
11

Introduction

Distributed ledger technologies (DLTs) have attracted significant
attention in the last few years. They gained a noticeable momentum,
particularly after the introduction of blockchains as a basic building
block for the development of new cryptocurrencies and tokens. This
opportunity opened up new research directions to support the mod-
ern economy with numerous possibilities to redesign and innovate the
market in accordance with the digital revolution we are witnessing.
However, these technologies are yet to prove in practice their capabil-
ity to match all the dependability and security requirements imposed
in the economic and banking sector. In this chapter, we will provide
an overview of the technical features of DLTs (and of blockchains
in particular), outlining their potential impact in the economic field
(Box 1.1). We will first introduce the reader to their definition from
a technical point of view, illustrate its core mechanisms and the guar-
antees they provide, and describe how these features are realised in a
decentralised way. Finally, we will draw opportunities and challenges
stemming from the adoption of this technology. We begin this journey
with a synthetic definition.

As is typical of synthetic definitions, the one below can also be seen
as simplistic yet complex to catch at first read. In an attempt to compen-
sate for both issues, we will delve deeper into the fundamental notions
and devices behind distributed ledger and blockchain technologies.

Transactions and Ledgers

The building block of blockchains is the transaction. A transaction is
a digital record that registers the transfer of value (and data) between
accounts. Once processed, the transaction triggers the movement of
crypto-assets (also known as cryptocurrencies) such as Bitcoin (BTC)

1	 Blockchain and Distributed
Ledger Technologies
Claudio Di Ciccio

https://doi.org/10.1017/9781009411783.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009411783.003

12 Claudio Di Ciccio

or Ether (ETH). A transaction involves at least a sender account for
the input and a recipient account for the output. Every transaction
is digitally signed by the sender to show evidence that the account
owner – and nobody else! – issued it. To do so, the owner retains a
private key, with which only they can sign data, and a public key
associated with the account address. Everyone can verify that the
digital signature belongs to the owner through an automatic pro-
cedure based on the public key. As the account address is derived
from the public key, the fact that the signee owns the account is
also automatically verifiable. Please note, thus, that transactions do
not require the personal details of the account holder to be known.
The link between the signature and the account number is crypto-
graphically guaranteed. In fact, the owner of an account can remain
completely unknown within the blockchain. Nevertheless, all trans-
actions report the account address of recipients and the senders.
Therefore, one can trace all the transfers from and to an account.
This setting thus guarantees pseudonymity within the blockchain
platform, instead of complete anonymity.

Figure 1.1 illustrates a simplified example of a transaction. In the
figure, a transfer of 2,000,000,000 units of cryptocurrency to account
0x1472…160c is requested from the 0xca35…733c account’s owner.
Considering the Ethereum1 blockchain platform (Buterin 2014), the
transferred value is expressed in Wei, and the amount in the picture
equates to two Gwei (i.e., 0.000000002 Ether). The transaction is
cryptographically signed by the sender to attest that the transaction is
authentic. Every transaction has a unique ID and can bear additional
information in the payload.

	1	 See Ethereum. Available online: www.ethereum.org/ (accessed: 20/01/2023).

Box 1.1  Distributed ledger and blockchain

A distributed ledger is a registry replicated over a network of nodes
that records the sequence of transactions between senders and
recipients. A blockchain is a distributed ledger that uses blocks to
collate sections of the ledger. DLTs, such as those underneath the
blockchain platforms, are designed to guarantee properties that
preserve the storage, exchange, and update of data, such as verifiability,
liveness, robustness, and permanence.

https://doi.org/10.1017/9781009411783.003 Published online by Cambridge University Press

http://www.ethereum.org/
https://doi.org/10.1017/9781009411783.003

Blockchain and Distributed Ledger Technologies 13

Ledger is a term that began being used in England during the fif-
teenth century to indicate a register of accounts. This term represents
the collation of transactions. Notice the use of the word collation in
place of collection: maintaining the order of transactions is crucial as
it prevents the so-called double spending.

The following example, illustrated in Figure 1.2, aims to give an
idea of what double spending is, and why the order of transactions
is necessary to prevent it. Assume that the account 0xB belongs to a
digital service provider, Bob. Accounts 0xA and 0xC belong to the
same owner, Alice. Alice wants to purchase a digital package from
0xB at the price of 90 units of cryptocurrency (which we shall hence-
forth denote with ¢, so 90 ¢ here). Remember that the ownership of
accounts (let alone the purposes of the owners) is a piece of informa-
tion that is not recorded within the blockchain, that is it is off-chain.
In the beginning, the balance of account 0xA amounts to 100 ¢, the
balance of 0xB is 10 ¢, and the balance of 0xC is 50 ¢. Alice sends a
transaction worth 90 ¢ to 0xB to purchase the digital product. Let us
associate this transaction with the identifier 0xA90B. This operation
reduces 0xA’s balance from 100 to 10 ¢ and increases that of 0xB
from 50 to 140 ¢. Bob, then, sends the digital product to Alice. Notice
that the digital product is not shipped on-chain but off-chain. After
receiving the package (which we assume is transmitted at very high
speed), Alice tries to issue a new transaction from 0xA to 0xC, worth
50 ¢. Let us identify this transaction with 0xA50C. Since negative bal-
ances are typically not allowed in the blockchain, transaction 0xA50C
is rejected – notice that 0xA’s balance would drop to −30 ¢ otherwise.

Externally Owned
Account (EOA)

Externally Owned
Account (EOA)Digital signature Transaction ID: 0xfa12…40c6da

2000000000

Figure 1.1  A simplified example of Ethereum transaction
Note: The sender account (to the left) sends 2,000,000,000 Wei (i.e., 2 Gwei)
to the recipient account (to the right)
Source: author’s elaboration.

https://doi.org/10.1017/9781009411783.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009411783.003

0xA 0xB0xC

100 ¢10 ¢ 50 ¢

10 ¢ 140 ¢
90 ¢

50 ¢

Tx ID: 0xA90B

Tx ID: 0xA50CX

Figure 1.2a  A double-spending scheme
Note: Account 0xA sends 90 units of cryptocurrency to buy a digital product,
sent outside of the blockchain by the owner of the recipient account 0xB.
Afterwards, a new transaction from the 0xA account of 50 units of cryptocur-
rency is rejected due to insufficient funds
Source: author’s elaboration.

