
This is a “preproof” accepted article for Weed Science. This version may be subject to 

change in the production process, and does not include access to supplementary material. 

DOI: 10.1017/wet.2025.28 

 

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-

NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), 

which permits non-commercial re-use, distribution, and reproduction in any medium, provided 

the original work is unaltered and is properly cited. The written permission of Cambridge 

University Press must be obtained for commercial re-use or in order to create a derivative work. 

 

Short Title: UAS for Water Hyacinth Injury 

 

Evaluation of Water Hyacinth (Eichhornia crassipes) Response to Herbicides Using 

Unmanned Aerial System (UAS) Imagery 

Amber E. Riner
1
, Jonathan S. Glueckert

2
, Corrina J. Vuillequez

3
, James K. Leary

4
, Benjamin P. 

Sperry
5
 and Gregory E. Macdonald

6
 

 

1
Graduate Research Assistant (ORCID 0000- 0009-0004699-4784), Center for Aquatic and 

Invasive Plants, University of Florida, Gainesville, FL USA;  

2
Biological Scientist (ORCID 0000-0002-5892-1465), Center for Aquatic and Invasive Plants, 

University of Florida, Gainesville, FL USA;  

3
Graduate Research Assistant (ORCID 0009-0006-2088-5362), Center for Aquatic and Invasive 

Plants, University of Florida, Gainesville, FL USA;  

4
Assistant Professor, Center for Aquatic and Invasive Plants, Gainesville, FL USA; 

5
Research Biologist (ORCID 0000-0002-2471-2163), US Army Engineer Research and 

Development Center, Gainesville, FL USA; 

6
Professor (ORCID 0000-0002-8519-4611), Agronomy Department, University of Florida, 

Gainesville, FL USA 

Corresponding author: Amber Riner; 7922 NW 71
st
 Street, Gainesville, FL 32653; 

amber.riner@ufl.edu  

https://doi.org/10.1017/wet.2025.28 Published online by Cambridge University Press

https://doi.org/10.1017/wet.2025.28


Abstract 

Water hyacinth is a highly invasive, aquatic species in the southern US that requires intensive 

management through frequent herbicide applications to minimize harmful impacts. Quantifying 

management success in large-scale operations is challenging with traditional survey methods, 

which rely on boat-based teams and can be time-consuming and labor-intensive. In contrast, 

unmanned aerial systems allow a single operator to survey a waterbody more efficiently and 

rapidly, enhancing both coverage and data collection. Therefore, the objective of this research 

was to develop remote sensing techniques to assess herbicide efficacy for water hyacinth control 

in an outdoor mesocosm study. Experiments were conducted in spring and summer 2023 to 

compare and correlate data from visual evaluations of herbicide efficacy against nine vegetation 

indices (VIs) derived from unmanned aerial system (UAS)-based red-green-blue (RGB) imagery. 

Penoxsulam, carfentrazone, diquat, 2,4-D, florpyrauxifen-benzyl, and glyphosate were applied at 

two rates, and experimental units were evaluated for six weeks. The Carotenoid Reflectance 

Index (CRI) had the highest Spearman’s correlation coefficient with visually evaluated efficacy 

for 2,4-D, diquat, and florpyrauxifen benzyl (> -0.77). The Visible Atmospherically Resistance 

Index (VARI) had the highest correlation for carfentrazone and penoxsulam treatments (> -0.70), 

and the EXGR Excess Greenness Minus Redness Index had the highest correlation for 

glyphosate treatments (> -0.83). CRI had the highest correlation coefficient with the most 

herbicide treatments, and it was the only VI tested that did not include the red band. These 

vegetation indices were satisfactory predictors of mid-range visually evaluated herbicide efficacy 

values but were poorly correlated with extremely low and high values, corresponding to non-

treated and necrotic plants. Future research should focus on applying findings to real-world (non-

experimental) field conditions and testing imagery with spectral bands beyond the visible range. 

