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INCOMPLETE TESTS OF CONDITIONAL ASSOCIATION FOR THE ASSESSMENT OF
MODEL ASSUMPTIONS
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Many of the models that have been proposed for response data share the assumptions that define the
monotone homogeneity (MH) model. Observable properties that are implied by the MH model allow for
these assumptions to be tested. For binary response data, the most restrictive of these properties is called
conditional association (CA). All the other properties considered can be considered incomplete tests of
CA that alleviate the practical limitations encountered when assessing the MH model assumptions using
CA. It is found that the assessment of the MH model assumptions with an incomplete test of CA, rather
than CA, is generally associated with a substantial loss of information. We also look at the sensitivity of
the observable properties to model violation and discuss the implications of the results. It is argued that
more research is required about the extent to which the assumptions and the model specifications influence
the inferences made from response data.

Key words: Conditional association, manifest monotonicity, model complexity, monotone homogeneity
model, monotone likelihood ratio, multivariate totally positive of order 2, nonnegative partial correlations,
scalability coefficient, strongly positive orthant dependency.

In educational and psychological testing, latent variable models are used to account for the
dependencies between the responses to multiple test items, where no one item by itself accurately
represents the attribute that the test is supposed to measure. The purpose of the model is to provide
an estimate of the latent variable, based on the observed responses to the test items.Many different
latent variable models are used in practice, each with their own particular set of assumptions, and
applicable to different type of inferences. For example, the unidimensional (UD) Rasch (1960)
allows for the calibration of all respondents on a common linear scale (Kelderman, 1988; Wright,
1977), which makes it useful for applications where different subsets of items are administered
to different groups of respondents. The model also need to provide an accurate goodness of fit
to the observed responses, and here too there may be an abundance of choice. For the Rasch
model, tests of goodness of fit have been proposed that including Andersen’s (1973) likelihood
ratio test (Glas & Verhelst, 1995), nonparametric tests (Ponocny, 2001; Verhelst et al., 2007),
tests for specific model violations (Glas, 1988; Van den Wollenberg, 1979), and tests specifically
designed to deal with sparse observations (Maydeu-Olivares & Joe, 2005, see Debelak, 2019;
Suáres-Falcón & Glas, 2003 for an overview). Each of these tests assesses different dependencies
in the observed response distributions and may be sensitive to different model violations. For
example, Glas (1988) proposed a statistics, specifically designed to target the assumption of local
independence (LI) by utilizing the information contained in the conditional bivariate distributions
of pairs of items, given each sum score. Although found to be powerful in detecting violations
of the Rasch model assumptions, for larger numbers of items the statistic is computationally
demanding and the observations to which the statistic pertains become more sparse, limiting the
asymptotic properties of the test statistic.
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A similar problem occurs in factor analysis, where the estimation of the expected frequencies
of the discrete responses involves high-dimensional (numerical) integration which becomes cum-
bersome for more items. Jöreskog and Moustaki (2001) and Katsikatsou et al. (2012) proposed
a test statistics based only on the second-order moment to overcome these difficulties, but this
procedure is also associated with loss of power for detecting model violations. These examples
illustrate some of the tradeoff involved in the goodness-of-fit assessment when analyzing response
data.

In this paper, themain focus is onMokken’s (1971)model ofmonotone homogeneity (MH) for
binary test data. In addition to the assumptions UD and LI, the model assumes latentmonotonicity
(M). The MH model is nonparametric in the sense that it does not require the response functions
to belong to a particular parametric family. Further, the MH model is useful for applications that
require ordinal inferences, as it implies a stochastic ordering on the latent variable by the sum
score across the items (Ghurye &Wallace, 1959; Grayson, 1988; Huynh, 1994; Ünlü, 2008). The
assumptions that constitute the MH model are shared by a wider range of models for response
data, including the Rasch model and the three-parameter logistic model (Lord & Novick, 1968).
These assumptions imply that all covariances between the test items are nonnegative. This testable
property of the MH model for pairs of items is routinely used to assess the validity of the MH
model assumption by means of inspecting the scalability coefficients (Loevinger, 1948; Mokken,
1971; Warrens, 2008) in Mokken scale analysis (Mokken & Lewis, 1982; Molenaar & Sijtsma,
2000; Sijtsma & Molenaar, 2002; Van der Ark, 2007). In Mokken scale analysis, any scalability
coefficient that is below a predetermined lower bound (usually at 0.30) is flagged as a model
violation that discredits the MH model, and any model that is a special case of the MH model
(Junker & Sijtsma, 2001).

A problem with Mokken scale analysis based on the scalability coefficients is the somewhat
arbitrary choice for the lower bounds of the coefficients. For example, Hemker et al. (1995) found
that the default value of 0.30 does not always suffice to recover a unidimensional scale. Smits et al.
(2012) also warn to be cautious about making inferences about the dimensionality of a test based
on an automated evaluation of scalability coefficients. Tighter lower bounds for the scalability
coefficients can be obtained from the requirement of nonnegative partial correlations (NPC;
Ellis, 2014, 2015; Brusco et al., 2015). Like the scalability coefficients, the partial correlation is
implied to be nonnegative under theMHmodel, but the property NPC takes into consideration the
higher-order moments contained in the trivariate distributions of item triplets. As a consequence,
a violation flagged by the property of NPC may remain undetected when only evaluating the
covariances between item pairs.

Beside the scalability coefficients and NPC, other observable properties have been proposed
that allow the assumptions of the MH model to be tested. For example, the property of manifest
monotonicity (MM; Junker, 1993; Junker & Sijtsma, 2000) proposes that the regression of each
of the item variables is a non-decreasing function of the sum of the remaining variables or rest
score. Holland and Rosenbaum (1986) provide an overview of properties of multivariate positive
dependence that are implied by the MH model, with conditional association (CA; Holland and
Rosenbaum, 1986; Rosenbaum, 1984) being the most restrictive of these properties for binary
response data. Below, we show that the observable property CA also implies MM and NPC
(Ellis, 2015). Because the MH model cannot be directly evaluated, we rely on these observable
properties to make inferences about the validity of theMHmodel assumptions (Sijtsma&Van der
Ark, 2017). A testable latent class version of theMHmodel was proposed by Croon (1990, 1991);
see also Hoijtink and Molenaar (1997) and Vermunt (2001), which requires a prior specification
of the number of discrete latent classes. Global tests for some observable properties implied by
the MH model have also been proposed. These global tests include both likelihood ratio tests
for CA and MM (Bartolucci & Forcina, 2005; Tijmstra et al., 2013) and Bayes factors for MM
(Tijmstra et al., 2015).
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The next section starts with the introduction of the various observable properties that are
implied by theMHmodel, and itwill be shownhow these properties are hierarchically related,with
the property of CA imposing the tightest constants on the distribution of item responses. Because
all the observable properties are implied by CA, each of these properties can be considered to
be an incomplete test of CA (Maraun et al., 1998). Due to the number of restrictions imposed
by CA and sparse observations associated with many of these restrictions, it is argued that the
practical assessment of the MH model assumptions relies on incomplete tests for CA. In Sect. 2,
we investigate the loss of information associated when, instead of CA, an incomplete test of CA
is used, for which the complexity of the observable properties is defined as the agreement of the
properties with a wider range of patterns of data. In Sect. 3, we look at the sensitivity of the
various properties to violations of the MH model assumptions. The results of these studies are
summarized and discussed in Sect. 4 along with their implications.