Figure 1.2b  A double-spending scheme
Note: The effect of inverting the order of transactions reveals the double
spending mechanism: the transaction paying 0xB is rejected, although the
digital product has already been delivered
Source: author’s elaboration.

0xA 0xB0xC
100 ¢10 ¢ 50 ¢

90 ¢
Tx ID: 0xA90B

50 ¢
Tx ID: 0xA50C

60 ¢ 50 ¢

X

https://doi.org/10.1017/9781009411783.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009411783.003

Blockchain and Distributed Ledger Technologies 15

Here we get to the double spending issue. Alice could try to argue,
once she has received the digital package, that transaction 0xA50C
took place before 0xA90B. In that case, the latter would be rejected.
As a result, Bob would have already delivered the service without
being paid, whereas the total balance of Alice’s accounts would remain
intact as if the 90 ¢ of transaction 0xA90B were spent twice. We con-
clude that not only keeping transactions unaltered but also preserving
their order is vital in this context.

Distributing the Ledger

If the ledger were saved on only one computer system, however much
it can be secured, it would impose a question of trust: it is assumed
that those to whom the administration and safeguarding of this sys-
tem are delegated do not let the content be lost or destroyed, made
invalid or corrupt, truncated thus bearing incomplete information, or
altered with forged transactions. In our setting, this problem is over-
come by ensuring that multiple copies of the ledger are saved in sepa-
rate locations through intercommunicating systems on a computer
network (in jargon, these systems are called /nodes/), as illustrated in
Figure 1.3. These nodes are entitled to the same rights on the data,
so they are interchangeable. We name this paradigm peer-to-peer. In
a peer-to-peer network, any node can crash, get offline or become
unavailable for whatever reason: the other nodes will let the informa-
tion safely stored. In theory, it is sufficient that just one node resists,
and the whole history of transactions is preserved. The platform is
resilient even to events such as nodes being under cyber threat or
overtaken by malicious players. The ledger can still be considered safe

Figure 1.3  Centralised and distributed architectures
Note: The centralised architecture to the left illustrates a single system retaining
the information and offering services to the other nodes in the network. The
peer-to-peer network to the right shows a replica of information and services
on all nodes. Notice, however, that replicas may not be identical
Source: author’s elaboration.

https://doi.org/10.1017/9781009411783.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009411783.003

16 Claudio Di Ciccio

if the majority is still correctly functioning and properly behaving. A
deliberate attack or malfunction must propagate on a large scale to
take effect: on one copy (or on a limited number of copies), it does
not affect the system. These are the main arguments in favour of a
distributed solution to handle the ledgers. Hence the name: distrib-
uted ledger technology.

To keep the local copies of the ledger synchronised, all nodes should
receive updates from the network. This requirement entails that every
node being informed about an update should register it and bounce it
to the neighbouring nodes in the network. It is noteworthy to recall that
the updates pertain to transactions. Therefore, every node is aware of
every transmission of value among accounts. From this standpoint, we
may agree that keeping pseudonymity is a good compromise between
the need for nodes to update the status of accounts (if they did not
know from and to what accounts the transactions were issued, how
could they keep track of the balances?) and the preferably avoidable
situation in which all nodes know every detail about personal belong-
ings and exchanges. Notice that if full anonymity was kept, nodes
would not be aware of the transactions’ sender and recipient accounts
nor would they be able to reconstruct this piece of information. They
could keep on piling up new transactions from the network but then
who could guarantee that transactions were legitimate? For instance,
who could verify that there were enough cryptos in account 0xA to
send 90 ¢ to 0xB? An authority should be invoked to solve this conun-
drum, in case – which would dismantle the whole idea of decentralisa-
tion and restore the risks of data loss, corruption, and crashes.

Transactions are thus collated in ledgers, one after the other. As a
consequence, ledgers tend to grow. Thinking about the old, paper-
based one, it would seem natural to write down the ledger onto separate
books. Books would also be sorted to ensure that the order of trans-
actions is preserved across the books. In blockchains, the notion of a
book is replaced by that of a block. A block contains a segment of the
ledger plus additional heading information – including the timestamp.

To keep the order among blocks, each block is linked to the previ-
ous one through a one-way function called hashing. In brief, hashing
is a mathematical one-way function that produces a number (the
digest, also commonly known as hash) that works as a digital fin-
gerprint for any piece of input data. The hash characterises the input
data (just like a fingerprint identifies a person) though being typically

https://doi.org/10.1017/9781009411783.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009411783.003

Blockchain and Distributed Ledger Technologies 17

of a fixed size (normally, smaller), regardless of the input data size.
More than the fingerprint metaphor, though, the hash is tightly
bound to the input data. The hashing function returns the same hash
out of two identical pieces of data. Altering a bit in the data, though,
turns the associated hash into a completely different number to the
extent that it is not feasible to reconstruct what the alteration was by
solely looking at the digest.

Equipped with this notion, we can see what happens when every
block stores the hash of the previous one in its header. This scenario
serves as a good intuition of the approach underlying Bitcoin2 and
Ethereum, among others. The actual mechanism is a bit more refined
to save computation efforts, but we can omit the details for the sake
of understandability. Let us consider three blocks in a sequence now,
which we shall refer to as previous, current, and next. If we try to
remove, add, change, swap, or reorder transactions in the previous
block, its content is altered and, thus, its hash turns into something
that is completely different. Consequently, the previous block’s hash
does not match the copy stored in the current one anymore. To keep
it consistent, the current block has to change its local copy of the pre-
vious hash accordingly. This update, in turn, changes the header and
hence the hash of the current block. The next block, then, has to mod-
ify its copy of the current block hash accordingly. At this stage, we can
quickly figure out what happens to the block following the next one.
We conclude that this mechanism makes every change reverberate as
a sort of domino effect along the whole sequence of blocks. The older
the changed block, the longer the domino effect.