 

Nomenclature: 2,4-D; carfentrazone; diquat; florpyrauxifen-benzyl; glyphosate; penoxsulam; 

water hyacinth, Eichhornia crassipes (Mart.) Solms 

 

Keywords: drone; RGB; aquatic; vegetation index; remote sensing; herbicide injury; image 

analysis  
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Introduction 

Water hyacinth, known as one of the “world’s worst weeds”, is arguably the most intensively 

managed invasive plant species in Florida with management costs exceeding $3.6M per year 

(FWC 2024; Hiatt et al 2019; Holm et al. 1991; Langeland et al. 2014). Native to South America, 

this free-floating aquatic plant was introduced to North America as an ornamental in 1884 and 

quickly became problematic (Wunderlich 1962). Water hyacinth populations can double in size 

in as little as six days by vegetative reproduction of ramets (Hailu 2019). Ramets fragment from 

mother plants and readily spread through water currents, wind, and anthropogenically through 

boating activities and intentional movement (Hailu et al. 2019). Water hyacinth forms dense 

mats across the water’s surface that limit access and navigation, block and damage infrastructure 

such as bridges and flood control structures, provide habitat to disease vectors, decrease water 

quality, and reduce biodiversity (Holm et al. 1977; Villamagna and Murphy 2010). 

 

Since the 1970s, water hyacinth has primarily been managed proactively to keep population 

levels as low as possible by frequent (daily to weekly) deployment of boat-based applicators that 

search for and treat incipient plant populations with aquatic herbicides. Foliar applications of 

diquat and 2,4-D have been the commercial standard for water hyacinth management for 

decades; however, other active ingredients such as carfentrazone, florpyrauxifen-benzyl, 

glyphosate, and penoxsulam can also provide control and are utilized based on site-specific 

management needs (Enloe et al. 2018; Gettys 2014; Mudge and Netherland 2014). Diquat is a 

fast-acting herbicide and highly effective across a wide range of conditions (Kyser et al 2021; 

Wersal and Madsen 2012). Auxin mimic herbicides like 2,4-D and florpyrauxifen-benzyl induce 

death by stimulating uncontrolled growth, with 2,4-D showing results in days, while 

florpyrauxifen-benzyl is slower to achieve the same level of control (Hildebrand et al. 1946; 

Mudge et al. 2021). Amino acid synthesis inhibitors such as glyphosate and penoxsulam result in 

slow symptom development that progresses over several weeks (Mudge et al. 2014; Wersal et al. 

2010). 

 

Fast-acting herbicides, including diquat and 2,4-D, are preferred by applicators for their quick, 

visible effects and allow for easy identification of treated areas within hours to one day after 

application (Mudge and Netherland 2014a). However, this rapid damage can sometimes lead to 
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public concern about herbicide use (Heinzman et al. 2024). Slower-acting herbicides like 

florpyrauxifen-benzyl, glyphosate, and penoxsulam are believed to reduce public alarm due to 

the inconspicuous symptoms they cause after treatment. Acetolactate synthesis (ALS)-inhibitors 

are also generally more selective towards emergent native plants, which is desirable to many 

resource managers (Mudge and Netherland 2014). However, ALS-inhibitor resistance is 

prominent among many terrestrial weed species, and there are currently some water hyacinth 

populations in Florida with suspected reduced sensitivity to ALS-inhibitors (Brown et al 2024; 

Heap 2007)).  

 

In large-scale operational herbicide treatments, efficacy can be variable due to plant growth 

stage, non-detected plants that do not receive treatment, environmental conditions, human error, 

or population susceptibility (Ganie et al. 2017; Madsen et al. 2000). This commonly leads to 

refuge plants remaining after treatment, sustaining populations for regrowth and reinfestation 

(Cacho et al. 2006). To mitigate this, management efforts should be followed by frequent 

surveillance to evaluate herbicide efficacy and follow-up treatments to prevent refuge 

populations from becoming large infestations. Herbicide efficacy evaluations are traditionally 

conducted through visual ratings based on phytotoxicity symptoms. Phytotoxicity refers to the 

symptomology that plants exhibit in response to herbicide injury, such as chlorosis and necrosis. 

Although subjective, these ratings can provide adequate accuracy and necessary numerical data 

for statistical analysis of herbicide efficacy by researchers. However, visual phytotoxicity 

assessments have their limitations under field conditions. A commonly used survey method for 

monitoring is the line point intercept survey, which involves recording observations at equally 

spaced points along transects distributed throughout the water body (Madsen 1999). Some 

survey areas may be inaccessible by boat or be large enough that frequent monitoring is a 

significant drain on resources (Jakubauskas et al. 2002). The high growth rate and mobility of 

water hyacinth populations also contribute to the frequency of monitoring required, adding to the 

cost and resources allotted to management (Jakubauskas et al. 2002).  