1. Properties of Multivariate Dependence

In this section, seven distinct observable properties are defined for binary test data, all of
which are implied by the MH model. Let X = (X1, . . . , X J ) be the random vector containing
binary item response variables Xi . Also, let � denote the random vector of latent variables, with

p(x) = P(X = x) =
∫

P(X = x|� = θ)dF(θ).

The assumption of LI states that the variables X1, . . . , X J are locally or conditionally independent,
given� = θ . Further, let P(Xi = 1|� = θ) denote the i th response function, then the assumption
M is satisfied whenever all J response functions are (element-wise) non-decreasing in θ , and
assumption UD holds if� = � (i.e., scalar valued). TheMHmodel is defined by the assumptions
UD, LI, and M (Mokken, 1971).

It will be shown how the observable properties are related to each other, with property CA
being the most restrictive of these properties. Next, several practical limitations will be discussed
that relate to the number of inequality restrictions the properties impose on p and the problem
of sparseness of observation. Finally, to account for these practical limitations, the assessment of
the trivariate distributions of all triplets of item is considered, adding two more distinct properties
for assessing the MH model assumption.

1.1. Observable Properties

Let p be a vector, which has as its elements pk = p(x), arranged in lexicographical order
of x (i.e., scores on the right run faster from zero to one). Then, p contains the multinomial
probabilities parameters for the distribution of the frequencies of X = x, with the restriction
1′ p = 1 (Holland, 1990). Each of the observable properties that are discussed below differs with
respect to the additional restrictions they impose on p.

1.1.1. (Conditionally) Associated Random Variables Esary et al. (1967) defined X to be asso-
ciated (A), if the covariance between any pair of binary non-decreasing functions of X is non-
negative. A conditional version of property A was proposed by Holland and Rosenbaum (1986)
and Rosenbaum (1984), where X is said to be CA, if for any partition X = (Y , Z), the variables
Y are associated, given any arbitrary function of Z.
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Assume that p > 0, then CA can be concisely expressed in terms restricted log-odds ratios,
as

K ln(M p) ≥ 0, (1)

withK = Iv ⊗ (1,−1,−1, 1) (Kronecker product), Iv is the identity matrix of dimensions equal
to the number of restrictions v imposed by CA, and M is a binary design matrix (Bartolucci &
Forcina, 2005). Each of the consecutive four rows of the matrixM in (1) correspond to a particular
restriction imposed on p by property CA, with v = (2d − 1)J (J − 1)/2 and d = 2J−2. For
example, in case J = 2, M = I4 and (1) yields ln p1 − ln p2 − ln p3 + ln p4 ≥ 0.

Walkup (1968) characterized property A in terms of a collection of pairs of binary non-
decreasing functions. For J = 3, there are nine such pairs of functions. The constraints these
functions impose correspond to restrictions on p that can be expressed as (1), with the matrixM
equal to

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1, 1) ⊗ I4
I2 ⊗ (1, 1) ⊗ I2

I4 ⊗ (1, 1)
I2 ⊗ ((1, 0)′ ⊗ (1, 1), I2)
I2 ⊗ (I2, (0, 1)′ ⊗ (1, 1))
(I2 ⊗ (1, 0)′ ⊗ (1, 1), I4)
(I4, I2 ⊗ (0, 1)′ ⊗ (1, 1))
((1, 1) ⊗ (1, 0)′ ⊗ I2, I4)
(I4, (1, 1) ⊗ (0, 1)′ ⊗ I2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

The last row in (2), for example, corresponds to the restriction

ln p1 − ln(p3 + p5 + p7) − ln p2 + ln(p4 + p6 + p8) ≥ 0,

or equivalently, Cov(1− (1− X1)(1− X2), X3) ≥ 0. For J = 4, Walkup (1968, pp. 1400–1401)
enumerated v = 99 pairs of binary non-decreasing functions to characterize property A.

1.1.2. Multivariate Totally Positive Next, consider the property ofmultivariate totally positivity
of order 2 (MTP2; Karlin & Rinott, 1980) for a random vector U . The density f (u) is said
to be MTP2, if f (u) f (v) ≤ f (max(u, v)) f (min(u, v)), for all outcomes u, v, and with the
minimum and maximum applied element-wise. For bivariate densities, the property is called TP2
and corresponds to amonotone likelihood ratio ordering (MLR) in case the joint density is strictly
positive (Karlin, 1968; Sarkar, 1969). This MLR property is relevant as it is the property used by
Grayson (1988) to establish the stochastic ordering on � by the sum scores S = X1 + · · · + X J

under the MH model.
For the binary random vector X , assume that p > 0. Then, (1) can also be used as an

expression for MTP2, by omitting the matrix W in the algorithm by Bartolucci and Forcina
(2005, p. 41) for constructing matrix M, and adjusting v accordingly. The MTP2 property then
corresponds to the requirement that Cov(Xi , X j |Z = z) ≥ 0, for any partition X = (Xi , X j , Z)

and any vector z.
For a multidimensional vector �, Holland and Rosenbaum (1986, Theorem 7) showed that

the assumptions of LI and M imply that X satisfies the property of MTP2, if � is MTP2. Also,
X is MTP2, whenever (X,�) satisfying a particular higher-order factor structure (Ellis, 2015).
These results imply that the property of MTP2 is not confined to unidimensional models only.
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1.1.3. Nonnegative Covariances Equation (1) can also be used to restrict the bivariate distri-
butions of pairs of item variables Xi and X j , such that Cov(Xi , X j ) ≥ 0, for all 1 ≤ i < j ≤ J .
Let

Ti j =
J⊗

k=1

Ti jk , with Ti jk =
{

I2 if either i = k or j = k
(1, 1) otherwise,

and let thematrixM be obtained by stacking on top of one another allmatricesTi j .With thismatrix
M and v = J (J − 1)/2, expression (1) imposes the restriction of the property of nonnegative
covariances (NC), which implies that all the scalability coefficients are nonnegative (Mokken,
1971; Sijtsma & Molenaar, 2002).