The sequence of hash-based links thus forms a chain, as depicted
in Figure 1.4. Hence the name, blockchain. DLTs such as Bitcoin and
Ethereum are blockchain platforms as they employ the slicing of led-
gers into consecutive blocks that are backlinked from the current to
the previous one. IOTA,3 instead, is a DLT that does not implement
this approach. Blockchain platforms use blocks as packets transmitted
within the chain to update the ledger with a new segment.

Transactions are broadcast by all nodes in the network to all their
neighbours, so that every node can be aware of the fact that the trans-
action was issued. In blockchain platforms, they remain in a temporary

	2	 See Bitcoin. Available online: www.bitcoin.org/en/ (accessed: 21/01/2023).
	3	 See Iota. Available online: www.iota.org/ (accessed: 20/01/2023).

https://doi.org/10.1017/9781009411783.003 Published online by Cambridge University Press

http://www.bitcoin.org/en/
http://www.iota.org/
https://doi.org/10.1017/9781009411783.003

18 Claudio Di Ciccio

storage named transaction pool, from which the publishing node col-
lects the ones to include in the block. Until a block is published and
accepted by the nodes in the network, indeed, the new transactions are
not appended to the ledger.

The power in the hands of nodes publishing the blocks should not
be overlooked: whether a transaction is included or not in a block
depends on their choice. This is why transaction fees are usually
included in the transactions by the senders: they are an economic
incentive to motivate the miner to include the transaction in the
next block.

Right to Publish and Consensus

We have already observed that decentralising the management
and maintenance of a ledger strengthens the platform. However,
this solution comes with a few infrastructural drawbacks. Firstly,
the nodes must send digital messages through the network to keep
the nodes updated with the latest transactions. These messages are
prone to possible delays or complete loss. As a result, different nodes
may have diverging views of the historical sequence of transactions.
Secondly, the emission of the updates should be granted to nodes
that give evidence of their reliability. Otherwise, malicious nodes
could find it too easy to attack the network by flooding it with data
reporting wrong or false information. Therefore, integrating at least
two mechanisms appear fundamental to preserving safety and opera-
tional continuity. One should guarantee that the network eventually
achieves a univocal view of the ledger (consensus). The other should
cater for self-certification, ensuring that new messages are propa-
gated only by nodes demonstrating their reliability. Terms like Proof

Figure 1.4  A schematised view of the backward link–based chain of blocks
Note: Every block contains a segment of the sequence of the transactions issued
to that moment. The collation of transactions goes under the name of ledger
Source: author’s elaboration.

https://doi.org/10.1017/9781009411783.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009411783.003

Blockchain and Distributed Ledger Technologies 19

of Work or Proof of Stake fall in the second category. Let us begin
with the former, as it was historically introduced first and is still in
use with platforms such as Bitcoin.

Proof of Work

The idea behind Proof of Work is that the nodes which aim to publish
a new block should provide evidence of their will to keep the infra-
structure in operation. To this end, those nodes show that they are
ready to put computation time and resources at risk by attempting
to solve a complex cryptographic puzzle. The solution to this puzzle
is easily verifiable once it is given: finding it is the source of the dif-
ficulty. More specifically, Bitcoin’s Proof of Work requires nodes to
find a number (called a nonce) to be injected in the header of the
block so that the hash of the block’s header is a number that is lower
than a given target. For example, the miner of the Bitcoin block num-
ber 769,424 inserted 2,927,826,006 as the nonce to make the whole
block header’s hash equal to 310,844,154,145,111,873,655,715,160,​
191,695,224,044,144,394,078,051,380, which is less than the set tar-
get (762,342,638,057,996,256,581,733,267,702,136,683,580,848,
909,336,969,216).4

Recall that reverse-engineering the input of a hashing function given
the output is nearly impossible. Therefore, the only way to find the
nonce is adopting a brute-force approach: try all possible numbers
until the hash of the whole block is right (i.e., less than the target). The
challenge is already hard on its own but, to put more pressure on the
nodes, it is an open race: if another node finds a suitable nonce first,
the challenge for that block is over, and a new round starts with the
next block. This approach is in line with the distributed computation
scheme: any node in the network can concurrently run its own opera-
tions to be entitled to the right to publish the block. To make things
worse, so to speak, we should consider that the previous computations
do not lead to any advantage for the subsequent round. The new block
is indeed different from the previous, so the nonce is to be inserted
in a different data box. As a result, the new hash has to be recom-
puted from scratch for every possible candidate. Finally, notice that

	4	 See Blockchair. Available online: www.blockchair.com/bitcoin/block/769424
(accessed: 20/01/2023).

https://doi.org/10.1017/9781009411783.003 Published online by Cambridge University Press

http://www.blockchair.com/bitcoin/block/769424
https://doi.org/10.1017/9781009411783.003

20 Claudio Di Ciccio

the difficulty of the puzzle is set by the target: intuitively, the lower
the target, the fewer the numbers that are below it. These numbers
form the set of acceptable block-headers’ hash values. Every such hash
value roughly corresponds to a nonce. Therefore, fewer nonces are
there to be guessed, and finding one becomes a tougher challenge. The
difficulty is thus tunable. The need to keep the average time to publish
a block stable and around 10 minutes determines how the knob is
turned. If the average publication time is lower than that, the difficulty
gets increased. Otherwise, it is lowered. Notice that this decision is not
governed by any single actor: the protocol lets every node know how
to autonomously determine the necessary change at regular intervals
of 2,016 blocks (about 2 weeks).