 

Remote sensing technology can be a critical tool for streamlining the monitoring process of 

herbicide efficacy, thus significantly reducing the cost, time, and resources required compared to 

reliance on traditional visual monitoring (Jakubauskas et al. 2002). While low-resolution satellite 
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imagery (e.g., Sentinel 2; Landsat 8) has been used to map water hyacinth and predict injury, its 

spatial resolution is too low to map water hyacinth at the area coverages maintained by a 

proactive management regimen (Dube et al. 2017; Padua et al. 2022; Robles et al. 2010; 

Rodriguez et al. 2023). 

 

As an alternative to satellite imagery, unmanned aerial systems (UAS) equipped with optical 

cameras and automated flight planning can quickly cover large areas with high-resolution 

visually interpretable information (Cummings et al. 2017; Müllerová 2019). Many natural area 

managers use more affordable red, green, and blue (RGB) sensors and onboard navigation 

sensors for direct georeferencing of the captured images to fit their practical needs (Dronova et 

al. 2021; Kior et al. 2024). Curran et al. (2020) found that unmanned aerial surveys using 

onboard navigation systems were more spatially accurate, faster, and more efficient than manual 

line point-intercept surveys.  

 

The RGB bands of an inexpensive digital camera mounted to a UAS can allow visualization of 

herbicide symptomology in plants (Kior et al. 2024). Changes in plant physiology qualitatively 

change light spectra due to the absorption of light in the visible range by photosynthetic 

pigments, water, and the internal structures of leaves (Kior et al. 2024). For example, herbicides 

that impact photosynthetic activity can result in changes in reflectance in the red spectral range, 

which can be detected by cameras (Kior et al. 2024). Kior et al. (2024) reported that RGB 

spectral bands can estimate plant biomass and chlorophyll content with high efficiency. These 

bands can be utilized in various calculations to generate vegetation indices (VIs) which are 

designed to estimate key aspects of plant health. These indices have been shown to correlate with 

chlorophyll content, herbicide-induced injury, and biomass in previous studies (Abrantes et al. 

2021; Lieu et al. 2021; Lussem et al. 2018). While there have been several studies in row 

cropping systems correlating VIS from inexpensive RGB cameras with plant health, there is a 

lack of studies applying this methodology to monitor aquatic invasive plant management 

activities. Aerial monitoring of herbicide injury for aquatic invasive plants could significantly 

improve efficiency by reducing fieldwork demands and providing timely insights for 

management decisions. Given the success of RGB VIs in assessing herbicide impact on 

terrestrial plants, we propose that water hyacinth injury can also be effectively monitored using 

https://doi.org/10.1017/wet.2025.28 Published online by Cambridge University Press

https://doi.org/10.1017/wet.2025.28


this approach. Therefore, the objective of this study is to develop models for predicting herbicide 

efficacy on water hyacinth in response to six different herbicides using VIs derived from RGB 

imagery captured by unmanned aerial systems. 

 

Materials and Methods 

Growth and Treatment Parameters 

Experiments were conducted at the University of Florida’s Center for Aquatic and Invasive 

Plants in Gainesville, Florida (29.72°N, 82.42°W) during the spring and summer of 2023. Plants 

were grown in 151-L white high-density polyethylene mesocosms with a 56-cm diam and a 71-

cm depth, spaced approximately 1-m apart. Each mesocosm contained well-water amended with 

0.08-g L
-1

 of water-soluble fertilizer (24-8-16, Miracle-Gro® All Purpose Plant Food, Scotts 

Company) and 0.01-g L
-1

 of chelated iron (Grow More Iron Chelate 10%, Grow More). Mature, 

23 to 30 cm tall, water hyacinth plants sourced from Rodman Reservoir (29.52°N, 81.88W°) 

were transferred to experimental units (five plants per mesocosm) and left to establish for one 

month prior to herbicide application, at which time each mesocosm had 100% plant cover. 

Fertility was monitored using an electrical conductivity meter [GroLine Waterproof EC/TDS 

(ppm) Tester, Hanna Instruments] and fertilized with the same amount of fertilizer each time to 

maintain electrical conductivity measurements of 4 S cm
-1

. Insect pests were managed as needed 

using carbaryl (Sevin SL, Bayer CropScience LLC) and bifenthrin (UP-Star Gold Insecticide). 

