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1. Introduction

The spectral theory of boundary value problems for first-order systems of ordinary
differential equations of the form

1
i
B

dy

dx
+ Q(x)y = λy, y = col(y1, . . . , yn), (1.1)

where B is a nonsingular diagonal n × n matrix,

B = diag(b−1
1 In1 , . . . , b

−1
r Inr

) ∈ C
n×n, n = n1 + · · ·nr,

with complex entries bj �= bk, and Q(x) is a potential matrix takes its origin in the
paper by Birkhoff and Langer [2]. Afterwards their investigations were developed
in many directions. In particular, one of the important classes of inverse spectral
problems is the problem of recovering a system of differential equations from spec-
tral data. The solution of such problems is considered in many papers (see [14, 17,
21, 32–38] and the references therein).

The main aim of the present article is to find necessary and sufficient conditions
for solvability of inverse spectral problems for one-dimensional Dirac operators on
a finite interval under possibly least restrictive assumptions on their potentials. We
will consider canonical Dirac system

By′ + V y = λy, (1.2)
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where y = col(y1(x), y2(x)),

B =
(

0 1
−1 0

)
, V (x) =

(
p(x) q(x)
q(x) −p(x)

)
,

the complex-valued functions p, q ∈ L2(0, π), with two-point boundary conditions

U(y) = Cy(0) + Dy(π) = 0, (1.3)

where

C =
(

a11 a12

a21 a22

)
, D =

(
a13 a14

a23 a24

)
,

the coefficients aij are arbitrary complex numbers, and rows of the matrix

A =
(

a11 a12 a13 a14

a21 a22 a23 a24

)

are linearly independent.
Inverse self-adjoint problems (1.2), (1.3) have been studied in detail. In the cases

of the Dirichlet and the Neumann boundary conditions reconstruction of a con-
tinuous potential from two spectra was carried out in [7], from one spectrum and
the norming constants in [6], and from the spectral function in [16]. The analo-
gous results for Dirac operator with summable potentials were established in [1].
The case of more general separated boundary conditions was considered in [4]. In
the case of unseparated boundary conditions (including periodic, antiperiodic and
quasi-periodic conditions) the indicated problem was solved in [20, 22–25]. In non-
self-adjoint case the problem of reconstructing the potential V (x) from spectral
data is much more complicated, since many methods successfully used to study
self-adjoint operators are inapplicable. For example, the characterization of the
spectra of the periodic (antiperiodic) problem for operator (1.2) with real coeffi-
cients is given in [18] in terms of special conformal mappings, which do not exist
for complex-valued potentials. The property that the eigenvalues of corresponding
Dirichlet problem and Neumann problem are interlaced, which is often used to
prove the solvability of the basic equation, loses its meaning in the complex case.
Non-self-adjoint inverse problems for system (1.2) with different types of bound-
ary conditions with sufficiently smooth coefficients, which, however, could have
singularities were investigated in [3, 9, 27, 31].

Questions of uniqueness in inverse problems for operators of type (1.1) on a finite
interval were studied in several papers. In particular, the uniqueness of the inverse
problem for general Dirac-type systems (B = B∗) of order 2n was established in
[15, 16]. The most complete uniqueness result on general first-order systems (1.1)
and (1.2) on a finite interval has been obtained recently in [17]. Also the solution
to the inverse spectral problem (from the spectral matrix function) for Dirac-type
operators on the axis and semiaxis was obtained in [11]. New inverse approach
based on the A-function concept proposed by Gesztesy and Simon to Schrodinger
operator has been recently extended in [8] to Dirac systems on the semiaxis.
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In the present paper, we consider system (1.2), where complex-valued functions
p, q ∈ L2(0, π) (V ∈ L2) with quasi-periodic boundary conditions

y(0) = eity(π), (1.4)

where t ∈ C, t �= πk, k ∈ Z. Section 2 contains some basic facts and definitions
related to the studied problems. In § 3 by using a modified version of the
Gelfand–Levitan–Marchenko method we prove solvability of the basic equation and
establish necessary and sufficient conditions for an entire function to be the char-
acteristic determinant of problems (1.2), (1.4). Furthermore, we obtain necessary
and sufficient conditions for a set of complex numbers to be the spectrum of the
mentioned problem.

2. Preliminaries

In what follows, we introduce the Euclidean norm ‖f‖ = (|f1|2 + |f2|2)1/2 for vec-
tors f = col(f1, f2) ∈ C

2, and set 〈f, g〉 = f1g1 + f2g2. If W is 2 × 2 matrix, then
we set ‖W‖ = sup‖f‖=1 ‖Wf‖ and denote by L2,2(a, b) and L2,2

2,2(a, b), respectively,
the spaces of 2-coordinate vector functions f(t) = col(f1(t), f2(t)) and 2 × 2 matrix
functions W (t) with finite norms

‖f‖L2,2(a,b) =

(∫ b

a

‖f(t)‖2dt

)1/2

, ‖W‖L2,2
2,2(a,b) =

(∫ b

a

‖W (t)‖2dt

)1/2

.