At this stage, a doubt could legitimately arise: what moves the nodes
to try and guess the nonce, given the required considerable efforts in
spite of no guarantee to win the game? To pay the electricity bill and the
hardware consumption back, the winners who manage to publish the
block included in the blockchain are rewarded with freshly minted cryp-
tocurrency (plus other non-negligible extras such as the transaction fees,
discussed earlier). As such a prize is akin to finding gold behind a stone
wall of a cave after extenuating excavations, we say that nodes publish-
ing blocks (or trying to do it) are mining nodes. At the time of writing,
the mining reward amounts to 6.25 BTC. Cryptocurrencies therefore
perform the function of cryptofuel, which supplies monetary resources
to the nodes that maintain the infrastructure using their own computa-
tional resources. Cryptofuel attracts miner nodes as cryptocurrencies are
traded in fiat money on dedicated markets by investors around the world.
At the time of writing, the mining reward equates to about 20,000 €.

Notice that the mining reward was established in May 2020 and is
getting halved every 210,000 blocks (i.e., about four years: in 2009,
it amounted to 50 BTC). Quoting the Bitcoin white paper: ‘Once a
predetermined number of coins have entered circulation, the incentive
can transition entirely to transaction fees and be completely inflation
free.’ (Nakamoto, 2008) The incentive can help encourage knots to
remain honest. Quoting the white paper again: ‘A greedy attacker […]
ought to find it more profitable to play by the rules, [as] such rules
[…] favour [them] with more new coins than everyone else combined’
(Nakamoto 2008).

Verifying that the solution to the puzzle is correct has to be rela-
tively easy because every node in the network should be capable of

https://doi.org/10.1017/9781009411783.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009411783.003

Blockchain and Distributed Ledger Technologies 21

validating it: if the solution is incorrect, the block should be rejected.
Other reasons for a proposed block to be discarded include incor-
rect transactions, wrong signatures, or excessively distant timestamps
reported in the block header. We remark that these checking opera-
tions are carried out virtually by every node in the network.

Proof of Stake

Proof of Work has been subject to criticism due to the high consump-
tion of electricity, heating, and ultimately pollution that mining nodes
cause. With regular periodicity, new reports are published on the com-
parison between the power consumption of entire states and that due
to mining. The trend has long been upward, that is comparable states
increase in size at every update. Furthermore, in an attempt to win
the puzzle, larger and larger mining rigs have been assembled. Mining
rigs consist of a multitude of machines equipped with dedicated hard-
ware that have the sole objective of running the mining processes in
parallel to increase the chances to win. As a consequence, the risk of
re-centralising the decision process becomes more and more tangible.

To overcome this issue, Ethereum transitioned to a different
approach: the Proof of Stake, already applied natively in other block-
chain platforms such as Algorand.5 In Proof of Work, miners put capi-
tal at risk by expending energy. In Proof of Stake, validators explicitly
stake capital in Ether, the Ethereum platform’s cryptocurrency. More
specifically, candidates propose themselves as validators by deposit-
ing a given amount (32 ETH, at the time of writing) from their bal-
ance: this amount is referred to as the stake, indeed. The stake cannot
be used by the original owners as long as they remain in the role of
validators. Validators are pseudo-randomly selected to become part
of validator committees (currently) of 128 members each. Within the
committee, one node is chosen as the proposer. The proposer replaces
the role of the miner as block publisher. The members of a validation
committee vote for (i.e., they broadcast their attestation to) the next
block to be put at the head of the chain. For every published block that
gets included in the blockchain, both the proposer and the validators
get a reward that is topped up to the stake.

	5	 See Algorand Foundation. Available online: www.algorand.foundation/
(accessed: 20/01/2023).

https://doi.org/10.1017/9781009411783.003 Published online by Cambridge University Press

http://www.algorand.foundation/
https://doi.org/10.1017/9781009411783.003

22 Claudio Di Ciccio

With Proof of Stake, the block time is fixed in Ethereum (set to 12
seconds at present). The block time is named /slot/. The first half of the
slot is the time the proposer has to submit the new block. Every 32 slots
(an /epoch/, i.e., 6 minutes and 24 seconds currently), committees are
drawn from the set of members with sufficient ETH at stake, one per
slot and so that no two committees share any members in the epoch.

The finality of blocks is handled explicitly by the protocol: the first
block published in every /epoch/ requires an additional vote from the
committees. The decision is two-staged. The committee votes for pairs
of epoch-boundary blocks: an older one (source) and a newer descen-
dant (target). Both source and target need to be attested by two-thirds
of the votes to be bound by a so-called supermajority link. The tar-
get in the supermajority link becomes justified. The source is typically
already justified (as it was the target in a previous voting round) and
thus becomes finalised. Validators attesting to blocks that are included
in a supermajority link receive specific extra rewards for justified and
finalised blocks. A finalised block is nearly impossible to be removed
from the net. Notice that not all attestations have the same weight.
The weight depends on the quota left at stake – in particular, the so-
called effective balance, which cannot amount to more than 32 ETH.
Notice that the staked ETH can also decrease.

With this scheme, indeed, inactive members could hamper the pro-
cess. This is why the protocol includes the so-called inactivity penal-
ties. Penalties remove limited amounts of the capital at stake as errors,
temporary disconnection from the network, or seldom malfunctions
can happen, after all. What is treated with a more severe countermea-
sure is the occurrence of (allegedly malicious) misbehaviour: nodes
that publish multiple blocks (/equivocation/) attest to different blocks
(double vote) in the same round, or vote for a source and a target
that occur in epochs surrounding an already voted pair, are subject
to slashing of their staked funds. Notice that slashing leads to the
removal of the member from the set of validators. Interestingly, condi-
tions for slashing can only be verified if other nodes signal and report
evidence of them. This is why a special reward is dedicated to whistle-
blowers (who notify the misbehaviour) and proposers who include the
whistleblowing messages in the block. Also, notice that the slashed
funds become higher if the misbehaving player operates in collusion
with other players. The reason why finalised blocks are considered
as such lies in the enormous slashing that their replacement in the

https://doi.org/10.1017/9781009411783.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009411783.003

Blockchain and Distributed Ledger Technologies 23

blockchain would require: as two-thirds of the validators have voted
for it, there cannot be another two-thirds of validators attesting to
another block unless one-third of the total were double votes.