1.1.4. Manifest Monotonicity The observable property MM pertains to the regression of each
Xi on S − Xi , with S = X1 + · · · + X J . Junker (1993) showed that MM provides a partial
characterization of a general class of latent variable models that include the MH model. To show
CA implies MM, let R = S − Xi − X j . Then, CA implies for all R = r , that

P(Xi = 0, X j = 0, R = r)P(Xi = 1, X j = 1, R = r)
≥ P(Xi = 0, X j = 1, R = r)P(Xi = 1, X j = 0, R = r),

or equivalently P(Xi = 1|S − Xi = r) ≤ P(Xi = 1|S − Xi = r + 1). The inequalities imposed
by MM thus correspond to a selection of consecutive rows ofM for CA. For example, for J = 3,
matrixM for MM becomes

⎡
⎢⎢⎢⎢⎢⎢⎣

I2 ⊗ (I2, (1, 0) ⊗ (0, 1)′)
I2 ⊗ ((0, 1) ⊗ (1, 0)′, I2)
(I4, I2 ⊗ (1, 0) ⊗ (0, 1)′)
(I2 ⊗ (0, 1) ⊗ (1, 0)′, I4)
(I4, (1, 0) ⊗ (0, 1)′ ⊗ I2)
((1, 0) ⊗ (0, 1)′ ⊗ I2, I4)

⎤
⎥⎥⎥⎥⎥⎥⎦

. (3)

Unlike the other observable properties that have been discussed thus far, MM for all test item
does not imply that MM also holds for any subset of item. For example, for J ≥ 3, MM does not
imply NC nor the other way around.

1.1.5. Strongly Positive Orthant Dependency Holland (1981) proposed a generalization of the
MHmodel, by relaxing the LI condition. His approach to modeling the dependencies between the
item variables uses clusters of item variables with outcomes of all zeros or ones. Let V contain a
selection of variables from X and consider the partition V = (Y , Z). Besides UD, also assume
that both

P(V = 1|� = θ) is non-decreasing in θ , and (4a)

P(V = 0|� = θ) is non-increasing in θ, (4b)

for any selection V . Then, Holland (1981) showed that these assumptions together with the
assumption of local nonnegative dependence (LND) coincide with following three inequalities:

P(V = 1) ≥ P(Y = 1)P(Z = 1), (5a)
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P(V = 0) ≥ P(Y = 0)P(Z = 0), and (5b)

P(Y = 1, Z = 0) ≤ P(Y = 1)P(Z = 0), (5c)

for any partition of the selected variables V = (Y , Z), where the assumption LND is obtained
from (5a–5c) by conditioning each term on � = θ .

The observable property defined by (5a–5c), for any V = (Y , Z) implies strongly positive
orthant dependency (SPOD; Joag-Dev, 1983), with the latter obtained by taking V = X (Block &
Fang, 1990). Following Holland and Rosenbaum (1986, p. 1531), we refer to the property defined
by (5a–5c) as SPOD, but have it understood that it applies to any subset of item variables from X .

The property SPOD can be expressed in terms of the log-odds ratios in (1) by appropriately
adjusting matrix M and v. For example, for V = (Xi , X j ), all three inequalities coincide with
Cov(Xi , X j ) ≥ 0. For J = 3, let Y = X1 and Z = (X2, X3), so that (5a) and (5b) imply that

ln p8 − ln p4 − ln(p5 + p6 + p7) + ln(p1 + p2 + p3) ≥ 0 and
ln p1 − ln p5 − ln(p2 + p3 + p4) + ln(p6 + p7 + p8) ≥ 0,

respectively. These two inequalities hold, if and only if (5c) holds, for Y = (X2, X3) and Z = X1,
and Y = X1 and Z = (X2, X3), respectively. Hence, for J = 3, SPOD reduces to inequality
(5c), for all V = (Y , Z).

1.1.6. Nonnegative Partial Correlations Unlike the observable properties discussed above,
NPC does not lend itself to be expressed as restrictions on the log-odds ratios. Instead, consider
the selection of variables (Xi , X j , Xk) from X . Then, for any such selection of variables, the
property NPC requires that

Cov(Xi , X j )Var(Xk) ≥ Cov(Xi , Xk)Cov(X j , Xk), (6)

which each selected variable taking on the role of Xk once (Ellis, 2014). NPC holds, whenever
all trivariate distributions of triplets of response variables satisfy MTP2 (Ellis, 2015).

1.2. Relationships Between the Observable Properties

All observable properties for the binary response data above are implied by CA (Holland &
Rosenbaum, 1986, p. 1536). Figure 1 (left) shows an overview of the observable properties and
their relationships, for J ≥ 4. The property MM is implied by CA, but MM neither implies, nor
is implied by any of the other properties. In Fig. 1, NPC pertains to the trivariate distributions
of all triplets of items, and NC pertains to the bivariate distributions of all pairs of items. The
remaining observable properties apply to the multivariate distribution of all the J item variables.
In case J = 2, all the properties coincide with Cov(X1, X2) ≥ 0. For J = 3, binary random
variables, Ellis (2015) showed that the properties CA and MTP2 coincide. Also, the properties A
and SPOD coincide (‘Appendix’), as shown in Fig. 1 (right).

1.3. Practical Considerations

Figure 2 also shows the natural logarithm of the number of restrictions v imposed on the
multivariate distribution of the item variables by the observable properties in Fig. 1. The bold line
is included for reference and shows that the number of restrictions imposed by CA fast exceeds
10J for J > 6. This means that an exhaustive or complete test of CA is practically infeasible for
more than five items (Bartolucci & Forcina, 2005; De Gooijer & Yuan, 2011).
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Figure 1.
Hierarchical relationships between the observable properties, for J binary variables.

Figure 2.
The number of restrictions imposed by the observable properties as a function of J .

The many inequality restrictions imposed by the various properties limit the use of likelihood
ratio tests (Bartolucci & Forcina, 2000, 2005; Tijmstra et al., 2013) that require the estimation
of p under all constraints imposed by the restriction. Also, obtaining the distribution of the test
statistics often involves simulations, where the problem is similar to Bayesian methods for testing
the properties (e.g., Tijmstra et al., 2015, for MM), in that the agreement to all v restrictions
need to be assessed for many samples of p. For local (diagnostic) tests, as performed in Mokken
scale analysis (Molenaar & Sijtsma, 2000; Van der Ark, 2007), the problem induced by the many
restrictions is that of multiple testing (Ellis, 2014).

Beside the many restrictions, another problem for assessing the observable properties relates
to sparseness of observations. Because the number of response patterns x increases exponentially
with the number of items, many of these response patterns will be expected to have sparse obser-
vations, even for large sample sizes. The sparse observations may thus not only limit the extent
to which one can rely on the asymptotic results of a likelihood ratio test, but also make the results
of locally performed tests sensitive to sampling error.