The operator Ly = By′ + V y is regarded as a linear operator in the space L2,2(0, π)
with the domain D(L) = {y ∈ W 1

1 [0, π] × W 1
1 [0, π] : Ly ∈ L2,2(0, π), Uj(y) = 0

(j = 1, 2)}.
Denote by

E(x, λ) =
(

c1(x, λ) −s2(x, λ)
s1(x, λ) c2(x, λ)

)
(2.1)

the matrix of the fundamental solution system to equation (1.2) with boundary
condition E(0, λ) = I, where I is the unit matrix, and by E0(x, λ) the fundamental
solution system to the equation By′ = λy with boundary condition E0(0, λ) = I.
Obviously,

E0(x, λ) =
(

cos λx − sin λx
sinλx cos λx

)
.

Denote the second column of the matrix E0(x, λ) by

Y0(x, λ) =
(− sin λx

cos λx

)
.

It is well known that the entries of the matrix E(x, λ) are related by the identity

c1(x, λ)c2(x, λ) + s1(x, λ)s2(x, λ) = 1, (2.2)

which is valid for any x, λ. The matrix E(π, λ) is called the monodromy
matrix of operator Ly. For its entries we introduce the notation cj(λ) = cj(π, λ),
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sj(λ) = sj(π, λ), j = 1, 2. We denote also the class of entire functions f(z) of
exponential type � σ such that ‖f‖L2(R) < ∞ by PWσ. It is known [29] that the
functions cj(λ), sj(λ) admit the representation

cj(λ) = cos πλ + gj(λ), sj(λ) = sin πλ + hj(λ), (2.3)

where gj , hj ∈ PWπ, j = 1, 2. For functions of type (2.3) the following statement
is true:

Lemma 2.1 [20]. Entire functions u(λ) and v(λ) admit the representations

u(λ) = sinπλ + h(λ), v(λ) = cos πλ + g(λ), (2.4)

where h, g ∈ PWπ, if and only if

u(λ) = −π(λ0 − λ)
∞∏′

n=−∞

λn − λ

n
,

where λn = n + εn, {εn} ∈ l2,

v(λ) =
∞∏

n=−∞

λn − λ

n − 1/2
,

where λn = n − 1/2 + κn, {κn} ∈ l2(Z). (The notation
∏′ means that n = 0 is

missing in the product.)

Notice, that lemma 2.1 is a generalization of lemma 3.4.2 from [19]. In what
follows, we will repeatedly use the following statement.

Lemma 2.2 [30]. If f ∈ PWπ, then for every sequence {λn} (n ∈ Z) with λn − n =
o(1) as |n| → ∞ and every R > 0 the condition

∞∑
n=−∞

max
|t−λn|�R

|f(t)|2 < ∞

if fulfilled. In particular,
∞∑

n=−∞
|f(λn)|2 < ∞.

Denote by Jjk the determinant composed of the jth and kth columns of the
matrix A. Denote also J0 = J12 + J34, J1 = J14 − J23, J2 = J13 + J24.

Definition 2.3. The boundary conditions (1.3) are called regular if

J2
1 + J2

2 = (J14 + J32)2 + (J13 + J24)2 �= 0, (2.5)

and strongly regular if additionally

J2
0 �= J2

1 − J2
2 . (2.6)
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Definition 2.4. The boundary conditions (1.3) are called regular but not strongly
regular if (2.5) holds but (2.6) fails, i.e.

J2
0 = J2

1 − J2
2 . (2.7)

It is well known (see, for instance, [5]) that boundary conditions (1.4) are strongly
regular, the characteristic determinant of problem (1.2), (1.4) can be reduced to
the form

Δ(λ) = − cos t +
c1(λ) + c2(λ)

2
, (2.8)

and the eigenvalues are specified by the asymptotic formulas

λ±
n = 2n ± t

π
+ ε±n , (2.9)

where {ε±n } ∈ l2, n ∈ Z. Further Γ(z, r) denotes a disc of radius r centred at the
point z.

Next, we establish the necessary and sufficient conditions that an entire function
must satisfy in order to be the characteristic determinant of some problem (1.2),
(1.4). Then, we give an intrinsic description of sequences which are spectrum of
operator (1.2), (1.4).