Choosing the Fork

As we said, the network is subject to delays and loss of blocks. It is
perfectly reasonable that, at some stage, a node observes that more
alternatives are coming as an update – different blocks that are valid
but report on different transactions.

The temporary situation in which more branches are taken into
account as possible evolutions of the chain is typically named fork.
Forks can happen with the top, most recent blocks. The further we go
down the chain, the less likely they become. However, notice that if
a block is included in the chain, its transactions are appended to the
ledger and thus remain in the collective memory of the network. If a
block is initially considered part of the chain but then gets replaced
by another sub-chain, its transactions become non-existing all of a
sudden (unless, of course, the new chain still retains that very block).
Owing to this, it is recommended to wait for six blocks to be appended
in Bitcoin before considering the transaction as finalised.

How to determine the fork to include in the blockchain in a way
that eventually all nodes opt for the same one? The mechanism under-
neath this choice is the basis of consensus. With Proof of Work, the
preference leans towards the block at the head of the sub-chain with
the highest amount of work put in the mining – which translates with
good approximation to the longest sub-chain. Every block received
by a node brings with itself the hash-based link to the previous one.
If the node observes that the new block does not appear to have the
predecessor in the chain, it keeps the new block aside and waits until
the predecessor is delivered from the network. Notice that the same
process could occur with the predecessor’s predecessors, and so on,
until a convergence point is found. At that moment, the node can
decide which branch to take as the main chain. In Ethereum, the sub-
chain that accumulates the highest weight of attestations is chosen.

We remark that this choice is made by all nodes and recall that
all nodes are in charge of individually verifying that the block they
receive is correct, contains valid transactions, and is consistent with
the remainder of the history of the blockchain. For practical reasons,

https://doi.org/10.1017/9781009411783.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009411783.003

24 Claudio Di Ciccio

though, some nodes may not store the whole ledger locally, but only
a section of their interest. These nodes are named light nodes. A typi-
cal example of light node is a wallet, that is the software that account
holders use to keep track of their funds in cryptocurrencies.

This aspect offers food for thought about the nature of blockchain
as a platform (Voshmgir 2019). It is politically decentralised because
no entity controls the network. It is architecturally distributed because
the information is held and managed by all nodes in the system.
However, it is logically centralised because each entity has its own
copy of the ledger, in a state that tends to be unanimously agreed.

Transaction Model and Balance Model

Not only the consensus mechanisms distinguish Bitcoin and Ethereum.
Another key specificity lies in the paradigm with which the two blockchain
platforms handle the transfer of value among accounts. Ethereum adopts
a balance model: accounts are associated with their current amounts
of Wei’s, which they can spend by adding a value to the transaction. If
account 0xE owns, for example, three ETH, its owner can sign a transac-
tion with which they send 1.5 ETH to account 0xF. Therefore, the nodes
in the network should keep track of the current balance of every account
to verify whether they can spend the declared amount in a transaction
or not. A metaphor for the balance model used in Ethereum is that of
the bank transfer: akin to Ethereum transactions, bank transfers typically
report the account coordinates of the sender, the account coordinates of
the redeemer, the transferred amount, the transaction fee, and a unique
identifying number for the transaction. When executed, they determine
the subtraction of the indicated amount and the fee from the sender’s
account and the addition of the amount in the recipient’s account. The
transaction fee goes to the issuing bank. Notice that in blockchain plat-
forms, banks do not constitute the underlying organisation guarantee-
ing for the safety and security of the transfers and accounts. The whole
network does, thus network nodes (specifically, the block proposers in
Ethereum) are rewarded the transaction fees for their efforts.

Bitcoin, instead, uses a transaction model. Suppose that account 0xB
had received a transaction worth 5 BTC, another one of 6 BTC, and
a third one of 1 BTC in the past. The balance amounts to 12 BTC in
total, which corresponds to the sum of the denominations of its Unspent
Transaction Outputs (UTXOs). Imagine that the owner of account 0xB

https://doi.org/10.1017/9781009411783.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009411783.003

Blockchain and Distributed Ledger Technologies 25

wants to send 11.5 BTC to 0xC. To do so, the owner should sign the three
UTXOs we mentioned, setting 0xC as the redeemer, and wrap them into
a new transaction. UTXOs cannot be split into sub-units. To get the dif-
ference in return, the new transaction should include a new transaction
unit that transfers 0.5 BTC (or less) from 0xC back to 0xB. If the change
amounts to less than 0.5 BTC (say, 0.4 BTC), the difference becomes the
transaction fee to the benefit of the miner (0.1 BTC in this case). In this
setting, the balance of every account is computable by summing up all
the UTXOs that belong to it. Considering that account addresses mark
every transaction in which they occur as sender or redeemer, UTXOs can
be tracked for all their lifetime. As a good metaphor for UTXOs, we can
consider transferable cheques that are not redeemed.

Smart Contracts

A second generation of blockchain arose when, from the intuition of
Vitalik Buterin, the focus shifted from the concept of blockchain as a
distributed system for the exchange of electronic money to the concept
of blockchain as a /programmable distributed environment/ (Buterin
2014). The notion through which this conceptual leap became pos-
sible is the smart contract.

The smart contract is a program run by the blockchain platform.
Programmers typically use a coding language such as Solidity,6 which is
later automatically turned into a set of low-level operations executable
by computerised systems. Figure 1.5 shows the same smart contract
written in Solidity (left) and turned into the so-called operation codes,
or opcodes for short (top right in the figure), for execution. At the
bottom-right corner of the figure, we can see the direct transposition of
the instruction codes into binary codes that the delegated component
of Ethereum named Ethereum Virtual Machine (EVM) executes. One
of the crucial characteristics of smart contracts is that their code, and
only their code, fully determines how their status evolves (‘The code
is the law’).