Not all properties are equally sensitive to sparse observation. By pertaining only to the
(marginal) bivariate distributions, the assessment of property of NC will generally involve fewer
number of sparse observations than MTP2, for example, where each restriction involves the joint
distribution of four response patterns. For illustration, data on the performance of 425 pupils on
four transitive reasoning tasks (Length) were analyzed (Verweij et al., 1996, available from the
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mokken package, Van der Ark, 2007). Two of the vectors x contained no observations, so that
the active number of restrictions of CA was reduced by 12–78. Figure 3 shows the 78 estimated
log-odds ratios in ascending order, along with their 95% confidence interval. The figure shows
that there are 33 violations of CA; one significant violation. Figure 3 also shows the 15 out of 24
(active) logs-odds ratios for property MTP2 and the six estimated values for NC. Comparing the
results of MTP2 to NC clearly illustrates how the property NC is more robust to sampling error,
as reflected by the narrow confidence intervals compared to those for MTP2. However, NC is also
associated with a substantial loss of power, with the log-odds ratios generally located more to the
right.

1.4. Properties for Trivariate Distributions of Item Triplets

The previous section showed that, on the one hand, the property NC overcomes the problem
of sparse observations by pertaining to the bivariate (marginal) distributions of pairs of items,
but is also associated with a substantial loss of information about the validity of the MH model
assumptions. On the other hand, the property MTP2 does appear to be more powerful in detecting
violations of themodel assumptions, but is rather sensitive to sparseness of observations, rendering
it sensitive to sampling error.

The property NPC utilizes the information contained in the trivariate distributions of all
triplets of item variables and thereby strikes a balance between the practical limitations that affect
property NC and MTP2. Property NPC imposes tighter constraints on p than NC and might
therefor provide a more powerful test for detecting violations of the MH model assumptions.
Also, the trivariate distribution of item triplets will generally contain few sparse observations for
sufficiently large sample sizes, N > 200, say.

Like property NPC, consider applying the multivariate observable properties to the trivariate
distributions of all triplets of item variables, and let 3-CA denote the property CA applied to the
trivariate distributions of all triplets of items (similar for the other properties). Then, the properties
applied to the trivariate distributions are related as shown in Fig. 4. The top two rows in Fig. 4
coincide in case J = 3.

2. Incomplete Tests of Conditional Association

In this section, the tightness of the constraints imposed on p by the observable properties
is investigated. With property CA implying all the other properties considered in the previous
section, the other properties for assessing the MH model assumptions can be considered to be
incomplete tests of CA; in the sense the properties can be obtained by relaxing some of the
restrictions imposed by CA (Maraun et al., 1998). In practice, we rely on such incomplete tests,
due to the large number of restrictions CA imposes. However, the number of inequality restrictions
does not provide a clear indication of the tightness of the constraints imposed by the observable
properties. For example, for J = 4 propertyA imposed 99 restrictions,which are all implied by the
24 constraints imposed by MTP2. Figure 1 shows the hierarchical relationships of the observable
properties, but it does not show howmuch information is lost when, instead of CA, an incomplete
test of CA is used to make inferences about the MH model assumptions. The advantage of the
use of incomplete tests is that their assessment generally involves fewer inequality restrictions,
and these incomplete tests are generally less sensitive to sparse observations. As a consequence,
incomplete tests of CA are practically useful, but only to the extent that they are not associated
with a substantial loss of information about CA. Such a loss of information would namely result
in loss of power when assessing the MH model assumptions.

In the application of their likelihood ratio procedure, Bartolucci and Forcina (2005) observed
that only a few CA restrictions were ‘activated’ in addition the restrictions imposed by MTP2.
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Figure 4.
Hierarchical relationships between the observable properties (excluding MM), for J ≥ 4 binary variables.

This suggests that little information may be lost when MTP2 is assessed, instead of property CA.
Here, the tightness of the constraints imposed on p is investigated in terms of model complexities,
which provides a general assessment of the observable properties that does not rely on the data.
With the observable properties all impose inequality restrictions on the probabilities associated
with the multinomial frequencies, we can think of each of these properties as a model for the
multinomial response frequencies and rephrase the choice for an incomplete test for the MH
model assumptions as a model selection problem.

In general, model selection involves a tradeoff between the goodness of fit of the models
under consideration and the model complexities. A model is selected, if it can accurately predict
future data. This requires accurate model-data fit, while also providing a description of the data
that is as simple as possible (Occam’s razor), as not to overfit the data. Statistics that balance
goodness of fit against model complexity include Akaike’s (1974) AIC and Schwarz’s (1978)
BIC, where the goodness of fit is expressed by the likelihood function, and the model is penalized
by the estimated number of parameters. Complexity, however, involves more than the number
of estimated parameter (Myung et al., 2005). For example, Bonifay and Cai (2017) found that
different parametric models for response data that had the same number of parameters differed in
the extent to which they fit diverse patterns of data. They thereby showed that model complexity is
only partly described by the number ofmodel parameters (Pitt et al., 2002; Preacher, 2006). Similar
to the idea offitting propensity suggested byPreacher (2006),wehere define the complexities of the
observable properties as the proportion of samples from the (unconstrained) multinomial model
that satisfy the inequality constraints of the observable properties. By assigning a distribution to
the multinomial probability parameters, this notion of complexity corresponds to the definition of
model complexity for Bayes factors, with the distribution of the multinomial parameters taking up
the role of the encompassing prior (Hoijtink, 2011; Klugkist & Hoijtink, 2007). A more complex
property is then said to impose looser constraints on the outcomes, thus fitting a wider range
of patters of data. In this respect, a higher complexity means that the property is generally less
sensitive tomodel violations.Hence, propertyCA is the least complex of the properties considered,
and NC is the most complex.

2.1. On the Complexity of the Observable Properties

A simulation study was performed as an initial assessment of the complexities of the observ-
able properties, for J = 3. A total of one million vectors p where samples from a flat Dirichlet
distribution, with p > 0 and 1′ p = 1. These samples provided a uniform coverage of the outcome
space of p (cf. Bonifay & Cai, 2017). Subsequently, for each vector p, all the observable prop-
erties in Fig. 1 (right) were assessed. The proportion of samples that satisfy a given observable
property then provides an indication of the complexity of the property.
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Figure 5.
TriangularVenn diagramof properties in Fig. 1 (J = 3), with the overlap betweenNCandMM in gray,with the conditional
percentages, given either NC or MM (or both).

The results of the simulation show that a total of 163,627 samples (16.36%) satisfy either
NC or MM or both, with a small percentage (0.36%) that only satisfied MM, and about 5.04%
that satisfy both NC and MM. Figure 5 shows the overlap between the observable properties,
with the conditional percentages, given that either NC or MM or both are satisfied. Note that the
intersection of NC and MM is contained in SPOD. In ‘Appendix,’ it is proven that this is always
the case. Figure 5 shows that SPOD accounts for about 75.08% of all samples that satisfy either
NC or MM. Of the 10 million samples (unconditionally), CA was satisfied by about 2.09% of
the samples. The constraints imposed by CA are considerably tighter than those imposed by the
other observable properties, with no one property containing more than 40% (38.56% for MM)
of samples that also agree with CA. If both NC and MM satisfied, then about 41.35% of these
samples also satisfy CA.