During the first run, the average temperature was 72.5°F, and the average humidity was 74.5%, 

with weather conditions ranging from sunny to scattered clouds. In the second run, the average 

temperature was 81°F, and the average humidity was 81%, with weather conditions ranging from 

sunny to strong thunderstorms (National Centers for Environmental Information (NCEI) 2023). 

Mesocosm water quality reflected similar parameters typical of a Florida eutrophic lake. 

 

Treatments were randomly assigned to each mesocosm, and the study had a factorial 

arrangement of treatments plus a non-treated control and four replications. Factors were 

herbicide active ingredient (2,4-D; diquat; carfentrazone; florpyrauxifen-benzyl; glyphosate; and 

penoxsulam) and rate (typical field use rate and maximum labeled rate) (Table 1). Herbicides 

were applied using a CO2-pressurized backpack sprayer equipped with two11004 nozzles (XR 

nozzle, TeeJet® Technologies, Spraying Systems, 1891 Business Park Dr, Springfield, IL 62703, 

https://doi.org/10.1017/wet.2025.28 Published online by Cambridge University Press

https://doi.org/10.1017/wet.2025.28


USA) spaced 18 inches apart to achieve an effective swatch width of 36 inches, ensuring uniform 

spray coverage. The herbicides were selected to demonstrate a range of modes of action and 

symptom development profiles commonly used for water hyacinth management, with application 

rates reflecting both standard field rates and maximum label rates (Mudge et al. 2021; Wersal 

and Madsen 2012; Wersal and Madsen 2010; Madsen et al. 1995). Nozzle size was chosen to 

accurately deliver 935 L ha-1 of solution at the applicator’s walking speed while minimizing off-

target drift. Calibration was checked before and after treatment to ensure consistency throughout 

the treatment. The first run of the experiment was initiated on April 14, 2023 (spring), and the 

second run on July 6, 2023 (summer). 

 

Data Collection  

Efficacy (%) was visually estimated weekly by the same person for 6 weeks after treatment 

(WAT). Visually evaluated efficacy was based on phytotoxicity: growth, stunting, and visible 

damage compared to the non-treated control based on a scale from 0 to 100% (0 = healthy 

unaffected plants and 100 = complete death). Corresponding images were captured at noon 

during cloud-free windows, using a DJI Mavic 2 Pro quadcopter equipped with a Hasselblad 

L1D-20c RGB camera featuring a 20-megapixel CMOS optical sensor. If weather reports 

indicated cloudy conditions at noon, images were taken in the next closest cloud-free window to 

noon. A single image was designed to encompass the entire study region due to the small study 

area and low flight altitude. The study design was completely randomized to ensure that 

distortions around the edge of the image did not disproportionately affect any specific treatment 

group. The sensor was positioned at a nadir over the center of the entire experiment at an altitude 

of 30 m above ground level (AGL), producing a ground sampling distance (GSD) of 0.76 cm 

px⁻¹. The camera has a 77-degree field of view (FOV), an aperture range of f/2.8 to f/11, a focal 

length of 35mm, and an ISO range of 100–3200. Each captured image was 5472 × 3648 pixels. 

Image Calibration 

To standardize RGB values across images, mean pixel values for each RGB band were extracted 

from a PhotoVision 24” One-Shot Digital Calibration Target three-panel grayscale reflectance 

target placed at the center of the site using the histogram tool in ImageJ (Rasband, W.S., ImageJ, 

U. S. National Institutes of Health). Color curves in GIMP (Kylander and Olof et al. 1999) were 
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then used to adjust the tonal range and color balance by mapping input RGB values to reference 

values from the target manufacturer, and this process was applied to each image to account for 

variations in lighting conditions. 

Image Processing 

In QGIS (QGIS Development Team 2024), circular polygons with an area of approximately .25 

m
2 

were created to delineate each mesocosm, isolating vegetation from the background. The 

Zonal Statistics tool was then used to extract the mean RGB pixel values within each polygon, 

with digital numbers ranging from 0 to 255 (where 255 represents the highest intensity and 0 

represents the absence of that color). 