Smart contracts, despite their name, are not necessarily linked to
a binding contract between counterparts. Of course, they can also
represent contracts in the most commonly adopted sense. However,

	6	 See Solidity. Available online: www.solidity.readthedocs.io/ (accessed:
20/01/2023).

https://doi.org/10.1017/9781009411783.003 Published online by Cambridge University Press

http://www.solidity.readthedocs.io/
https://doi.org/10.1017/9781009411783.003

26 Claudio Di Ciccio

the spectrum of possible usages is much larger as, in Ethereum, they
can express anything a computer program could do. For example,
smart contracts are typically used to manage the life cycle of tokens
such as the Hello Token in Figure 1.5. The Hello Token contract
offers four operations: (1) the constructor function to deploy new
instances of the smart contract and record the account address of
the creator; (2) the mint function to buy new tokens at the price of 2
Gwei each; (3) the transfer function to send tokens from the sender
account to another account; and (4) the terminate function to cease
the operations of the smart contract and transfer the funds from
the account of the smart contract to the creator’s account. Notice
that the way in which the smart contracts are encoded fully and
exclusively dictates the way in which they behave and manage the
tokens they define. The challenge of creating smart contracts that
precisely and consistently represent the intended requirements and
purposes is among the core challenges posed by the research agenda
of Magazzeni et al. (2017).

Next to the so-called externally owned accounts (EOAs), owned
by human users or in any case from entities outside the ecosystem
of the blockchain platform, we have the smart contract accounts
(CAs), that is accounts entirely managed by the aforementioned
programs. Notice that the status of a smart contract includes the

Figure 1.5  The Solidity code of a sample smart contract in Ethereum
(Hello Token)
Source: author’s elaboration.

https://doi.org/10.1017/9781009411783.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009411783.003

Blockchain and Distributed Ledger Technologies 27

balance of its own account, then. The code, therefore, determines
how the funds therein are to be transferred or kept. However, the
smart contracts solely react to calls from other accounts: they do
not independently trigger their operations. This entails that they
cannot independently take action at some stage on their own free
will, so to speak: there always is an invoker that is responsible for
triggering the operations.

Smart contracts, in other words, offer functions. Functions are
invoked by other accounts (let them be EOAs or CAs) to execute oper-
ations. Updating the bank-transfer metaphor we used earlier to sup-
port this new paradigm, imagine that the recipient of the transfer is the
smart contract, and the message encoded the data necessary to perform
the requested operation. When the recipient receives the bank transfer,
it automatically starts executing the requested operations based on the
payload of the message. Indeed, the means to invoke smart contracts
from EOAs is using transactions, as illustrated in Figure 1.6 (Box 1.2).
As a consequence, all operations are fully tracked, the signee is known,
and the outcome too (because the smart contract’s code determines it).
Notice that the code, although at its low-level representation in terms
of bytecode, is publicly known to every node in the network. The rea-
son is, new instances of a smart contract are deployed (i.e., assigned
an account and initialised) by means of transactions too. The recipient
is a previously unoccupied account address (which will become their
own) and the code is in the payload. The payload (i.e., the code of the
new instance of smart contract just deployed) is part of the transac-
tion, which is going to be stored in the ledger and, therefore, known
to every node in the network and immutable.

Figure 1.6  Invocation of a smart contract
Source: author’s elaboration.

https://doi.org/10.1017/9781009411783.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009411783.003

28 Claudio Di Ciccio

The outcome of every invocation is known to every node in the
network because virtually every node will execute the triggered
operations after they read the invoking transaction in the published
block – hence, after the proposer node has actually pre-executed and
validated them: since the proposer is responsible for grouping trans-
actions into a block, it must be the first to verify their correctness.
The operations of a smart contract function are thus going to be
run multiple times across the whole network, with the same input
and the same output, akin to a polygraph machine as metaphorically
described by Dannen (2017). Therefore, their execution is associ-
ated with a price for the invoking account. The paid units go under
the name of gas. Every opcode low-level operation (see the listing in
Figure 1.5 at the top-right corner) is bound to a specific price in gas.
Typically, altering the state of the smart contract and deploying new
smart contracts are the most expensive operations, whereas math-
ematical and hashing operations have a lower cost. A full pricing list
can be found in the Ethereum yellow paper (Wood 2014). Deploying
a smart contract like the one in Figure 1.5 has a cost of 531,255 units
of gas, invoking its mint operation to buy four Hello Tokens requires
43,821 units of gas. Also, the amount of data sent to the smart con-
tract and treated therein are mirrored in additional costs: the more
the data, the higher the overall price. Transaction fees in Ethereum
are solely based on gas. Transactions with no smart contract invoca-
tions require gas, too. Notice that the gas is independent of the value
we send. Therefore, to buy four Hello Tokens, we should send eight
Gwei to the smart contract backing the token, in addition to the gas
expenditure (for further details on the difference between tokens and

Box 1.2  Smart contracts

If anything, immutability, non-repudiability, and persistence are good
reasons to resort to smart contracts to coordinate the operations of
multi-party processes, especially in the presence of partial trust among
the participants (Mendling et al. 2018). All operations are tracked and
cannot be erased, stored together with the smart contract that they
testify the interactions with, in a permanent ledger that is replicated
over all nodes. Therefore, the automated workflow is known to all
participants, it is not going to change, and the ongoing evolution of the
running processes can be monitored (Di Ciccio et al. 2022).

https://doi.org/10.1017/9781009411783.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009411783.003

Blockchain and Distributed Ledger Technologies 29

cryptocurrencies, see Box 1.3). To make sure that the invocation
terminates and no harmful contract drains unlimited funds from the
invoking account, the senders set a limit to the maximum amount of
gas they are ready to pay (the gas limit).

