�ξn,k)2 − (EZn,k(x))2| + σ 2

n,k(x)

≤ en,k(2, r) + en,k(1, r)(en,k(1, r) + 2|βn,k(x)|�n) + αn,k(x)�n.

By the local boundedness of βn,k and αn,k, from Lemma 1 we obtain (52). Further,

E sup
t≤1∧τ r

n

|Xn(t) − Xn(t−)|2 =E max
k≤χ r

n

(�ξn,k)2.

Using Lyapunov’s inequality, we obtain

E max
k≤χ r

n

(�ξn,k)2 ≤
(
E max

k≤χ r
n

(�ξn,k)4
)1/2 ≤

(
E

∑
k≤χ r

n

(�ξn,k)4

)1/2

≤
(

n∑
k=1

sup
x∈En,k(r)

Ek,x(�ξn,k)4

)1/2

.

By the triangle inequality, we have

|Ek,x(�ξn,k)4| ≤ |Ek,x(�ξn,k)4 −EZ4
n,k(x)| +EZ4

n,k(x)

≤ en,k(4, r) + (βn,k(x)�n)4 + 6(βn,k(x)�n)2αn,k(x)�n + 3(αn,k(x)�n)2.

Using Lemmata 1 and 3 we obtain (53). Lemma 5 is proved. �

Proof of Theorem 1. We verify the conditions of the EK theorem. Denote by L the generator
of the bivariate process X := {X(t) = (t, X(t))}t∈[0,1],

Lf = ∂tf +μ∂xf + 1
2∂xx f , f ∈ C∞

c (R2),
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where C∞
c (R2) is the space of infinitely many times differentiable functions with compact

support. The distribution of X is the solution to the martingale problem for L, i.e., for f ∈
C∞

c (R2),

f (X(t)) − f (X(0)) −
∫ t

0
Lf (X(s)) ds, t ∈ [0, 1],

is a martingale. Using Condition 3, by [18, Proposition 3.5 in Chapter 5] the martingale prob-
lem for L is well posed since the solution for the stochastic differential equation (2) exists and
is unique. Therefore, the first condition in the EK theorem is met.

The martingale characteristics of Xn = (t, Xn(t)) are given by

Bn(t) := (t, Bn(t)), An(t) :=
(

0 0
0 An(t)

)
, Mn(t) := (0,Mn(t)).

A simple calculation shows that Mn and M

n Mn − An are Fn-martingales. It follows from

Lemmata 4 and 5 that conditions (4.3)–(4.7) in the EK theorem are satisfied, which means that
all the conditions of that theorem are met. Theorem 1 is proved. �

Proof of Corollary 1. Denote the process whose trajectories are polygons with nodes
(tn,k, ξn,k) by X̂n. By the triangle inequality,

‖X̃n − Xn‖∞ ≤ ‖X̃n − X̂n‖∞ + ‖X̂n − Xn‖∞,

where X̃n was defined in (10). Using the distribution of the maximum of the standard Brownian
bridge B◦ [7, p. 63], for any ε > 0 we obtain

P(‖X̃n − X̂n‖∞ ≥ ε) = P

(
max
1≤k≤n

sup
s∈[tn,k−1,tn,k]

|B◦
n,k(s)| ≥ ε

)

≤
n∑

k=1

P

(
sup

t∈[0,1]
|B◦(t)| ≥ ε/√�n

)
≤ 2n exp

{−2ε2/�n
}
.

Hence, ‖X̃n − X̂n‖∞
p−→ 0 since �n = 1/n. Further, ‖X̂n − Xn‖∞ = supt∈(0,1]|Xn(t) −

Xn(t−)| p−→ 0 since Xn⇒X and X is almost surely continuous. Therefore, d(X̃n, Xn) ≤
‖X̃n − Xn‖∞

p−→ 0. It follows from [6, Theorem 4.1] that X̃n⇒X as n → ∞. �

Proof of Corollary 2. For sets A ⊂ C and B ⊆R, set A[B] := A ∩ {x ∈ C : x(1) ∈
B}. Recall that, for (g−, g+) ∈ G, inft∈[0,1] (g+(t) − g−(t))> 0. For any ε ∈ (0, ε′), ε′ :=
[ inft∈[0,1] (g+(t) − g−(t))/2] ∧ (g+(0) − x0) ∧ (x0 − g−(0)), and all sufficiently large n (such
that ‖g±

n − g±‖∞ < ε′), the ‘strips’ G±ε := S(g− ∓ ε, g+ ± ε) are non-empty and

P(X̃n ∈ G−ε[B]) ≤ P(X̃n ∈ Gn[B]) ≤ P(X̃n ∈ G+ε[B]).

