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Introduction

Distributed ledger technologies (DLTs) have attracted significant 
attention in the last few years. They gained a noticeable momentum, 
particularly after the introduction of blockchains as a basic building 
block for the development of new cryptocurrencies and tokens. This 
opportunity opened up new research directions to support the mod-
ern economy with numerous possibilities to redesign and innovate the 
market in accordance with the digital revolution we are witnessing. 
However, these technologies are yet to prove in practice their capabil-
ity to match all the dependability and security requirements imposed 
in the economic and banking sector. In this chapter, we will provide 
an overview of the technical features of DLTs (and of blockchains 
in particular), outlining their potential impact in the economic field 
(Box 1.1). We will first introduce the reader to their definition from 
a technical point of view, illustrate its core mechanisms and the guar-
antees they provide, and describe how these features are realised in a 
decentralised way. Finally, we will draw opportunities and challenges 
stemming from the adoption of this technology. We begin this journey 
with a synthetic definition.

As is typical of synthetic definitions, the one below can also be seen 
as simplistic yet complex to catch at first read. In an attempt to compen-
sate for both issues, we will delve deeper into the fundamental notions 
and devices behind distributed ledger and blockchain technologies.

Transactions and Ledgers

The building block of blockchains is the transaction. A transaction is 
a digital record that registers the transfer of value (and data) between 
accounts. Once processed, the transaction triggers the movement of 
crypto-assets (also known as cryptocurrencies) such as Bitcoin (BTC) 
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or Ether (ETH). A transaction involves at least a sender account for 
the input and a recipient account for the output. Every transaction 
is digitally signed by the sender to show evidence that the account 
owner – and nobody else! – issued it. To do so, the owner retains a 
private key, with which only they can sign data, and a public key 
associated with the account address. Everyone can verify that the 
digital signature belongs to the owner through an automatic pro-
cedure based on the public key. As the account address is derived 
from the public key, the fact that the signee owns the account is 
also automatically verifiable. Please note, thus, that transactions do 
not require the personal details of the account holder to be known. 
The link between the signature and the account number is crypto-
graphically guaranteed. In fact, the owner of an account can remain 
completely unknown within the blockchain. Nevertheless, all trans-
actions report the account address of recipients and the senders. 
Therefore, one can trace all the transfers from and to an account. 
This setting thus guarantees pseudonymity within the blockchain 
platform, instead of complete anonymity.

Figure 1.1 illustrates a simplified example of a transaction. In the 
figure, a transfer of 2,000,000,000 units of cryptocurrency to account 
0x1472…160c is requested from the 0xca35…733c account’s owner. 
Considering the Ethereum1 blockchain platform (Buterin 2014), the 
transferred value is expressed in Wei, and the amount in the picture 
equates to two Gwei (i.e., 0.000000002 Ether). The transaction is 
cryptographically signed by the sender to attest that the transaction is 
authentic. Every transaction has a unique ID and can bear additional 
information in the payload.

	1	 See Ethereum. Available online: www.ethereum.org/ (accessed: 20/01/2023).

Box 1.1  Distributed ledger and blockchain

A distributed ledger is a registry replicated over a network of nodes 
that records the sequence of transactions between senders and 
recipients. A blockchain is a distributed ledger that uses blocks to 
collate sections of the ledger. DLTs, such as those underneath the 
blockchain platforms, are designed to guarantee properties that 
preserve the storage, exchange, and update of data, such as verifiability, 
liveness, robustness, and permanence.
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Ledger is a term that began being used in England during the fif-
teenth century to indicate a register of accounts. This term represents 
the collation of transactions. Notice the use of the word collation in 
place of collection: maintaining the order of transactions is crucial as 
it prevents the so-called double spending.

The following example, illustrated in Figure 1.2, aims to give an 
idea of what double spending is, and why the order of transactions 
is necessary to prevent it. Assume that the account 0xB belongs to a 
digital service provider, Bob. Accounts 0xA and 0xC belong to the 
same owner, Alice. Alice wants to purchase a digital package from 
0xB at the price of 90 units of cryptocurrency (which we shall hence-
forth denote with ¢, so 90 ¢ here). Remember that the ownership of 
accounts (let alone the purposes of the owners) is a piece of informa-
tion that is not recorded within the blockchain, that is it is off-chain. 
In the beginning, the balance of account 0xA amounts to 100 ¢, the 
balance of 0xB is 10 ¢, and the balance of 0xC is 50 ¢. Alice sends a 
transaction worth 90 ¢ to 0xB to purchase the digital product. Let us 
associate this transaction with the identifier 0xA90B. This operation 
reduces 0xA’s balance from 100 to 10 ¢ and increases that of 0xB 
from 50 to 140 ¢. Bob, then, sends the digital product to Alice. Notice 
that the digital product is not shipped on-chain but off-chain. After 
receiving the package (which we assume is transmitted at very high 
speed), Alice tries to issue a new transaction from 0xA to 0xC, worth 
50 ¢. Let us identify this transaction with 0xA50C. Since negative bal-
ances are typically not allowed in the blockchain, transaction 0xA50C 
is rejected – notice that 0xA’s balance would drop to −30 ¢ otherwise.

Externally Owned
Account (EOA)

Externally Owned
Account (EOA)Digital signature Transaction ID: 0xfa12…40c6da

2000000000

Figure 1.1  A simplified example of Ethereum transaction
Note: The sender account (to the left) sends 2,000,000,000 Wei (i.e., 2 Gwei) 
to the recipient account (to the right)
Source: author’s elaboration.
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Tx ID: 0xA90B

Tx ID: 0xA50CX

Figure 1.2a  A double-spending scheme
Note: Account 0xA sends 90 units of cryptocurrency to buy a digital product, 
sent outside of the blockchain by the owner of the recipient account 0xB. 
Afterwards, a new transaction from the 0xA account of 50 units of cryptocur-
rency is rejected due to insufficient funds
Source: author’s elaboration.