The price of every unit of gas in units of cryptocurrency (Wei)
oscillates depending on two factors, both to be multiplied by the
units of gas consumed to run a smart contract’s function code: a
priority fee, which the invoking account can raise at their will to
increase the chances that the proposer will include that transaction
in the next block, and a base fee, decided by the protocol and used
to counterbalance the use of the network (the more the traffic, the
higher the base fee). Notice that the priority fee (times the units of
gas) will end up in the account of the proposer, whereas the base
fee (multiplied by the units of gas) is going to be burnt. Ethereum,
thus, allows for a deflationary mechanism unlike Bitcoin and per-
mits units of cryptocurrency to be not only issued but also removed
from the network.

Box 1.3  Token versus cryptocurrency

Notice the difference between a token and a cryptocurrency.
Cryptocurrencies like ETH or BTC propel the infrastructure.
Their emission (or burning in the case of Ethereum) depends on
the protocol and its policies. Cryptocurrencies can be minted or
exchanged for fiat money and sold back. This trading will determine
their price in the market. Aside from this, there is hardly any other
operation that can let users influence the nature of cryptocurrencies.
Tokens, instead, are digital entities whose existence is bound
to smart contracts supporting them. Their lifecycle, emission,
exchange, and deletion are fully controlled by the backing smart
contracts. Unlike cryptocurrencies, the rules of the game governing
every token are fully determined by the custom code of which
the smart contract consists. The infrastructure keeping up smart
contracts (and tokens) is propelled by cryptocurrencies, and tokens
are acquired from them in exchange for cryptocurrencies. Thus,
they lie at different levels of abstraction in what computer scientists
call the protocol stack, so to speak: cryptocurrencies are on a layer
below contracts. Smart contracts and tokens are thus the main
instruments to creating new blockchain-based projects for the
automation of services and processes.

https://doi.org/10.1017/9781009411783.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009411783.003

30 Claudio Di Ciccio

To make an example from the real world, we can acquire points in the
context of a fidelity program for customers when we buy a product
or service from a given company. We buy products and services with
money we can transfer with our credit card from our bank account, or
withdraw at an Automated Teller Machine (ATM). The rules deter-
mining the market value of the currency of our bank account are not
easily customisable by individuals. Also, we cannot typically deposit
fidelity points in our bank account. Fidelity programs, however, are
fully controlled and manageable by their company. Fidelity points,
therefore, are akin to tokens.

The purpose of tokens is typically classified according to their fungibil-
ity. Tokens are fungible whenever individual units can be mutually sub-
stituted as they are indistinguishable. For instance, the Hello Token in
Figure 1.5 is fungible. If a token represents an individual entity, with its
own characteristics, different to another one and thus not interchange-
able, it is non-fungible. Tokens representing the ownership of a physi-
cal or digital good, an artwork, or a digital identity, are all examples
of non-fungible tokens. Semi-fungible tokens are fungible until a given
expiry date or in case of a change of status like their redeeming, after
which they become non-fungible (like tickets for concerts or vouchers).

Blockchain is often compared to the internet. The comparison con-
cerns the current potential and the possible development that is
obtained from it. In the beginning, the internet itself was an experi-
mental project that required implementation effort by highly skilled
software developers. However, its revolutionary nature has meant
that its adoption has spread to the levels we know today. Blockchain
and DLTs in general seem to follow this path. In fact, web services
can integrate the blockchain. The effect has reduced visibility to the
end user, through. Since its inception, the web has been based on a
paradigm of clients and servers, with the former requesting services
from the front-end (accessible by the user) to the latter, on the back
end. In its first generation, the front end was delegated minor opera-
tions other than displaying and formatting the content provided by
the servers. With the advent of Web 2.0, there has been a migration
and outsourcing of operations from the back end to the front-end side,
thanks to an increase in the capabilities of desktop PCs, laptops, hand-
held devices, etc. At the same time, although not evident on the user
side, web servers have also delegated operations and data processing

https://doi.org/10.1017/9781009411783.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009411783.003

Blockchain and Distributed Ledger Technologies 31

to specific management systems (e.g., on the cloud). The new Web 3.0
paradigm integrates blockchain platforms on the back-end side, tak-
ing advantage of smart contracts for carrying out (part of the) opera-
tions though maintaining a front-end that does not impact the user
interface. Applications that adopt the Web 3.0 paradigm are com-
monly known as Decentralised Applications (DApps).

Thus far, we have observed characteristics and traits that are typical
of blockchains that are publicly accessible and in which every node
can potentially contribute to the validation and publishing of new
blocks. However, there are other approaches to DLTs that restrict the
aforementioned openness criteria. We briefly examine them next.

Public, Private, Permissioned, and Permissionless

Blockchains are often classified according to two criteria: trans-
actability (or visibility) and consensus (Bellia et al. 2019). Table 1.1
displays the four categories that stem from these criteria. If a block-
chain is public, every node can make transactions and view them.
If only selected nodes are entitled to this right, it is private. If any
node in the network can participate in the consensus decision-making
process, the blockchain platform is permissionless. Instead, if only
specific nodes can determine the next status of the blockchain, it is
permissioned. Bitcoin, for example, is public and permissionless like
Ethereum, natively. On the other side of the spectrum, Hyperledger
Fabric7 (Gaur et al. 2020) is an example of a private permissioned
blockchain. The LTO network8 offers a private though permission-
less blockchain. EOSIO9 is an example of a public blockchain plat-
form with a permissioned consensus system.

Choosing the right combination (public or private? Permissioned
or permissionless?) is a design choice that is up to the system architect
based on the application context and foreseen use. Several decision
models have been proposed to determine whether taking the block-
chain as a building block is appropriate in the first place and, if so,

	7	 See Hyperledger. Available online: www.hyperledger.org/use/fabric (accessed:
20/01/2023).

	8	 See LTO network. Available online: www.ltonetwork.com/ (accessed:
20/01/2023).

	9	 See EOSIO. Available online: www.eos.io/ (accessed: 20/01/2023).

https://doi.org/10.1017/9781009411783.003 Published online by Cambridge University Press

http://www.hyperledger.org/use/fabric
http://www.ltonetwork.com/
http://www.eos.io/
https://doi.org/10.1017/9781009411783.003

32 Claudio Di Ciccio

which type of blockchain should be adopted. A renowned example of
such guidelines is provided by Wüst and Gervais (2018).