Image Analysis  

The extracted RGB values were used to compute vegetation indices (VIs) in RStudio (RStudio 

Team 2024) based on equations in Table 2. Selected VIs were chosen based on their 

demonstrated correlations with herbicide efficacy or crop yield in previous studies (Abrantes et 

al. 2021; Lieu et al. 2021; Lussem et al. 2018). 

Data Analysis 

Data analysis were performed in R Studio (v.4.4.2) (R Core Team, 2024, PBC, Boston, MA). 

The following R packages were used: DHARMa (Hartig et al. 2016), ggplot2 (Wickham 2016), 

rstatix (Kassambara 2019), tidyverse (Wickham et al. 2016), and multcomp (Hothorn et al. 

2002). Analysis of variance detected no difference for the interactions between rate, season, and 

treatment therefore data was pooled across these parameters to reflect a variety of rates and 

timings at which water hyacinth may be treated. Data were filtered to the three weeks displaying 

peak efficacy for each herbicide (1 to 3 WAT for diquat, 2,4-D, and carfentrazone, 2 to 4 WAT 

for florpyrauxifen-benzyl and glyphosate, and 4 to 6 WAT for penoxsulam) as determined by 

prior studies (Mudge et al 2021; Wersal and Madsen 2012; Wersal and Madsen 2010; Madsen et 

al. 1995). Non treated control data were also paired with the treated data for the corresponding 

monitoring weeks. The VIs were correlated with visually evaluated efficacy using Spearman’s 

correlation coefficient due to its robustness to outliers and ability to handle ranked data. The best 

VI for each herbicide was chosen by selecting the VI with the highest correlation. Additionally, 
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the VI with the highest correlation with visually evaluated efficacy when all herbicide data were 

combined was chosen for analysis to create a combined model. Data were then subjected to a 

linear regression using a random selection of 80% of the data with visual efficacy as the response 

and the best vegetation index as the independent variable. The linear relationship between the 

observed and predicted visual efficacy values was then evaluated using the remaining 20% of the 

data to ensure model robustness. The decision to use linear regression was based on an initial 

visual inspection of scatter plots showing a linear relationship between the variables, as well as 

supportive R² values from various vegetation index models indicating that linear models 

adequately captured the underlying relationship. 

 

Results and Discussion 

Vegetation Indices for Herbicide Visually Evaluated Efficacy 

Correlations between the vegetation indices (VIs) and visually evaluated efficacy were strong 

and negative across various herbicides and for the combined models (p <0.0001) (Table 3). The 

vegetation index with the strongest correlation for each herbicide to predict efficacy was 

selected. However, many of the VIs demonstrated similar levels of correlation, suggesting that 

multiple indices may be similarly effective in predicting visually evaluated efficacy. The 

Carotenoid Reflectance Index (CRI) was selected for 2,4-D, diquat, and florpyrauxifen-benzyl, 

Visibly Atmospheric Resistance Index (VARI) was selected for carfentrazone and penoxsulam, 

and Excess Greenness Minus Redness Index (EXGR) was selected for glyphosate. Since visually 

evaluated efficacy showed the strongest correlation with EXGR when all treatment data were 

aggregated, this VI was chosen to create a combined model (Table 3). All linear models had 

significant negative relationships between the VI and visually evaluated efficacy (Figure 2) with 

R
2 

values ranging between 0.47 and 0.75. 

 

The Carotenoid Reflectance Index demonstrated the highest correlations with visually evaluated 

efficacy for half of the treatments, indicating its robustness as a predictor of herbicide efficacy on 

water hyacinth. This VI was developed for nondestructive total carotenoid estimation in 

agricultural contexts from the principles that healthy vegetation has high reflectance in the green 

band (Gitelson et al. 2002). Gitelson et al. (2002) found that reciprocal reflectance in the range 

510 to 550 nm was linearly related to the total pigment content in leaves. Abrantes et al. (2021) 
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adapted this VI for assessing herbicide injury in soybeans with an RGB camera and found CRI to 

have significant relationships with visually evaluated efficacy for herbicide treatments of 

soybean. Of the VIs tested, the CRI was the only index that did not include the red band as part 

of the calculation. Water hyacinth does not produce high levels of anthocyanins (red pigment) in 

response to injury, which is another reason the exclusion of the red band may have been 

beneficial. Newete et al. (2014) similarly found that a VI calculated using green and green-blue 

wavelengths (Photochemical Reflectance Index), though not as robust as VIs that included the 

near infrared band, was significantly correlated with water hyacinth stress. 