3. Main results

3.1. Characteristic determinant

Theorem 3.1. For a function U(λ) to be the characteristic determinant of problem
(1.2), (1.4), it is necessary and sufficient that it can be represented in the form

U(λ) = − cos t + cos πλ + f(λ),

where f ∈ PWπ, and
∞∑

n=−∞
|f(n)| < ∞. (3.1)

Proof. Necessity. Assume that function U is the characteristic determinant, i.e.
U(λ) = Δ(λ). Evidently, relations (2.3), (2.8) imply that f ∈ PWπ. To check
inequality (3.1) we consider the monodromy matrix of problem (1.2), (1.4). Let
the corresponding function s2(λ) have the roots λn, hence by [30, lemma 2.2],

λn = n + δn, (3.2)

where {δn} ∈ l2, n ∈ Z. Relation (2.3) implies

cj(λn) = cos πλn + gj(λn), (3.3)

it follows from (2.3) and lemma 2.2 that

∞∑
n=−∞

|gj(λn)|2 < ∞. (3.4)
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Denote

χ(λ) = U(λ) + cos t = cos πλ + f(λ). (3.5)

By virtue of (2.8),

c1(λn) + c2(λn) = 2χ(λn).

It follows from (2.2) that c1(λn)c2(λn) = 1, consequently the numbers
c1(λn), c2(λn) are the roots of the quadratic equation

w2 − 2χ(λn)w + 1 = 0. (3.6)

Therefore we have

c1(λn), c2(λn) = χ(λn) ±
√

χ2(λn) − 1

= cos πλn + f(λn) ±
√

(cos πλn + f(λn))2 − 1

= cos πλn + f(λn) ±
√

cos2 πλn + 2 cos πλnf(λn) + f2(λn) − 1

= cos πλn + f(λn) ±
√

2 cos πλnf(λn) + f2(λn) − sin2 πλn.

(3.7)
It follows from (3.3) and (3.7) that

(g1(λn) − f(λn))2 = 2 cos πλnf(λn) + f2(λn) − sin2 πλn,

hence,

2 cos πλnf(λn) = g2
1(λn) − 2g1(λn)f(λn) + sin2 πδn. (3.8)

It follows from (3.2) that for all sufficiently large |n| the inequality | cos πλn| > 1/2
holds. This, together with (3.2), (3.4), and lemma 2.2 implies

∞∑
n=−∞

|f(λn)| < ∞. (3.9)

Since f ′ ∈ PWπ, then

|f(n)| � |f(λn)| + |f(n) − f(λn)| � |f(λn)| + |δn||τn| � |f(λn)| + (|δn|2 + |τn|2)/2,

where

τn = max
λ∈Γ(n,|δn|)

|f ′(λ)|.

By lemma 2.2, {τn} ∈ l2. This and (3.9) imply (3.1).
Sufficiency. Let f ∈ PWπ satisfy condition (3.1). It follows from the Paley–Wiener

theorem and [19, lemma 1.3.1] that

lim
|λ|→∞

e−π|Im λ|f(λ) = 0, (3.10)

hence there exists a positive integer N0 large enough that |f(λ)| < 1/100 if Imλ = 0,
|Re λ| � N0. Let λn (n ∈ Z) be a strictly monotone increasing sequence of real
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numbers such that for any n �= 0 λn = λ−n, |λn − (N0 + 1/2)| < 1/100 if 0 � n �
N0, and λn = n if n > N0. Denote

s(λ) = −π(λ0 − λ)
∞∏′

n=−∞

λn − λ

n
. (3.11)

It follows from lemma 2.1 that

s(λ) = sinπλ + h(λ), (3.12)

where h ∈ PWπ, hence,

|s(λ)| � C1eπ|Im λ| (3.13)

if |Im λ| � M , where M is sufficiently large. It follows from (3.11) that

ṡ(λ0) = π

∞∏′

n=−∞

λn − λ0

n
> 0.

One can readily see that the inequality ṡ(λn)ṡ(λn+1) < 0 holds for all n ∈ Z. It
follows from two last inequalities that

(−1)nṡ(λn) > 0. (3.14)

Relation (3.12) and lemma 2.2 imply that

ṡ(λn) = π(−1)n + τn, (3.15)

where {τn} ∈ l2, hence,

1
ṡ(λn)

=
(−1)n

π
+ σn, (3.16)

where {σn} ∈ l2. Equation (3.6) has the roots

c±n = χ(λn) ±
√

χ2(λn) − 1 = cos πλn + f(λn) ±
√

(cos πλn + f(λn))2 − 1

= cos πλn + f(λn) ±
√

cos2 πλn + 2 cos πλnf(λn) + f2(λn) − 1

= cos πλn + f(λn) ±
√

2 cos πλnf(λn) + f2(λn) − sin2 πλn.