Note that P(X ∈ ∂(G±ε)) = 0 (the boundary is taken with respect to the uniform topology) due
to the continuity of the distributions of sup0≤t≤1 (X(t) − g+(t)) and inf0≤t≤1 (X(t) − g−(t)) [6,
p. 232]. Furthermore, due to X(1) having a continuous density, it is clear that P(X(1) ∈ ∂B) = 0
for any Borel set B with ∂B of Lebesgue measure zero. By subadditivity and the fact that
∂(A1 ∩ A2) ⊆ ∂A1 ∪ ∂A2 for arbitrary sets A1 and A2, it follows that

P(X ∈ ∂(G[B])) ≤ P(X ∈ ∂G) + P(X(1) ∈ ∂B) = 0.
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Hence, from Corollary 1,

lim inf
n→∞ P(X̃n ∈ Gn[B]) ≥ P(X ∈ G−ε[B]), lim sup

n→∞
P(X̃n ∈ Gn[B]) ≤ P(X ∈ G+ε[B]).

As P(X ∈ ∂(G[B])) = 0, we also have

P(X ∈ G+ε[B]) − P(X ∈ G−ε[B]) = P(X ∈ (∂G)(ε)[B]) → 0 as ε ↓ 0,

where (∂G)(ε) is the ε-neighbourhood of ∂G (also in the uniform norm). The result
follows. �

Proof of relation (27). Let r := ‖g−‖∞ ∨ ‖g+‖∞. Using the elementary inequality∣∣∣∣∣1 −
n∏

j=1

aj

∣∣∣∣∣≤
(

max
i<n

i∏
k=1

|ak|
)

n∑
j=1

|1 − aj| ≤
(

1 ∨ max
k≤n

|ak|
)n−1 n∑

j=1

|1 − aj|,

we have

|P(X̃n ∈ Gn) − T̂n,1T̂n,2 · · · T̂n,n1
| =
∣∣∣∣∣ ∑

x∈EG
n

n∏
k=1

qn,k(xk−1, xk)

Cn,k(xk−1)
−
∑

x∈EG
n

n∏
k=1

qn,k(xk−1, xk)

∣∣∣∣∣
=
∣∣∣∣∣ ∑

x∈EG
n

n∏
k=1

qn,k(xk−1, xk)

Cn,k(xk−1)

(
1 −

n∏
i=1

Cn,i(xi−1)

)∣∣∣∣∣
≤ P(X̃n ∈ Gn)ρn−1

n

n∑
i=1

sup
x∈En,k(r)

|1 − Cn,i(x)|,

where ρn := 1 ∨ max1≤j≤n sup|x|≤r Cn,j(x). Using Lemma 2, we obtain (27). �

5. Numerical examples

To illustrate the efficiency of our approximation scheme (12), we implemented it in the
programming language Julia run on a MacBook Pro 2020 laptop computer with an Intel
Core i5 processor (2 GHz, 16 RAM). We used the package HyperDualNumbers.jl to
evaluate the partial derivatives of μX in (3).

It is well known in the numerical analysis literature that trapezoidal quadrature is extremely
accurate for analytic functions [23]. In light of (27), for numerical illustration purposes we
drop the normalising constants Cn,k(x) and use T̂n,1T̂n,2 · · · T̂n,n1
 instead of P(X̃n ∈ Gn) to
approximate P(X ∈ G).

5.1. The Wiener process with one-sided boundary

Using the method of images, [14] obtained a closed-form expression for the crossing
probability of the boundary

gD(t) := 1
2 − t ln

( 1
4 (1 +

√
1 + 8e−1/t)

)
, t> 0,

for the standard Wiener process W := {W(t) : t ≥ 0}.
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FIGURE 2. Approximation of the boundary gD non-crossing probabilities for the Wiener process. The
exact Daniels boundary crossing probability in this case is 0.479 749 35 . . . The left pane shows a log–
log plot of the absolute approximation error as a function of n. The right pane shows the time evolution

of the taboo transition density using the Markov chain approximation X̃n with n = 20.