2.2. Scalability Coefficient

Rather than using an incomplete test of CA to assess theMHmodel assumptions, the associa-
tions between the response variables can be expressed by a statistics, like a scalability coefficient.
A desirable property of such a statistic would be that it is related to the tightness of the imposed
bounds on p (Kimeldorf & Sampson, 1989), such that the value of the statistic corresponds to the
hierarchical relationship in Fig. 1. To assess whether property CA can be reliably inferred from
the value of scalability coefficients H , the coefficient was computed for each of the previously
sampled vectors p (e.g., Roskam et al., 1986, p. 266).

Figure 6 shows the estimated conditional densities of H , given each of the observable proper-
ties in Fig. 1 (right). Although the ordering of these densities roughly agrees with the hierarchical
relationships between the properties, Fig. 6 shows that the densities have a considerable overlap.
This means that it is practically impossible to reliably infer which property holds, given the value
of H . Moreover, the value of coefficient H was below the default recommended value of 0.30 for
40.75% of the cases for which property CA was satisfied.

2.3. Manifest Monotonicity

Property MM was found to be the least complex of the incomplete tests of CA for J = 3,
imposing the tightest constraints on p after CA. Here, we further explore the discrepancy in
complexity between MM and CA as J increases. To this end, a Gibbs sampler was employed
to sample 10,000 vectors p under the constraints imposed by MM and assess the percentage of
these samples that also satisfy CA. We first explain the Gibbs sampling procedure (cf. Ligtvoet
& Vermunt, 2012; Hoijtink & Molenaar, 1997).
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Figure 6.
Conditional densities (vertically displayed) of the scalability H , given the properties in Fig. 1 (J = 3), along with the
percentages H < 0.30.

Gibbs sampler Suppose we wish to sample a vector p from a flat Dirichlet distribution under
the constraints imposed by v inequality restrictions. Also, suppose we already have the vector
q that satisfies these constraints. Then, we can sequentially sample the values p j by following
the next three steps. First, compute from the inequalities imposed on p j the maximum lower
bound a j and the minimum upper bounds b j , using the values q1, . . . , q j−1, q j+1, . . . , q2J . For
example, for J = 3, the element p2 is bounded from above by MM by the first restriction in (3):
p2 ≤ q1(q7 + q7)/q5 − q3. Second, sample a value q∗

j from a gamma distribution (unit shape)
that is truncated from below by max(0, a j ) and from above by b j . From this, the new vector
q = q∗/1′q∗ is obtained, with q∗ = (q1, . . . , q j−1, q∗

j , q j+1, . . . , q2J )
′. Third, we have for p the

vector q obtained by repeating the first two steps for all p j .
To obtain the initial vector q for the Gibbs sampler, a single sample is taken from the flat

Dirichlet distribution, for which we assess the required restrictions. Those restrictions that are
satisfied are then ‘activated’ and the Gibbs sampler is run using the active restrictions only,
resulting in a new vector for which at least the active restrictions are satisfied. The vector q is
then obtained by repeating the Gibbs sampler and activating those (additional) restrictions that
are satisfied at each step, until all v restrictions are active.

Recall that for J = 3, 38.56% of the samples that satisfied property MM also satisfied CA.
Of the 10,000 samples obtained from the Gibbs sampler for J = 4, about 0.06% were found to
also satisfy CA. Increasing the number of items to five further reduced this percentage to below
0.01%. The results strongly suggest that the discrepancy in complexity between the properties
MM and CA increases as the number of items increases.

2.4. The Distributions of Subsets of Item Variables

The complexities of the properties are further investigated for J = 4, which extends the
results in Fig. 5 (excluding MM) and includes the properties MTP2 and A, along with 3-CA and
3-SPOD for the trivariate distributions of all four triplets of item variables. A total of 10 million
samples of the vector p were obtained from a flat Dirichlet distribution. Of these 10 million
samples, 343,556 (3.44%) satisfied NC. For these 343,556 samples, Fig. 7 shows the percentages
of overlap between the observable properties. For example, the gray areas in Fig. 7 correspond
to the properties A and 3-CA, where A accounts for about 34.76% of the samples that satisfy
NC and the property 3-CA accounts for about 0.45%, with the latter, thus imposing considerably
tighter constraints on p (less complex). Of the samples that satisfy NC, both MTP2 and CA were
satisfied by less than 0.01%. After CA and MTP2, the properties 3-CA and NPC imposed the
tightest constraints on p, which were satisfied by, respectively, 0.45% and 33.83% of all samples
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Figure 7.
Triangular Venn diagram of properties in Fig. 4, with the conditional percentages, given NC. The properties A and 3-CA
and their overlap are shown in gray.

that satisfied NC (0.02% and 1.16% of all 10 million samples). However, even for those samples
that satisfied 3-CA, only about 0.77% also satisfied CA. Hence, for J = 4, the results show that
there exists a considerable gap between the complexity of property CA and any of the incomplete
tests for CA (except MTP2).

For J > 3, the property CA implies MTP2, but not the other way around. However, because
of the small number of cases that satisfied MTP2, none of the samples contained cases for which
MTP2 was satisfied and CAwas not. To further investigate the distinction between the complexity
of MTP2 and CA, the Gibbs sampler (Sect. 2.3) was employed to sample 10,000 vectors p under
the constraints imposed by MTP2. For J = 4, the percentage of samples that satisfied CA was
about 98.38%. Using the same procedure for J = 5, this percentage slightly reduced to 94.48%,
with the log-odds ratio of the largest observed violation of CA corresponding to a small effect
size (Haddock et al., 1998; Hasselblad & Hedges, 1995). This result agrees with the observation
mentioned earlier by Bartolucci and Forcina (2005).

3. Sensitivity to Model Violations

All the observable properties considered in the previous section are implied by the MH
model for binary response variables, such that the violation of any of these properties discredits
the assumptions that define the MHmodel. The different properties may, however, not be equally
sensitive to different model violations. Insights into the sensitivity of the observable properties to
various model violations may aid the development of goodness-of-fit statistics for specific model
assumptions.

3.1. Violations of Local Independence

The MH model consists of the assumptions of LI, UD, and M. Holland (1981) suggested an
alternative set of assumptions, consisting of LND,UD, and themonotonicity assumption of perfect
scores in (4a) and (4b), which imply M. Here, LND relaxes the LI assumption, whereby LI is
obtained from the LND assumption by replacing the inequality restrictions of LND by equalities
(Holland 1981, Theorem 1). The alternative set of assumptions coincide with the observable
property of SPOD, which means that SPOD corresponds to a model for which LI is not assumed
to hold. Furthermore, theMHmodel implies CA, which in turn implies SPODRosenbaum (1984).