(3.17)
It follows from (3.17) that if 0 < |n| � N0 the numbers c+

n are contained within the
disc Γ(i, 1/10), the numbers c−n are contained within the disc Γ(−i, 1/10), and if
|n| > N0 the numbers c±n are contained within the disc Γ(1, 1/10) for even n, the
numbers c±n are contained within the disc Γ(−1, 1/10) for odd n. Denote cn = c+

n

for even n and cn = c−n for odd n. Denote also

zn =
cn

ṡ(λn)
.

It follows from (3.14) that the numbers zn lie strictly above the line l : Im λ =
−Re λ.
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Evidently,

λn = n + ρn, (3.18)

where {ρn} ∈ l2. It follows from (3.17) and (3.18) that

cn = (−1)n + ϑn, (3.19)

where {ϑn} ∈ l2. Let βn = cn − cos πλn, then {βn} ∈ l2. Let us consider the
function

g(λ) = s(λ)
∞∑

n=−∞

βn

ṡ(λn)(λ − λn)
.

By [12, p. 120] the function g ∈ PWπ and g(λn) = βn. Denote c(λ) = cos πλ + g(λ),
then c(λn) = cn �= 0, hence the functions s(λ) and c(λ) have disjoint zero sets.

Denote

F (x, t) =
∞∑

n=−∞

(
znY0(x, λn)Y T

0 (t, λn) − 1
π

Y0(x, n)Y T
0 (t, n)

)
.

It follows from [29] that

‖F (·, x)‖L2,2
2,2(0,π) + ‖F (x, ·)‖L2,2

2,2(0,π) < C2,

where C2 not depending on x.
Using the properties of the numbers zn established above, we prove that for every

x ∈ [0, π] the homogeneous equation

fT (t) +
∫ x

0

fT (s)F (s, t)ds = 0, (3.20)

where f(t) = col(f1(t), f2(t)), f ∈ L2,2(0, x), f(t) = 0 if x < t � π has the trivial
solution only.

Multiplying equation (3.20) by fT (t) and integrating the resulting equation over
segment [0, x], we obtain

‖f‖2
L2,2(0,x) +

∫ x

0

〈∫ x

0

fT (s)F (s, t)ds, fT (t)
〉

dt = 0. (3.21)
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Simple computations show

fT (s)F (s, t)

= (f1(s), f2(s))
∞∑

n=−∞

(
zn

(
sin λns sin λnt − sin λns cos λnt

− cos λns sin λnt cos λns cos λnt

)

− 1
π

(
sin ns sin nt − sin ns cos nt

− cos ns sin nt cos ns cos nt

))

=
∞∑

n=−∞

{
zn[f1(s) sin λns sin λnt − f2(s) cos λns sin λnt,

− f1(s) sin λns cos λnt + f2(s) cos λns cos λnt]

− 1
π

[f1(s) sin ns sin nt − f2(s) cos ns sin nt,

− f1(s) sin ns cos nt + f2(s) cos ns cos nt]
}

=
∞∑

n=−∞

{
zn[f1(s) sin λns sin λnt − f2(s) cos λns sin λnt]

− 1
π

[f1(s) sin ns sin nt − f2(s) cos ns sin nt],

zn[−f1(s) sin λns cos λnt + f2(s) cos λns cos λnt]

− 1
π

[−f1(s) sin ns cos nt + f2(s) cos ns cos nt]
}

,

(3.22)

therefore, substituting the right-hand side of (3.22) into the second term in the left-
hand side of (3.21), transforming the iterated integrals into products of integrals
and using the reality of all numbers λn, we obtain∫ x

0

〈∫ x

0

fT (s)F (s, t)ds, fT (t)
〉

dt

=
∞∑

n=−∞

∫ x

0

(∫ x

0

{zn[f1(s) sin λns sin λnt − f2(s) cos λns sin λnt]

− 1
π

[f1(s) sin ns sin nt − f2(s) cos ns sin nt]}ds

)
f1(t)dt

+
∞∑

n=−∞

∫ x

0

(∫ x

0

{zn[−f1(s) sin λns cos λnt + f2(s) cos λns cos λnt]

− 1
π

[−f1(s) sin ns cos nt + f2(s) cos ns cos nt]}ds

)
f2(t)dt

=
∞∑

n=−∞

(
zn

∫ x

0

[f1(s) sin λns − f2(s) cos λns]ds

∫ x

0

sin λntf1(t)dt
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− 1
π

∫ x

0

[f1(s) sin ns − f2(s) cos ns]ds

∫ x

0

sin ntf1(t)dt

)