To sum up, blockchains are fit for purpose whenever storing the
status of the system is necessary, multiple entities concur to provide
information on the evolution of the system while not all of them are
trustable, and no trusted third parties are fully available. Otherwise,
other solutions, such as distributed or centralised databases, can be
more appropriate.

If a blockchain is appropriate for the intents and purposes of the
project, the policy on whether making the circle of information pro-
viders and validators open or restricted drives the decision on whether
the blockchain should be public or private, and permissionless or per-
missioned, respectively.

Concluding Remarks

This chapter illustrated and discussed the key traits of DLTs and block-
chain platforms, with a focus on the technical mechanisms underpin-
ning their guarantees. Transactions, the fundamental building block,
allow for the transfer of cryptocurrencies and invocation of smart
contracts’ functions. Digital signatures enable the authentication of

Table 1.1  Blockchain types according to their visibility and consensus
mechanisms

Transactability/visibility

Private Public

Consensus

Permissionless Selected nodes can
transact and view,
every nodes can
participate in
consensus

Every node can
transact and view,
participate in
consensus

Permissioned Selected nodes can
transact and view,
or participate in
consensus

Every node can
transact and view,
selected nodes
participate in
consensus

https://doi.org/10.1017/9781009411783.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009411783.003

Blockchain and Distributed Ledger Technologies 33

transaction senders. The order of transactions is preserved by the
sequential nature of ledgers. The distributed architecture ensures data
persistence, as a replica of the ledger is saved virtually on every node.
Hashing makes the blockchain robust, as it impedes changes in older
transactions without altering the whole sequence of blocks that fol-
low. Mechanisms such as proof-of-work and proof-of-stake ensure
that the publishing rights of new blocks are given to nodes that prove
their reliability. Consensus algorithms guarantee that the blockchain
is eventually consistent in the replicas stored on the network nodes.
Smart contracts make blockchain programmable and, among other
things, able to support tokens.

Distributed ledger and blockchain technologies are not a panacea for
all projects in information technologies and beyond. Their use is suit-
able for settings where multiple actors cooperate in a regime of partial
(or lack of) mutual trust and in the absence of trusted third parties that
can authoritatively exert control of the stored information. Entering
the details of the core mechanisms and rationale thereof reportedly
is a challenging task on its own, and their installation or integration
requires the intervention of technically skilled experts. However, they
offer a number of critical guarantees by design, including authentica-
tion, inviolability, full traceability of data, and robustness, availability,
and customisability of service. Arguably, building a novel system that
offers ex novo all that would be a highly challenging task, let alone in
regimes of partial trust between the key actors. Notice that the obser-
vations made thus far refer to using distributed ledger and blockchain
technologies as an information technology (IT) core infrastructure
within larger projects integrated with business processes (Xu et al.
2019). Their potential is enormous and can be fully unleashed when
their adoption goes beyond the mere exchange of cryptocurrencies.
The next chapters of this book will document success case studies in
which endeavours of this sort are carried out in the banking sector.

References

Bellia, M., Kounelis, I., Anderberg, A., Calès, L., Andonova, E., Sobolewski,
M. 2019. Blockchain now and tomorrow: Assessing multidimensional
impacts of distributed ledger technologies. Publications Office of the
European Union, Luxembourg: European Commission, Joint Research
Centre.

https://doi.org/10.1017/9781009411783.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009411783.003

34 Claudio Di Ciccio

Buterin, V. 2014. Ethereum: ‘A next-generation smart contract and decen-
tralized application platform’. White paper. Available online: https://
ethereum.org/669c9e2e2027310b6b3cdce6e1c52962/Ethereum_White
paper_-_Buterin_2014.pdf

Dannen, C. 2017. Introducing Ethereum and solidity. Berkeley: Apress,
Vol. 1, 159–160

Di Ciccio, C., Meroni, G., Plebani, P. 2022. ‘On the adoption of blockchain
for business process monitoring’. Software and Systems Modeling, 21(3),
915–937.

Gaur, N., O’Dowd, A., Novotny, P., Desrosiers, L., Ramakrishna, V., Baset,
S. A. 2020. Blockchain with hyperledger fabric: Build decentralized appli-
cations using hyperledger fabric 2. Birmingham, UK: Packt Publishing Ltd.

Magazzeni, D., McBurney, P., Nash, W. 2017. ‘Validation and verification
of smart contracts: A research agenda’. Computer, 50(9), 50–57.

Mendling, J., Weber, et al. 2018. ‘Blockchains for business process
management-challenges and opportunities’. ACM Transactions on Man-
agement Information Systems, 9(1), 1–16.

Nakamoto, S. 2008. Bitcoin: ‘A peer-to-peer electronic cash system’.
Decentralized Business Review, 21260.

Voshmgir, S. 2019. Token economy: How blockchains and smart
contracts revolutionize the economy. Berlin, Germany: Shermin
Voshmgir-BlockchainHub.

Wood, G. (2014). ‘Ethereum: A secure decentralised generalised transaction
ledger’. Ethereum project yellow paper, 151(2014), 1–32.

Wüst, K., Gervais, A. 2018. ‘Do you need a blockchain?’. 2018 Crypto
Valley Conference on Blockchain Technology, 45–54.

Xu, X., Weber, I., Staples, M. 2019. Architecture for blockchain applications.
Berlin, Germany: Springer.

https://doi.org/10.1017/9781009411783.003 Published online by Cambridge University Press

https://ethereum.org/669c9e2e2027310b6b3cdce6e1c52962/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://ethereum.org/669c9e2e2027310b6b3cdce6e1c52962/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://ethereum.org/669c9e2e2027310b6b3cdce6e1c52962/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://doi.org/10.1017/9781009411783.003