As was shown in the previous section, CA occupies only a very small section of the outcomes
space that satisfies SPOD. Hence, CA is a priori unlikely to hold, given that the data satisfy a
model that does not imply LI. Consequently, we may conclude that CA is sensitive to violations
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of the LI assumptions. Based on the results in Fig. 7 (J = 4), the same may be concluded for
MTP2 and (tentatively) for 3-CA, as these properties show little overlap with SPOD.

Neither of the properties NC, NPC nor MM imply SPOD, which means that these properties
may or may not hold, irrespective of SPOD. The properties may then be sensitive to violations of
LI when modeled in a specific way, but not to violations of LI in general. Property MM, however,
is shown in Fig. 5 to be almost completely encompassed by SPOD and thus may be found to be
sensitive to violations of LI more generally. For Mokken scale analysis based on these properties,
this means that a violation of NC or NPC discredits the MH model, but from this it cannot be
concluded that the observed violation was due to a violation of the LI assumption.

3.2. Violations of Unidimensionality

Holland and Rosenbaum (1986) referred to a model that satisfies LI and M, but allows �

to be multidimensional, as a monotone latent variable model. They showed that any monotone
latent variable model implies property MTP2, if the density of � is MTP2. A similar result was
obtained by Ellis (2015), in case (X,�) satisfies a particular higher-order factor structure. This
means that one cannot make inferences about the dimensionality of (the unobserved) � based
on the confirmation of MTP2 or any property it implies. Because of the minor discrepancy found
between the properties MTP2 and CA, the assessment of the dimensionality of � poses a real
challenge for future research.

Another difficulty, when studying the influence of violations of UD, is that the addition of
more latent variables in a model generally coincides with a violation of the LI assumptions when
fitting a unidimensional model.

3.3. Violations of Monotonicity

A small simulation study is performed to investigate the sensitivity of the observable prop-
erties to violations of assumption M. Given the assumptions of LI and UD, a choice needs to
be made for the number of items, the distribution of the latent variable, and a way of inducing
and quantifying violations of M. The results of the analysis on the sensitivity of the observable
properties to violations of M highly depend on these choices. In order to make the results fairly
generalizable across a wide range of choices of model specifications, a latent class approach is
used (e.g., Croon, 1990; Heinen, 1993; Lazarsfeld, 1950). The approach consists of assuming a
discrete distribution for the latent variable. By taking the number of latent classes to equal to the
number of distinct response patterns, this approach is highly flexible with respect to the shape of
the distribution of the latent variable and the shape of the response functions.

The choice for the number of items is motivated by the results on the complexities of the
properties, which were shown to be very restrictive, especially for large numbers of items. By
initially taking J = 4, we may expect the latent class model to generate sufficient samples of
the vector p for which the properties hold, in order to compare the size of the violations of M
between those cases where the property is violated to those cases where the property holds. For
J = 3, the results are similar to the ones presented here.

3.3.1. Procedure For the distribution of �, a vector c = (c1, . . . , c16)′ was sampled from a
Dirichlet distribution, which contains the latent class proportions ck = P(� = k). The parameters
of the Dirichlet distribution were chosen, such that the middle latent classes had generally more
support. Further, let bi = (bi1, . . . , bi16)′, with bik = P(Xi = 1|� = k) sampled from a beta
distribution, andwith the elements in bi arranged in increasing order in agreementwith assumption
of M. Figure 8 shows an example of four response functions P(Xi = 1|� = k), with in light
gray the 95% intervals of the response functions under the simulation conditions, along with the
intervals for the latent classes. To induce a violation ofM, six adjacent element of bi were randomly
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Figure 8.
Example of four item response functions that violate M, with the density of � given below. The light-gray areas show the
95% intervals under which the functions were generated before inducing a violation of M. The dark-gray areas (above
the local decreases) show the size of the violations of M, with Vi expressing the size of the area weighted by the density
of the latent variable.

selected, and reversely ordered, leading to locally decreasing response functions. Assuming LI,
we then get p = Ac, with A = (a1, . . . , a16) and ak = (1 − b1k, b1k)′ ⊗ · · · ⊗ (1 − b4k, b4k)′.
A total of 10,000 such vectors p were generated, each containing the multinomial parameters for
the outcomes of the four item variables, with each response functions violating the assumption
M.

To quantify the size of the violation of M, let di = (bi1, di2, . . . , di16)′, with the values of
di2, . . . , di16 obtained sequentially as dik = max(di,k−1, bik). Then,

Vi = c′(di − bi ) × 100%, (7)

which expresses the average probability (as percentage) required to compensate for the local
decreases of the initial response function. Figure 8 shows for each item the value Vi , corresponding
to the dark-gray area above the local decrease, weighted by the probability mass function of �.
For example, for the first two items in Fig. 8, V1 = 4.69 and V2 = 16.99, where the second
response function shows a decrease at a denser region of �.

3.3.2. Results Let VM denote the average value of Vi , across the four items. The results of the
simulation show that VM = 8.169 across the 10,000 generated cases (with the 1st and 3th quartile
at 6.389 and 9.700, respectively), which is about equal to the value of VM obtained for Fig. 8.

Assessing the validity of the observable properties and evaluating the distributions of VM for
those cases for which the properties held true showed that the distributions of VM were about the
same for the properties 3-SPOD, A, and SPOD, and about the same for both MTP2 and CA. The
results of the simulation are therefore discussed further only for the properties NC, 3-CA, NPC,
SPOD, MM, and CA.
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For each property, Fig. 9 shows the estimated densities of VM (vertically displayed) in case
the property was satisfied (True; false discovery) and in case it was violated (False). Figure 9
also shows the percentage of times each property was satisfied, with property CA satisfied about
24.67% of the time, 3-CA satisfied about half the time, and the remaining properties satisfied
most of the time. The percentages listed in Fig. 9 roughly agree with the hierarchical ordering of
the property in Fig. 1.

The differences of the violations VM between the True cases and the False cases were found
to be of a small to medium size for the properties 3-CA,MM, and CA, in in accordance to Cohen’s
(1988) d. Figure 9 shows that the properties NPC, NC, and SPOD are most sensitive to the size
of the violations of M, each corresponding to a large effect size, with the larges value d = 1.127.
Hence, SPOD is not sensitive to violations of M in a strict sense (only rejected about 6.21% of
the time), but the property is more likely to be rejected when the violations of M are larger. This
in contrast to property CA, which is generally more likely to be rejected, irrespective of the size
of the violations. For practical purposes, however, it may be argued that a relative small violation
of M should not matter. This would mean that CA may impose constraints on the observable data
distribution that just are too restrictive. For example, one might only be interested in testing the
MHmodel assumptions, because this model implies a MLR ordering on the latent variable by the
sum score. Then, for the practical use of the sum score, the size of the violation of assumption M
matters only to the extent to which it jeopardizes the MLR property.