+
∞∑

n=−∞

(
zn

∫ x

0

[−f1(s) sin λns + f2(s) cos λns]ds

∫ x

0

cos λntf2(t)dt

− 1
π

∫ x

0

[−f1(s) sin ns + f2(s) cos ns]ds

∫ x

0

cos ntf2(t)dt

)

=
∞∑

n=−∞
zn

(∫ x

0

[f1(s) sin λns − f2(s) cos λns]ds

∫ x

0

sin λntf1(t)dt

+
∫ x

0

[−f1(s) sin λns + f2(s) cos λns]ds

∫ x

0

cos λntf2(t)dt

)

−
∞∑

n=−∞

1
π

(∫ x

0

[f1(s) sin ns − f2(s) cos ns]ds

∫ x

0

sinntf1(t)dt

+
∫ x

0

[−f1(s) sin ns + f2(s) cos ns]ds

∫ x

0

cos ntf2(t)dt

)

=
∞∑

n=−∞
zn

(∫ x

0

[f1(t) sin λnt − f2(t) cos λnt]dt

∫ x

0

sinλntf1(t)dt

+
∫ x

0

[−f1(t) sin λnt + f2(t) cos λnt]dt

∫ x

0

cos λntf2(t)dt

)

−
∞∑

n=−∞

1
π

(∫ x

0

[f1(t) sin nt − f2(t) cos nt]dt

∫ x

0

sin ntf1(t)dt

+
∫ x

0

[−f1(t) sin nt + f2(t) cos nt]dt

∫ x

0

cos ntf2(t)dt

)

=
∞∑

n=−∞
zn

∫ x

0

[f1(t) sin λnt − f2(t) cos λnt]dt

∫ x

0

[f1(t) sinλnt − f2(t) cos λnt]dt

−
∞∑

n=−∞

1
π

∫ x

0

[f1(t) sin nt − f2(t) cos nt]dt

∫ x

0

[f1(t) sinnt − f2(t) cos nt]dt

=
∞∑

n=−∞
zn

∣∣∣∣
∫ x

0

〈f(t), Y0(t, λn)〉dt

∣∣∣∣
2

−
∞∑

n=−∞

1
π

∣∣∣∣
∫ x

0

〈f(t), Y0(t, n)〉dt

∣∣∣∣
2

. (3.23)

It is well known that the function system { 1√
π
Y0(t, n)} (n ∈ Z) is an orthonormal

basis in L2,2(0, π), hence it follows from the Parseval equality that

‖f‖2
L2,2(0,x) =

∞∑
n=−∞

1
π

∣∣∣∣
∫ x

0

〈f(t), Y0(t, n)〉dt

∣∣∣∣
2

. (3.24)
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It follows from (3.21),(3.23) and (3.24) that

∞∑
n=−∞

zn

∣∣∣∣
∫ x

0

〈f(t), Y0(t, λn)〉dt

∣∣∣∣
2

= 0.

Since all the numbers zn are located strictly in the same half-plane relative to a
line which passes through the origin, we see that∫ x

0

〈f(t), Y0(t, λn)〉dt = 0

for all n ∈ Z. It follows from (3.12) that the function s(λ) is a sin-type function
[13], therefore [1, lemma 5.3], the system Y0(t, λn) is a Riesz basis of L2,2(0, π),
hence the system Y0(t, λn) is complete in L2,2(0, π), it follows now that f(t) ≡ 0.

By [29, theorem 5.1], the functions c(λ) and −s(λ) are the entries of the first
line of the monodromy matrix

Ẽ(π, λ) =
(

c̃1(π, λ) −s̃2(π, λ)
s̃1(π, λ) c̃2(π, λ)

)

for problem (1.2), (1.4) with a potential Ṽ ∈ L2, i.e.

c(λ) = c̃1(π, λ), s(λ) = s̃2(π, λ). (3.25)

The corresponding characteristic determinant

Δ̃(λ) = − cos t + (c̃1(π, λ) + c̃2(π, λ))/2 = − cos t + cos πλ + f̃(λ),

where f̃ ∈ PWπ. It follows from (2.2), (3.5), (3.6), (3.25) that

Δ̃(λn) = − cos t + (c̃1(π, λn) + c̃2(π, λn))/2

= − cos t +
(

c̃1(π, λn) +
1

c̃1(π, λn)

)
/2 = − cos t +

(
c(λn) +

1
c(λn)

)
/2

= − cos t + χ(λn) = U(λn).