In order to make the state space EG
n finite in the case of the one-sided boundary where

g−(t) = −∞, we insert an absorbing lower boundary at a low enough fixed level L< x0 and
replace EG

n,k with

EG,L
n,k := {x ∈ En,k : L< x< g+

n,k}, k = 1, . . . , n,

EG,L
n := En,0 × EG,L

n,1 × · · · × EG,L
n,n .

We approximate P(W(t)< gD(t), t ∈ [0, 1]) with
(∏n

k=1 TL
n,k

)
1
, where TL

n,k are sub-

stochastic matrices of dimensions
(∣∣EG,L

n,k−1

∣∣+ 1
)× (∣∣EG,L

n,k

∣∣+ 1
)

with entries equal to the
respective transition probabilities⎧⎪⎪⎪⎨⎪⎪⎪⎩

qn,k(x, y), (x, y) ∈ EG,L
n,k−1 × EG,L

n,k ,∑
z∈En,k∩(−∞,L] qn,k(x, z), x ∈ EG,L

n,k−1, y = L,

1, x = L, y = L,

0, otherwise,

where we put f −
n (t) = −∞ in the definition of qn,k in (26). This approximation assumes that

the lower auxiliary boundary L is sufficiently far away from the initial point x0 and the upper
boundary, such that after a sample path crosses the lower boundary it is highly unlikely that
it will cross the upper boundary in the remaining time. In our example, we took L = −3. The
probability of the Wiener process first hitting this level and then crossing gD prior to time t = 1
is less than 1.26 × 10−6. Further, we chose x0 = 0, δ = 0, and γ = 2. To guarantee convergence
of the scheme, δ must be strictly positive; however, for the values of n we are interested in and
the larger value of γ compared to the one in the example from Fig. 1, the error is negligible.

The left pane in Fig. 2 shows a log–log plot of the absolute approximation error as a
function of n. The crosses × show the absolute error of the Markov chain approximation
without the Brownian bridge correction, while the bullets • show the error when using the
Brownian bridge correction. The upper and lower dashed lines correspond to C1n−1/2 and
C2n−2 respectively, where C1 and C2 are fitted constants. We see that the convergence rate
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|P(W ∈ G) − P(X̃n ∈ Gn)| is of the order O(n−2), which is the same as the boundary approxi-
mation order of the error |P(W ∈ G) − P(W ∈ Gn)| = O(n−2) proved in [8] in the case of twice
continuously differentiable boundaries. It appears that, due to the high accuracy of approxi-
mation of the increments’ moments (Lemma 3) and the Brownian bridge correction applied
to the transition probabilities, we achieve a much faster convergence rate compared to the
convergence rate O(n−1/2) achieved in [19].

The right pane in Fig. 2 shows the time evolution of the taboo transition density using
the Markov chain approximation X̃n with n = 20. The positions of the nodes on the surface
correspond to the points from the respective EG,−3

n,k . Note from (5) that the spacing between the
nodes at the final time step t = 1 is finer compared to earlier time steps. This is crucial for the
observed improved convergence rate.

5.2. The Ornstein–Uhlenbeck process

Let X be the Ornstein–Uhlenbeck (OU) process satisfying the stochastic differential
equation {

dX(t) = −X(t) dt + dW(t), t ∈ (0, 1],

X(0) = 0.

The usual approach for computing the boundary crossing probability of the OU process is to
express the process in terms of a time-changed Brownian motion. This is achieved by using
the time substitution θ (t) := (e2t − 1)/2, so that we can write X(t) = e−tW(θ (t)).

To illustrate the effectiveness of our approximation, we consider the following two-sided
boundary for which explicit boundary crossing probabilities are available for the OU process:

g±
ψ (t) := e−tψ±(θ (t)), where ψ±(t) = ± 1

2 t cosh−1 (e4/t), t> 0.