 

The Visible Atmospherically Resistant Index (VARI), developed to estimate green vegetation 

fraction in wheat canopies with minimal sensitivity to atmospheric effects (Gitelson 2002), is one 

of the most widely used vegetation indices in agriculture within the visible spectrum (Xue et al. 

2017). Rampazzo et al. (2022) found that VARI measurements complemented in-field estimates 

of soybean injury across various herbicide treatments. In the current study, VARI demonstrated 

the highest correlations with visually evaluated efficacy for water hyacinth treated with 

carfentrazone and penoxsulam. Despite their differences in mode of action and symptom 

development timelines, water hyacinth treated with these herbicides showed lower levels of 

maximum control compared to all other herbicides used in this study which may have been why 

the same vegetation indices had the best results for both treatments (Figure 2). While 

penoxsulam can cause progressive injury up to 10 weeks after treatment (Wersal et al. 2010), this 

study was limited to 6 weeks. Additionally, carfentrazone has a history of inconsistent control of 

water hyacinth (Wersal et al. 2012). The peak symptomology for both herbicides was exhibited 

as chlorosis compared to the necrosis exhibited by the other herbicide treatments used in this 

study. 

 

The Excess Greenness Index was developed by Woebbecke et al. (1995) for separating green 

plants from soil and residue for image analysis and has been widely cited in various agricultural 

applications (Gitelson et al 2002; Lamm et al 2002; Mao et al 2003). However, Meyer et al. 

(2004b) noted that a disproportionate amount of redness from the background of the image may 

reduce the accuracy of this index, so Meyer and Neto (2008) developed the Excess Greenness 

minus Redness (EXGR) index to minimize this problem. Abrantes et al. (2002) found that EXGR 
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could satisfactorily estimate herbicide damage and soybean-estimated yield loss from dicamba 

and 2,4-D. In our study, we found that EXGR had the highest correlation with the visual efficacy 

of water hyacinth in response to glyphosate, as well as the highest correlation with the 

aggregated dataset (Figure 2, Figure 4). Glyphosate has been shown to reduce anthocyanin 

production, which could have resulted in a more prominent drop in ‘Redness’ thus showing a 

high response to this index (Hoagland 1980). Additionally, all herbicides lead to a reduction in 

greenness over time, which this VI effectively captures, likely explaining why it performed the 

best when applied to the aggregated dataset. 

 

Predicting Visually Evaluated Efficacy 

A “perfect” model would have a slope of 1, R
2
 of 1, and RMSE of 0 (Figure 3). While all linear 

relationships between predicted and observed visual efficacy values had moderate to high R
2 

between 0.42 and 0.81, equations only reliably predicted visually evaluated efficacy in the 

medium ranges but poorly predicted visually evaluated efficacy in the extreme ranges (25% < x 

> 90%) (Figure 2). The upper extreme range corresponds to necrotic plants that are approaching 

complete control. As water hyacinth dies, the release of nutrients into the water may promote 

algal blooms, while the increased space makes room for other vegetation, such as duckweed to 

colonize the mesocosms (Clugston 1963). This problem was exacerbated by fast-acting 

herbicides used in the study, such as diquat, which had already resulted in high levels of injury 

before the first data acquisition date. Contamination from algae and duckweed may have 

increased “greenness” in these cases and skewed the VI values higher. Non-treated mesocosms 

represented the lower extreme of visually evaluated efficacy, with values less than 25%. Biomass 

production in the untreated mesocosms often presents a level of visual stress in these mature 

water hyacinths due to the natural senescence of older leaves that were not being accounted for 

with the visually evaluated efficacy observations. Additionally, the presence of flowers and 

various leaf angles may have also limited predictability of low injury (Robles 2010). Rampazzo 

et al. (2022) found that UAV-derived VI estimates of injury appeared to be less sensitive to 

differentiating low levels of injury than a trained observer. Some herbicide symptoms, such as 

the curling, twisting, and callus formation caused by auxin herbicides, may be visible to an 

observer before chlorosis-induced color changes can be observed in imagery.  
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This study demonstrates the feasibility of using a low-cost UAS equipped with a digital camera 

to estimate the visually evaluated efficacy of water hyacinth treated with six different herbicides. 