This implies that the function

Φ(λ) =
U(λ) − Δ̃(λ)

s(λ)
=

f(λ) − f̃(λ)
s(λ)

is an entire function in the whole complex plane. Since by the Paley–Wiener theorem

|f(λ) − f̃(λ)| < C3eπ|Im λ|, (3.26)

then by (3.13) |Φ(λ)| � C4 if |Im λ| � M . We denote by Ω the set

Γ(N0 + 1/2, 1/10)
⋃

Γ(−N0 − 1/2, 1/10))
⋃

Γ|n|>N0(n, 1/10).

Since the function s(λ) is a sin-type function [13], then |s(λ)| > C5 > 0 if λ /∈ Ω.
From this inequality, (3.26) and the maximum principle we obtain that |Φ(λ)| < C6
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in the strip |Im λ| � M , hence the function Φ(λ) is bounded in the whole com-
plex plane and, by virtue of Liouville theorem, it is a constant. Let |Im λ| = M ,
then it follows from (3.10) that lim|λ|→∞(f(λ) − f̃(λ)) = 0, consequently Φ(λ) ≡ 0,
therefore U(λ) ≡ Δ̃(λ). �

3.2. Spectrum

Theorem 3.2. For a set Λ to be the spectrum of some Dirac operator (1.2), (1.4)
with a complex-valued potential V ∈ L2(0, π) it is necessary and sufficient that
it consists of two sequences of eigenvalues λ±

n satisfying condition (2.9) and the
inequality

∞∑
k=−∞

∣∣∣∣∣
∞∑

n=−∞

(
ε+
n

2n + t/π − k
+

ε−n
2n − t/π − k

)∣∣∣∣∣ < ∞. (3.27)

Proof. Sufficiency. Let two sequences λ±
n satisfy conditions (2.9) and (3.27).

Evidently, there exists a constant M such that

sup |ε±n | < M,
∞∑

n=−∞
|ε±n |2 < M. (3.28)

It is well known that

sinπλ = πλ

∞∏′

n=−∞

n − λ

n
= πλ

∞∏′

n=−∞

(
1 − λ

n

)
,

therefore the function Δ0(λ) = cos πλ − cos t has the representation

Δ0(λ) = −2 sin
πλ + t

2
sin

πλ − t

2
= −π2(λ2 − (t/π)2)

2
∞∏′

n=−∞

(2n + t/π − λ)(2n − t/π − λ)
4n2

.

Denote

Δ(λ) = −π2

2
(λ+

0 − λ)(λ−
0 − λ)

∞∏′

n=−∞

(λ+
n − λ)(λ−

n − λ)
4n2

.

Evidently,

|Δ0(λ)| < c1eπ|Im λ|. (3.29)

Let f(λ) = Δ(λ) − Δ0(λ). Investigation of the properties of the function f(λ) is
based on the following propositions.

Proposition 3.3. The function f(λ) is an entire function of exponential type not
exceeding π.
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Denote Γ the union of the discs Γ(2n ± t/π, 1/4) (n ∈ Z). If λ /∈ Γ, then

f(λ) = −Δ0(λ)
(

1 − Δ(λ)
Δ0

)
= −Δ0(λ)(1 − φ(λ)), (3.30)

where

φ(λ) =
(λ+

0 − λ)(λ−
0 − λ)

(λ2 − (t/π)2)

∞∏′

n=−∞

(λ+
n − λ)(λ−

n − λ)
(2n + t/π − λ)(2n − t/π − λ)

=
∞∏

n=−∞

(
1 +

ε+
n

2n + t/π − λ

)(
1 +

ε−n
2n − t/π − λ

)
.

Let us estimate the function φ(λ). Denote α±
n (λ) = ε±

n

2n±t/π−λ . It follows from (3.28)
that

∞∑
n=−∞

(|α+
n (λ)| + |α−

n (λ)|) �
∞∑

n=−∞
(|ε+

n |2 + |ε−n |2 + |2n + t/π − λ|−2

+ |2n − t/π − λ|−2)/2 < c3. (3.31)

It is easy to see that for all |n| > n0, where n0 is a sufficiently large number, we
have

|α±
n (λ)| < 1/4 (3.32)

for all λ /∈ Γ. If |n| � n0, then inequality (3.32) holds for all sufficiently large |λ|,
hence inequality (3.32) is valid for all |λ| � C0. It follows from (3.31), (3.32) and
elementary inequality

| ln(1 + z)| � 2|z|, (3.33)

which is valid if |z| � 1/4 that

∞∑
n=−∞

(| ln(1 + α+
n (λ)| + | ln(1 + α−

n (λ))| � c4.