Letting t := θ (s), we obtain

Pψ (T) := P(ψ−(t)<W(t)<ψ+(t), 0 ≤ t ≤ T)

= P(e−sψ−(θ (s))< e−sW(θ (s))< e−sψ±(θ (s)), 0 ≤ s ≤ θ−1(T))

= P(g−
ψ (s)< X(s)< g+

ψ (s), s ∈ [0, θ−1(T)]),

where we set T := θ (1) so that s ∈ [0, 1]. A closed-form expression for Pψ (T) can be found
[38, p. 28]. The exact boundary crossing probability in this case is 0.750 502 88 . . .

Using (3) and (4), the approximate drift and diffusion coefficients of the weak second-
order Itô–Taylor expansion for the OU process are given by βn,k(x) = −x + 1

2�nx, α1/2
n,k (x) =

1 − 1
2�n. From the numerical results below, it appears that it is sufficient to use the weak

second-order Itô–Taylor expansion of transition densities instead of the true transition density
of the OU process for our Markov chain approximation to maintain a O(n−2) convergence rate
of the boundary crossing probabilities.

In the log–log plot in the left pane of Fig. 3, the crosses × show the absolute error of
the Markov chain approximation without the Brownian bridge correction, while the bullets •
show the error with the Brownian bridge correction. The markers � and ◦ show the abso-
lute error of the Markov chain approximation using the exact transition density of the OU
process and the Euler–Maruyama approximation instead of the transition density from the
Itô–Taylor expansion, respectively. From this plot, we empirically observe that the conver-
gence rate |P(X ∈ G) − P(X̃n ∈ Gn)| is of the order O(n−2), which is the same as the boundary
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FIGURE 3. Approximation of non-crossing probabilities of the OU process with boundaries g±
ψ . The left

pane shows a log–log plot of the absolute approximation error as a function of n. The upper and lower
dashed lines correspond to C1n−1/2, C2n−1, and C3n−2 respectively, where C1, C2, and C3 are fitted
constants. The right pane depicts the time evolution of the taboo transition density using the Markov

chain approximation X̃n with n = 20.

approximation order of error |P(X ∈ G) − P(X ∈ Gn)| = O(n−2) proved in [15] in the case of
twice continuously differentiable boundaries. It appears that, at this level of accuracy, we might
ignore the higher-order terms in the diffusion bridge crossing probability derived in [3].

5.3. The Bessel process

To test our method on a non–Gaussian diffusion process, we chose the Bessel process, due
to the availability of a closed-form expression for its transition density. Note also that the
Cox–Ingersoll–Ross (CIR) process popular in mathematical finance is a suitably time–space-
transformed Bessel process, and hence boundary crossing probabilities for the CIR process can
be immediately obtained from those for the Bessel case.

For ν ≥ 0, the Bessel process of order ν can be defined as the (strong) solution of the
stochastic differential equation [7, p. 66]

dX(t) = 2ν + 1

2X(t)
dt + dW(t), t> 0; X(0) = x0 > 0.

The approximate drift and diffusion coefficients of the weak second-order Itô–Taylor expan-
sion for the Bessel process are given by

βn,k(x) = 2ν + 1

2x
+ 1 − 4ν2

8x3
�n, α

1/2
n,k (x) = 1 − 2ν + 1

4x2
�n.

For numerical illustration purposes, we tested our algorithm in the case when ν = 1
2 , x0 = 1,

g−(t) = 0.7 and g+(t) = +∞, for which a closed-form expression is available for benchmark-
ing [26, Theorem 2.2]). The results of the numerical calculations are shown in Fig. 4. The
left pane presents a log–log plot of the absolute approximation error. The × markers show
the Markov chain approximation error without the Brownian bridge correction. The markers
◦, •, and � show the error of the Markov chain approximation with the Brownian bridge cor-
rection when using the Euler–Maruyama approximation, the Itô–Taylor approximation, and
the exact transition density respectively. We can see that the observed convergence rate is the
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FIGURE 4. Approximation of the boundary crossing probabilities for the Bessel process with initial
condition X(0) = 1, starting above the boundary g−(t) = 0.7. The exact boundary crossing probability in
this case is 0.534 924 . . . The left pane shows a log–log plot of the absolute approximation error as a
function of n. The dashed lines correspond to C1n−1/2, C2n−1, C3n−2, and C4n−2 from top to bottom,
where C1, C2, C3, and C4 are fitted constants. The right pane depicts the time evolution of the taboo

transition density using the Markov chain approximation X̃n with n = 20.

same, O(n−2), whether one uses the Itô–Taylor approximation or the exact transition densities,
but the rate drops to O(n−1) when using the Euler–Maruyama approximation. The right pane
shows the time evolution of the taboo transition density using the Markov chain approxima-
tion X̃n with n = 20. An artificial absorbing boundary has been inserted at x = 7 to ensure that
probability mass is not lost.