The method developed in this study could be modified to estimate visually evaluated efficacy for 

other herbicide treatments as well as other emergent and floating vegetation, and it has the 

potential to aid the development of a cost-effective tool for routinely monitoring water hyacinth 

chemical management. Open water present in the mesocosms was included in the vegetation 

index calculations to mimic field conditions, where more water would be exposed as a treatment 

progresses. However, water clarity and turbidity, which vary by water body and are likely to 

differ from mesocosm conditions, could make these vegetation indices less reliable as treatments 

progress and more water is exposed. Therefore, future research should aim to translate this 

controlled study into field conditions to validate the practical application of these findings. 

Future analysis should also focus on using other spectral calibration methods, such as empirical 

line calibration. Efforts should focus on testing imagery with bands beyond the visible spectrum 

and automating the GIS processing workflow to reduce turnaround time for follow-up treatment 

planning. 

 

Practical Implications 

Remote sensing may improve the effectiveness of a proactive management program. 

Quadcopters equipped with digital cameras are inexpensive and accessible to natural area 

managers, and regular aerial surveys could more quickly and efficiently capture large areas of 

interest than traditional monitoring methods. Vegetation indices such as the Carotenoid 

Reflectance Index, Visible Atmospherically Resistant Index, and Excess Greenness Minus 

Redness Index are strongly correlated with visually evaluated efficacy of water hyacinth and can 

be easily calculated from these aerial surveys in GIS. These vegetation indices may be able to aid 

an image analyst in differentiating healthy and injured plants. This information could improve 

herbicide treatment monitoring by detecting missed water hyacinth populations or ineffective 

treatments for planning follow-up herbicide applications. The use of UAS imagery and VIs 

offers a promising approach for monitoring herbicide treatments in water hyacinth management. 

By reducing the need for intensive field monitoring and improving detection of treatment 

efficacy, these methods can enhance invasive species management strategies. 
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Table 1. Herbicide treatments and application rates for water hyacinth control in spring and summer studies. 

1
non-ionic surfactant (Induce®, Helena Chemical Company, Collierville, TN, USA) at 0.25% v v

-1
. Florpyrauxifen-benzyl (FPB) was 

applied with a methylated seed oil (MSO concentrate with Leci-Tech, Loveland Products, Inc.,  

Loveland, CO, USA) surfactant at 1% v v
-1

. 

  

Herbicide
1 

Standard 
 

Maximum
 

Product and Manufacturer 

 kg ai or ae ha
-1

  

2,4-D 2.20 4.48 2,4-D Amine, Alligare LLC, Opelika, AL, USA 

Diquat 2.20 4.48 Tribune™, Syngenta Crop Protection LLC, Basel, Switzerland  

Carfentrazone 0.47 0.95 Stingray®, Sepro Corporation, Carmel, IN,USA 

Florpyrauxifen-

benzyl 
0.19 0.38 ProcellaCOR SC™, Sepro Corporation, Carmel, IN, USA 

Glyphosate 2.20 4.48 Roundup® Custom, Bayer CropScience LLC, Kaiser-Wilhelm-Allee, Leverkusen 

Penoxsulam 0.20 0.39 Galleon® SC,  Sepro Corporation, Carmel, IN, USA 
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Table 2. Vegetation Index names, references, and corresponding equations. 

Vegetation Index Reference Equation 

Triangular Greenness Indices Hunt et al. 2013                    

Visible Atmospherically Resistant Index Gitelson et al. 2002       
   

     
 

Excess Green Index Meyer and Neto 2008             

Modified Green Red Vegetation Index Bendig et al. 2015        
     

     
 

RGB Vegetation Index Bendig et al. 2015        
     

     
 

Green Leaf Index Louchaichi et al. 2001     
      

      
 

Modified Photochemical Reflectance 

Index 
Li, Li and Sun 2014       

   

   
 

Modified Carotenoid Reflectance Index 
Gitelson et al. 2002, 

Abrantes et al. 2021 
     

 

 
   

 

 
 

Excess Greenness Minus Red Index Meyer and Neto 2008                    

a
R,G, and B correspond to the Red, Green and Blue Bands of an image.   
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Table 3. Spearman’s correlation coefficients between visually evaluated efficacy and vegetation indices by herbicide 