3.3.3. The Monotone Likelihood Ratio Property To assess the influence of the M assumption
on the MLR property, the response functions that violate M are combined for each of the 10,000
cases to give an expression for the violation of property MLR, similar to VM. To this end, let
E = HA, with element esk = P(S = s − 1|� = k). Here, A is obtained from the simulation
and H is a matrix to relate the vectors x to their sum scores. Specifically, let H1 = I2 and
Hi+1 = [(Hi , 0′)′, (0′,Hi )

′], from which H = HJ is obtained sequentially. Then, vector bs =
(bs1, . . . , bs16)′, with

bsk = es+1,k/(esk + es+1,k) = P(S = s|S = s − 1 ∨ S = s,� = k).

The MLR property requires this last expression is non-decreasing in k. Hence, defining ds anal-
ogous to di , we define VMLR as the average of Vs obtained from (7) after substituting the item
index by the sum score s.

Figure 10 contains the density plot with the estimated 50%, 95%, and 99% confidence regions
of ln VM and ln VMLR, which shows a weak but positive relationship between the size of the
violations of M and the size of the violations of MLR. As the size of the violation of M increases,
so does the strength of the relationship. However, the size of the violations of MLR is generally
small, with VMLR = 2.011 (the 1st and 3th quartile at 1.018 and 2.565, respectively). This means
that none of the violations of M substantially invalidate the MLR property. The values VMLR

were further compared between the True and False cases, for each property. These results showed
no difference beyond a small effect size for any of the observable properties. Hence, the results
suggest that the MLR property is robust against violations of assumption M.

Molenaar (1997) generalized theMHmodel to polytomously scored items, where assumption
M can be defined for different definitions of the response function (Mellenbergh, 1995). Unlike
theMHmodel for binary response data, these polytomous models do not imply theMLR property
(Hemker et al., 1996, 1997) without imposing additional restrictions on the shape of the response
function (Ligtvoet, 2012). Although these polytomousmodels (assumingUD and LI) do not imply
the MLR property, Van der Ark (2005) found that generally only few violations of MLR actually
occurred, and that these violations had little effect on the ordering of respondents by their sum
score. Our results for violations of M for binary response data are in line with these findings.
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Figure 10.
Empirical confidence regions of the size of the violation of M against the size of the violation of property MLR (on a
logarithmic scale).

3.4. Violations of Local Independence (Continued)

For the practical use of the sum score, it was found that the violations of M have little impact
on the validity of theMLR property. Here, we consider again theMHmodel assumption of LI and
investigate the impact a violation of LI has on theMLR property, using a latent class approach. As
a model for generating the probabilities P(X = x|� = k), the assumptions proposed by Holland
(1981) are considered (Sect. 1.1.5), for J = 3 items. This small number of items clearly limits
the extent to which the results can be generalized (as with the previous studies), so the results of
this study should only be interpreted tentatively.

3.4.1. Procedure For eight latent classes, let the matrixP = ( p1, . . . , p8) contain the elements
p jk = P(X = x|� = k), for which assumption LND dictates that each pk is SPOD. For three
items, SPOD coincides with property A, so LND implies thatK log(M pk) ≥ 0, for k = 1, . . . , 8,
and with the design matrixM given in (2). That is, LND imposed constraints on the entries within
each column of P. The monotonicity requirements in (4a) and (4a) impose additional constraints
across the columns ofP. LetN0 = ((0, 1)′, (1, 1)′),N1 = N0⊗N0⊗N0, andN2 is likeN1 but with
its columns reversed. Then, the monotonicity assumption implies that the elements within each
rows of N1P are non-decreasing in k, and for N2P non-increasing in k. Hence, the assumptions
proposed by Holland (1981) correspond to the restrictions impose on P by the matrices M, N1,
and N2. Using the Gibbs sampler (Sect. 2.3), a total of 2000 such matrices P were simulated.
Next, let E = FP, with element esk = P(S = s − 1|� = k). Then, for each matrix P the statistic
VMLR can be computed (as above), with VMLR expressing the size of the violation of the MLR
property, as a result of relaxing the LI assumption.

3.4.2. Results The results of the simulation yield the average VMLR = 6.404 (with the 1st
and 3th quartile at 3.065 and 8.361, respectively). These violations of the MLR property are
substantially higher than those found above due to the violations of the M assumption. Hence, the
property of MLR is sensitive to violations of LI. Unfortunately, the assumption LI in our setup
does not lend itself for an expression that can serve as a measure for quantifying the size of the
violation of the LI assumption.

Evaluating the propertiesMMandCA (based on the previous analysis in Sect. 3.1), the results
showed that property MM was satisfied for half or the cases, whereas CA was satisfied 37.5% of
the time. Neither of the properties was found to be sensitive to the size of the violations VMLR.
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4. Discussion

Observable propertieswere evaluated that are all implied by theMHmodel for binary response
data. Any violation of a property discredits the MH model assumptions. The most restrictive of
these properties is CA, whereby each of the other properties can be interpreted as an incomplete
test of CA. The incomplete tests of CA are hierarchically related and differ with respect to
the inequality restrictions that they impose on the observable response distribution. The least
restrictive of the properties is NC, and it implies that all covariances between pairs of item
variables are nonnegative. The NC property forms the basis of the scalability coefficients used in
Mokken scale analysis. The other incomplete tests of CA take into consideration the higher-order
moments contained in the trivariate and multivariate distributions of the item scores.

The practical assessment of property CA is limited by the large number of inequality restric-
tions it imposes. These large number of inequality restrictions not only limit the feasibility of
a global test of CA (as for property A), but for local (diagnostic) tests also induce problems
associated with multiple testing. In addition to the large number of inequality restrictions, the
assessment of the MH model assumptions will inevitably need to deal with sparse observations.
Particularly the property of MTP2, which pertains to the joint distribution of individual response
patterns, is sensitive to such sparse observations, and as a result, to sampling error. Due to the
number of restrictions imposed by CA and the problem of sparseness of observations, the practical
assessment of the MH model assumptions always relies on an incomplete test of CA.

4.1. Complexities of the Observable Properties

The computational burden associated with the large number of inequalities means that the
observable properties could be studied only for small numbers of items. In a first series of small
studies, we investigated the loss of information, when instead of CA an incomplete test of CA is
used. For this purpose, the complexities of the incomplete tests were defined as their tendency
to agree with a wide range of patters of data, with CA being the least and NC the most complex
of the properties considered. For more than three items, the distinction between the complexities
of CA and the incomplete tests of CA was found to be very large, and increased with increasing
number of items. The exception to this rule was MTP2, which agrees largely with CA. It may
therefore be suggested that MTP2 provides a practical alternative to CA for testing the MHmodel
assumptions, which is associated with little loss of power.