5.4. Comparison with other methods

In this subsection we will comment on the relative performance of our approach compared
to the previously proposed ones in the special basic case of one-sided boundary g for the
Brownian motion process.

Based on the results of our numerical experiments, one of the most efficient methods for
numerical computation of the boundary crossing probability of the Brownian motion is the
method of integral equations [49]. The method proposed in [41, 47] is based on numeri-
cally solving (using ‘midpoint’ quadratures) a Volterra integral equation of the first kind with
the kernel K(t, s): =�((g(t) − g(s))/

√
t − s), 0< s< t, where � is the standard normal ‘tail’.

Unfortunately, the convergence rate for that method was discussed in neither [47] nor [41].
If the above kernel K had no end-point singularity, it would follow from the proof of [40,
Theorem 9.1] that the convergence rate is O(n−2), n being the number of steps on the uni-
form time grid used, since that rate is essentially determined by the quadrature error. In view
of the results of [42, Section 7], the proof of the above-mentioned theorem from [40] indi-
cates that, in the case of our kernel K, the convergence rate will be O(n−3/2). And indeed,
our numerical experiments show that the convergence rate for that method is of that order
and, moreover, that the error may have the form C0n−3/2 + C0n−2 + C0n−5/2 + · · · . Hence, in
our comparison, when comparing the results of different methods after applying Richardson’s
extrapolation [57, p. 27], we assumed that the error dependence on the small parameter n−1

for the above-mentioned integral equation method is of that form.
In [52] the first-passage-time density of the boundary g was shown to satisfy a Volterra

integral equation of the second type. Its solution was approximated using the trapezoidal rule
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FIGURE 5. Log–log plot of the absolute approximation errors versus the computational time for our
Markov chain approximation and the integral equation method applied to the standard Brownian motion
crossing Daniels’ boundary before time T = 1. Labels ending with R(p1, p2, . . . , pk) indicate the use of
Richardson’s extrapolation applied repeatedly to the respective sequence A(h) with an error of the form

a1hp1 + a2hp2 + · · · + akhpk + o(hpk ), h being the appropriate small parameter in the scheme used.

in [11]; however, the convergence rates where not discussed in that paper. In [55], the authors
obtained a series expansion for the solution to the integral equation using the method of suc-
cessive approximations, with each term in the series containing an integral. Error analysis was
done on the truncation of the series expansion. However, the integrals in the series expansion
were obtained numerically using quadratures, and there was no mention of the convergence
rate for the quadratures.

Note that both Volterra integral equations mentioned above are special cases of the spectrum
of integral equations given in [49, Theorem 6.1]. Our numerical experiments showed that the
approximation from [47] performs better, and hence we chose it to be the benchmark for the
comparison in this subsection.

In Fig. 5 we show a comparison between the Markov chain approximation and the integral
equation method proposed in [41], which is a version of the approach from [47] (labeled ‘IE’).
The label ‘MC (No BB)’ refers to the Markov chain approximation results obtained without
using the Brownian bridge correction, whereas just ‘MC’ corresponds to the Markov chain
method with that correction.

We see from Fig. 5 that applying the Brownian bridge correction dramatically improves
the efficiency of our scheme. Pre-Richardson’s extrapolation, the computational times for the
integral equation method are generally lower, which is unsurprising since our method dis-
cretises both space and time variables, while the integral equation method only discretises
time. However, our scheme becomes competitive once we apply Richardson’s extrapolation.
Furthermore, and most importantly, our method works for general diffusion processes whereas
the method of integral equations requires an explicit expression for the transition density.

Another important advantage of our approach is that it can easily be modified to calculate
expressions that involve the space variable, because our scheme essentially approximates taboo
transition probabilities.
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