Herbicide TGI
ab 

VARI EXGI MGRVI RGBVI GLI MPRI CRI EXGR 

2,4-D -0.621
c
 -0.745 -0.657 -0.741 -0.752 -0.755 -0.741 -0.779

d 
-0.773 

Carfentrazone -0.650 -0.701 -0.672 -0.698 -0.683 -0.696 -0.698 -0.509 -0.658 

Diquat -0.743 -0.720 -0.734 -0.705 -0.813 -0.763 -0.705 -0.890 -0.809 

Florpyrauxifen-benzyl -0.700 -0.729 -0.711 -0.713 -0.806 -0.792 -0.713 -0.813 -0.591 

Glyphosate -0.584 -0.813 -0.666 -0.809 -0.749 -0.793 -0.809 -0.720 -0.834 

Penoxsulam -0.650 -0.811 -0.690 -0.807 -0.736 -0.780 -0.807 -0.661 -0.792 

Combined -.668 -.787 -.705 -.780 -.778 -.793 -.780 -.765 -.794 

a
Vegetation indices calculated from the Red, Green, and Blue bands of the image according to calculations listed in Table 2. 

b
TGI is Triangular Greenness Index, VARI is Visible Atmospherically Resistant Index, EXGI is Excess Green Index, MGRVI is Modified Green Red 

Vegetation Index, RGBVI is RGB Vegetation Index, GLI is Green Leaf Index, MPRI is Modified Photochemical Reflectance Index, CRI is Modified 

Carotenoid Reflectance Index, and EXGR is Excess Greenness Minus Red Index 
c
all correlations were significant with p < 0.0001 

d
Bold values indicate highest correlation for that herbicide.  
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Table 4. Equations for predicting visually evaluated efficacy when water hyacinth (Eichhornia crassipes) is affected by herbicide  

Herbicide Equation
a
 Monitoring Period 

2,4-D              
 

 
 

 

 
         1 to 3 WAT 

Carfentrazone             
   

     
        1 to 3 WAT 

Diquat              
 

 
 

 

 
         1 to 3 WAT 

Florpyrauxifen-benzyl              
 

 
 

 

 
         2 to 4 WAT 

Glyphosate                           2 to 4 WAT 

Penoxsulam             
   

     
        4 to 6 WAT 

Combined EXGR                           ----- 

a
R, G, and B correspond to digital numbers from the red, green, and blue bands of a digital camera and VE refers to visually evaluated 

efficacy
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Figure 1. The study site is at the University of Florida Center for Aquatic and Invasive Plants, six weeks after the spring treatment, at 

30 m AGL (0.76cm/px). Three-panel grey scale reflectance target is pictured in the center of the study.   
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Figure 2. Linear relationship between the highest correlated vegetation indices (Table 2) with 

visually evaluated efficacy when water hyacinth is affected by herbicide at 1to 3 WAT for 

diquat, 2,4-D and carfentrazone, 2 to 5 WAT for florpyrauxifen-benzyl and glyphosate, and 3 to 

6 WAT for penoxsulam (n = 57).  

2,4-D Carfentrazone 

  

Diquat Florpyrauxifen-benzyl 

  

Glyphosate Penoxsulam 
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2,4-D Carfentrazone 

  

Diquat  Florpyrauxifen-benzyl 

  

Glyphosate Penoxsulam 

  

Figure 3. Linear relationship between predicted and observed visually evaluated efficacy values 

(Table 2) when water hyacinth is affected by herbicide treatments 1 to 3 WAT for diquat, 2,4-D 

and carfentrazone, 2 to 4 WAT for florpyrauxifen-benzyl and glyphosate, and 3 to 6 WAT for 

penoxsulam (n = 15).   
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EXGR vs Visually Evaluated Efficacy EXGR Predictions 

  

 

Figure 4. (Left) Linear relationship between the highest correlated vegetation index (Table 2) 

with visually evaluated efficacy when water hyacinth is affected by herbicide for the aggregated 

data (n = 342). (Right) A linear relationship between predicted and observed visually evaluated 

efficacy is also shown for the vegetation index that had the highest correlation with visually 

evaluated efficacy for the aggregated data (n = 90). 
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