Two remarks about the complexities of the properties are in order. First, the definition of
complexity allowed for the loss of information to be studies, without relying on sample size, but
this also means that we cannot infer from these results the exact extent to this loss of information
translates to a loss of power when assessing the properties on real data. Second, psychological and
educational tests contain items that are expected to relate to a common attribute, by design. Real
response data will therefore generally agree more with the observable properties than random
response patterns from a flat distribution. The complexities of the properties as presented here
thus only provide a benchmark against which the relative agreement of different properties can be
compared, when applied to real data. This is similar to the way the BIC penalizes the likelihood
by the number of parameters. Here, the complexity, in terms of the number, also does not relate
to real data.

4.2. On the Sensitivity to Model Violations

A second series of studies was performed to investigate the sensitivity of the observable
properties to different violations of theMHmodel assumptionsM, LI, andUD.Only the properties
CA andMTP2 were found to be sensitive to violations of assumptionM.However, these violations
of M seem to have little impact on the MLR property for ordering respondents by means of their

Downloaded from https://www.cambridge.org/core. 06 Jan 2025 at 09:37:32, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


RUDY LIGTVOET 1233

sum scores. The assumption of LI appears to be more relevant to the MLR property. Property
CA was found to be sensitive to violations of LI (here, CA coincides with MTP2), and to a lesser
degree also MM. Finally, a violation of UD does not imply that MTP2 is violated.
Besides the incomplete tests of CA considered, other observable properties have been proposed
that were not considered. When assessing property MM in Mokken scale analysis, sparse obser-
vations are accounted for by joining adjacent rest scores into rest-score groups (Van der Ark,
2007). Assessing MM across these rest-score groups thus constitutes an incomplete test for MM.
An incomplete test of CA can be similarly obtained by conditioning on the rest scores (Straat et
al., 2016), or some other ‘carefully selected’ sub-test score as suggested by Stout (2002). Further,
Ellis and Junker (1997) and Junker and Ellis (1997) provide a characterization of the MH model,
whereby the vector of item variables is taken to be embedded within an infinite sequence of item
variables (cf. Junker, 1991, 1993; Stout, 1987, 1990). Within this framework, other the observable
properties have been proposed, like vanishing conditional dependence and negative conditional
covariance (De Gooijer & Yuan, 2011; Junker, 1993; Yuan & Clarke, 2001).

4.3. Implications

The results of the studies presented show that CA is a difficult property to assess. Most of
the incomplete tests of CA are associated with a substantial loss of information and seem not
to be sensitive to specific violations of the MH model assumptions. However, it is also good to
keep in mind that any violation of any of the properties considered is sufficient for discrediting
the MH model. The challenge herein lies in combining the multitude of information obtained
from the data to derive at a single conclusion about the significance of observed violations. This
problem can be illustrated in Fig. 3, which shows the results of the log-odds ratios related to CA.
Here, only 78 restrictions were considered, but it is not obvious from the results how to combine
these into a single conclusion about the validity of the MHmodel assumptions. A global test may
produce a single p-value for this example, but becomes infeasible for more items. Also, different
tests might balance the odds on the left and right differently or overemphasize the extreme values.
These issues, however, mostly relate to goodness of fit. This is the other aspect of model selection
that we didn’t focus on.

The primary focus of this paper is complexity, which mostly concerned the inferences that we
canmake about CA, based on an incomplete test. It is about the extent to which the confirmation of
an incomplete test of CAwarrants the validity of CAor (by extension) theMHmodel assumptions.
The results of our analysis have specific implications for the interpretation of results of automated
item selections procedures inMokken scale analysis (Brusco et al., 2015;Mokken, 1971;Molenaar
& Sijtsma, 2000; Sijtsma & Molenaar, 2002; Straat et al., 2013). As explained in Mokken et al.
(1986, p. 280), the selection of items based on requirement imposed on the scalability coefficients
provides an operational definition of a scale that need not necessarily agree with the MH model.
Beside the issue of sampling error, our results show that rules of thumb used for construction such
scales are rather arbitrary (cf. Hemker et al., 1995; Smits et al., 2012). In addition, in constructing
these scales, the higher-order moments contained in the multivariate distributions of the item
scores are ignored, which was shown to be associated with a substantial loss of information about
the validity of the MH model assumptions. Hence, the scales produced by the automatic item
selection procedure may not be very informative about the model underlying the scale and as
such provide only an initial selection of items that require further analysis using more powerful
tests for detecting violations of the model assumptions.

4.4. Conclusion

The MH model is a very general model, which assumptions are shared by many of the
response models used in practice. The assessment of these assumptions thus has implications that
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stretch beyond just the use of the MH model. As mentioned by Molenaar (2004), the inferences
from a model are contingent on the validity of the model assumptions. A global test of goodness
of fit may reject a model, but this would tell us little about why this is the case or what the
problem might be. More research is required about the extent to which the assumptions and the
specifications of response models influence the type of inferences one wishes to make (Sinharay
& Haberman, 2014; Crişan et al., 2017). For example, our results suggest that the MLR property
is less dependent on the specification of the item response functions (cf. Van der Ark, 2005) than
on the LI assumption. This is important for the applied researcher who may want to test the MH
model, not because she cases so much about the model, but because it allows respondents to be
ordered on a common scales and it implies testable properties that reassure her that the decisions
and inferences she makes based on the sum scores are theoretically justified and empirically
supported.
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Appendix

Assuming p > 0, SPOD coincides with property A, in case of J = 3 binary variables.
For any subset of two variables from X = (X1, X2, X3), SPOD implies that the covariance
between the two variables is positive. This corresponds to the first three rows of the matrix in (2)
for the three distinct subsets V = (X2, X3), V = (X1, X3), and V = (X1, X3), respectively. The
remainder of the proof consists of going through the process of exhaustively listing all restrictions
imposed by SPOD, and expressing these in terms of the log-odds ratios. It can then be shown that
the last six rows of the matrix in (2) match one to one with those obtained for property SPOD.
As an example, consider the inequality in (5c), which reduces for Y = (X1, X2) and Z = X3 to
(p7+p8)(p1+p3+p5+p7) ≥ p7 andyields ln p8−ln(p2+p4+p6)−ln p7+ln(p1+p3+p5) ≥ 0.
The last inequality is obtained from (1) using the eighth row of the matrix in (2) for M. The
remaining five inequalities can be obtained similarly.
Assuming p > 0, MM and NC jointly imply the A, in case of J = 3 binary variables.
For property A, matrix (2) contains in its first three rows the constraints imposed by NC. Further,
the first two rows of the matrix in (3) correspond to the MM property for i = 1, which implies
both P(X1 = 0, S = 0)P(X1 = 1, S > 0) ≥ P(X1 = 1, S = 0)P(X1 = 0, S > 0) and
P(X1 = 1, S = 2)P(X1 = 0, S < 2) ≥ P(X1 = 0, S = 2)P(X1 = 1, S < 2). These last two
inequalities correspond to the restrictions imposed by the fourth and fifth row of (2). Likewise,
the remaining four restrictions in (3) imply the last four restrictions in (2).
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