Here and throughout the following, we choose the branch of ln(1 + z) that is zero
for z = 0. In view of [10, p. 433], we rewrite the last relation in the form

|φ(λ)| �
∞∏

n=−∞
|1 + α+

n (λ)|1 + α−
n (λ)| � ec4 . (3.34)

It follows from (3.29), (3.30), (3.34) that

|f(λ)| < c5eπ|Im λ| (3.35)

outside the domain Γ′ = Γ ∪ {|λ| < C0}.
Denote x±

0 = |Re t/π| ± 1/3, T+ = ∪n[2n + |Re t/π| − 1/4, 2n + |Re t/π| + 1/4],
T− = ∪n[2n − |Re t/π| − 1/4, 2n − |Re t/π| + 1/4]. It easy to see that the points
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x±
0 /∈ T+ and at least one of these point does not belong T− since x+

0 − x−
0 =

2/3 > 1/2. Denote this point by x0 then all points x0 + 2k, k ∈ Z lie outside the
set T+ ∪ T−.

In particular, inequality (3.35) is valid if λ belongs lines Imλ = ±Ĉ0, where
Ĉ0 = C0 + |t|, and vertical segments with vertexes (x0 + 2k, −Ĉ0), (x0 + 2k, Ĉ0),
|2k − 1| > C0, k ∈ Z. By the maximum principle, inequality (3.35) holds in whole
complex plane, hence the function f(λ) is an entire function of exponential type
not exceeding π.

Proposition 3.4. The function f belongs to PWπ.

Denote

W (λ) = lnφ(λ) =
∞∑

n=−∞
(ln(1 + α+

n (λ) + ln(1 + α−
n (λ)),

then

f(λ) = −Δ0(λ)
(
1 − eW (λ)

)
. (3.36)

Let us estimate the function W (λ) if λ /∈ Γ′. It follows from (3.28), (3.32), (3.33)
that

|W (λ)| �
∞∑

n=−∞
(| ln(1 + α+

n (λ)| + | ln(1 + α−
n (λ))|

� 2M

|λ| +
∞∑

n=−∞

( |ε+
n |2 + |ε−n |2

10M
+

10M

|2n − λ|2
)

� 2M

|λ| +
1
10

+ 20M

∞∑
n=0

1
n2 + |Im λ|2

� 2M

|λ| +
1
10

+ 20M

(
2

|Im λ|2 +
∫ ∞

1

dx

x2 + |Im λ|2
)

� 2M

|Im λ| +
1
10

+ 20M

(
2

|Im λ|2 +
π

2|Im λ|
)

.

The last inequality implies that

|W (λ)| < 1/4 (3.37)

if |Im λ| � M1 = 10(π + 2 + 22M) + Ĉ0. Then from the trivial inequality

|z|
2

� |1 − ez| � 2|z|, (3.38)

which holds for |z| � 1/4, we obtain the inequality |1 − eW (λ)| � 2|W (λ)|, which,
together with (3.29) and (3.36) implies that

|f(λ)| � c6|W (λ)| (3.39)
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for λ ∈ l, where l is the line Im λ = M1. Let us prove that∫
l

|W (λ)|2dλ < ∞. (3.40)

From the elementary inequality | ln(1 + z) − z| � |z|2 true for |z| � 1/2, we obtain

ln(1 + z) − z = r(z),

where |r(z)| � |z|2, hence,

W (λ) = S1(λ) + S2(λ), (3.41)

where

S1(λ) =
∞∑

n=−∞
(α+

n (λ) + α−
n (λ)),

|S2(λ)| �
∞∑

n=−∞
(|α+

n (λ)|2 + |α−
n (λ)|2).

Evidently,

|W (λ)| � |S1(λ)| + |S2(λ)|. (3.42)

Set

Im =
∫

l

|Sm(λ)|2dλ

(m = 1, 2). First consider the integral I1. It follows from [28, p. 221] that

I1 =
∫

l

∣∣∣∣∣
∞∑

n=−∞

(
ε+
n

2n + t/π − λ
+

ε−n
2n − t/π − λ

)∣∣∣∣∣
2

dλ

� 2

⎛
⎝∫

l

∣∣∣∣∣
∞∑

n=−∞

ε+
n

2n + t/π − λ

∣∣∣∣∣
2

dλ +
∫

l

∣∣∣∣∣
∞∑

n=−∞

ε+
n

2n − t/π − λ

∣∣∣∣∣
2

dλ

⎞
⎠

= 2

⎛
⎝∫

l+

∣∣∣∣∣
∞∑

n=−∞

ε+
n

2n − λ

∣∣∣∣∣
2

dλ +
∫

l−

∣∣∣∣∣
∞∑

n=−∞

ε−n
2n − λ

∣∣∣∣∣
2

dλ

⎞
⎠ < ∞,

(3.43)

where l± are the lines Imλ = M1 ∓ t/π correspondingly.
It is readily seen that

|S2(λ)| �
∞∑

n=−∞

|ε+
n |2

|2n + t/π − λ|2 +
∞∑

n=−∞

|ε−n |2
|2n − t/π − λ|2 � c7,
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hence,

I2 � c7

∫
l

( ∞∑
n=−∞

|ε+
n |2

|2n + t/π − λ|2 +
∞∑

n=−∞

|ε−n |2
|2n − t/π − λ|2

)
dλ

� c8

∞∑
n=−∞

(|ε+
n |2 + |ε−n |2)

∫
l̃

dλ

|2n − λ|2 < c9

∞∑
n=−∞

(|ε+
n |2 + |ε−n |2) < c10,

(3.44)

where l̃ = l+ ∪ l−. Relations (3.42)–(3.44) imply (3.40). It follows from (3.39), (3.40)
and [26, p. 115] that ∫

R

|f(λ)|2dλ < ∞. (3.45)

Proposition 3.5. The function f(λ) satisfies condition (3.1).

Let k ∈ Z. Obviously,

0 < c11 < |Δ0(k)| < c12. (3.46)

Denote

εn = max(|ε+
n |, |ε−n |).

There exists a number n0 > 0 such that∑
|n|>n0

ε2n < 1/1000,

and for any |n| > n0 the inequality ε
2/3
n < 1/1000 holds. Let λ /∈ Γ′. Supplementary

suppose that

|λ| > M2 = 1000(2n0 + 1)n0M.

Then, using the well-known inequality ab � ap

p + bq

q (a, b > 0, p, q > 1, 1/p +
1/q = 1), we obtain

∞∑
n=−∞

(|α+
n (λ)| + |α−

n (λ)|) �
∑

|n|�n0

(
εn

|2n + t/π − λ| +
εn

|2n − t/π − λ|
)

+
∑

|n|>n0

(
εn

|2n + t/π − λ| +
εn

|2n − t/π − λ|
)

� 2M
∑

|n|�n0

1
|2n − λ| + 2

∑
|n|>n0

(
ε2n +

ε
2/3
n

|2n − λ|4/3

)

� 1
50

+
1

500

∞∑
n=1

1
n4/3

<
1
10

, (3.47)
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hence inequality (3.37) is valid for all λ belonging to the considered domain. Arguing
as above, we see that

|f(λ)| � c13

(∣∣∣∣∣
∞∑

n=−∞
(α+

n (λ) + α−
n (λ))

∣∣∣∣∣+
∞∑

n=−∞
(|α+

n (λ)|2 + |α−
n (λ)|2)

)
.

The last inequality implies that for all |k| > k0, where k0 = max(C0, M2),

|f(k)| � c14

(∣∣∣∣∣
∞∑

n=−∞

(
ε+
n

2n + t/π − k
+

ε−n
2n − t/π − k

)∣∣∣∣∣
+

∞∑
n=−∞

( |ε+
n |2

|2n + t/π − k|2 +
|ε−n |2

|2n − t/π − k|2
))

. (3.48)

Clearly,

∞∑
k=−∞

∞∑
n=−∞

( |ε+
n |2

|2n + t/π − k|2 +
|ε−n |2

|2n − t/π − k|2
)

=
∞∑

n=−∞
|ε+

n |2
∞∑

k=−∞

1
|2n + t/π − k|2 +

∞∑
n=−∞

|ε−n |2
∞∑

k=−∞

1
|2n − t/π − k|2

< c15

∞∑
n=−∞

(|ε+
n |2 + |ε−n |2) < c16.

(3.49)
It follows from (3.27), (3.46), (3.48), (3.49) that (3.1) holds.

Necessity. If a set {Λ} is the spectrum of a Dirac operator (1.2), (1.4), then
relation (2.9) takes place [5]. Let us prove that condition (3.27) holds. Since f(λ) =
Δ(λ) − Δ0(λ), then by theorem 3.1 relation (3.1) is valid.

Let λ = k, k ∈ Z, |k| > k0, hence inequality (3.47) holds. It follows from (3.36),
(3.38) and (3.46) that

|W (k)| � |f(k)|.
This, together with (3.41) implies

|S1(k)| � |f(k)| +
∞∑

n=−∞
(|α+

n (k)|2 + |α−
n (k)|2). (3.50)

Using (3.49), we find that

∞∑
n=−∞

(|α+
n (k)|2 + |α−

n (k)|2) < c17. (3.51)

It follows from (3.50), (3.51) and (3.1) that∑
|k|>k0

|S1(k)| < c18.
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It is easy to see that ∑
|k|�k0

|S1(k)| < k0c19.

The last two inequalities imply (3.27).
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