Figure 1.2b  A double-spending scheme
Note: The effect of inverting the order of transactions reveals the double 
spending mechanism: the transaction paying 0xB is rejected, although the 
digital product has already been delivered
Source: author’s elaboration.
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Here we get to the double spending issue. Alice could try to argue, 
once she has received the digital package, that transaction 0xA50C 
took place before 0xA90B. In that case, the latter would be rejected. 
As a result, Bob would have already delivered the service without 
being paid, whereas the total balance of Alice’s accounts would remain 
intact as if the 90 ¢ of transaction 0xA90B were spent twice. We con-
clude that not only keeping transactions unaltered but also preserving 
their order is vital in this context.

Distributing the Ledger

If the ledger were saved on only one computer system, however much 
it can be secured, it would impose a question of trust: it is assumed 
that those to whom the administration and safeguarding of this sys-
tem are delegated do not let the content be lost or destroyed, made 
invalid or corrupt, truncated thus bearing incomplete information, or 
altered with forged transactions. In our setting, this problem is over-
come by ensuring that multiple copies of the ledger are saved in sepa-
rate locations through intercommunicating systems on a computer 
network (in jargon, these systems are called /nodes/), as illustrated in 
Figure 1.3. These nodes are entitled to the same rights on the data, 
so they are interchangeable. We name this paradigm peer-to-peer. In 
a peer-to-peer network, any node can crash, get offline or become 
unavailable for whatever reason: the other nodes will let the informa-
tion safely stored. In theory, it is sufficient that just one node resists, 
and the whole history of transactions is preserved. The platform is 
resilient even to events such as nodes being under cyber threat or 
overtaken by malicious players. The ledger can still be considered safe 

Figure 1.3  Centralised and distributed architectures
Note: The centralised architecture to the left illustrates a single system retaining 
the information and offering services to the other nodes in the network. The 
peer-to-peer network to the right shows a replica of information and services 
on all nodes. Notice, however, that replicas may not be identical
Source: author’s elaboration.
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if the majority is still correctly functioning and properly behaving. A 
deliberate attack or malfunction must propagate on a large scale to 
take effect: on one copy (or on a limited number of copies), it does 
not affect the system. These are the main arguments in favour of a 
distributed solution to handle the ledgers. Hence the name: distrib-
uted ledger technology.

To keep the local copies of the ledger synchronised, all nodes should 
receive updates from the network. This requirement entails that every 
node being informed about an update should register it and bounce it 
to the neighbouring nodes in the network. It is noteworthy to recall that 
the updates pertain to transactions. Therefore, every node is aware of 
every transmission of value among accounts. From this standpoint, we 
may agree that keeping pseudonymity is a good compromise between 
the need for nodes to update the status of accounts (if they did not 
know from and to what accounts the transactions were issued, how 
could they keep track of the balances?) and the preferably avoidable 
situation in which all nodes know every detail about personal belong-
ings and exchanges. Notice that if full anonymity was kept, nodes 
would not be aware of the transactions’ sender and recipient accounts 
nor would they be able to reconstruct this piece of information. They 
could keep on piling up new transactions from the network but then 
who could guarantee that transactions were legitimate? For instance, 
who could verify that there were enough cryptos in account 0xA to 
send 90 ¢ to 0xB? An authority should be invoked to solve this conun-
drum, in case – which would dismantle the whole idea of decentralisa-
tion and restore the risks of data loss, corruption, and crashes.

Transactions are thus collated in ledgers, one after the other. As a 
consequence, ledgers tend to grow. Thinking about the old, paper-
based one, it would seem natural to write down the ledger onto separate 
books. Books would also be sorted to ensure that the order of trans-
actions is preserved across the books. In blockchains, the notion of a 
book is replaced by that of a block. A block contains a segment of the 
ledger plus additional heading information – including the timestamp.

To keep the order among blocks, each block is linked to the previ-
ous one through a one-way function called hashing. In brief, hashing 
is a mathematical one-way function that produces a number (the 
digest, also commonly known as hash) that works as a digital fin-
gerprint for any piece of input data. The hash characterises the input 
data (just like a fingerprint identifies a person) though being typically 
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of a fixed size (normally, smaller), regardless of the input data size. 
More than the fingerprint metaphor, though, the hash is tightly 
bound to the input data. The hashing function returns the same hash 
out of two identical pieces of data. Altering a bit in the data, though, 
turns the associated hash into a completely different number to the 
extent that it is not feasible to reconstruct what the alteration was by 
solely looking at the digest.

Equipped with this notion, we can see what happens when every 
block stores the hash of the previous one in its header. This scenario 
serves as a good intuition of the approach underlying Bitcoin2 and 
Ethereum, among others. The actual mechanism is a bit more refined 
to save computation efforts, but we can omit the details for the sake 
of understandability. Let us consider three blocks in a sequence now, 
which we shall refer to as previous, current, and next. If we try to 
remove, add, change, swap, or reorder transactions in the previous 
block, its content is altered and, thus, its hash turns into something 
that is completely different. Consequently, the previous block’s hash 
does not match the copy stored in the current one anymore. To keep 
it consistent, the current block has to change its local copy of the pre-
vious hash accordingly. This update, in turn, changes the header and 
hence the hash of the current block. The next block, then, has to mod-
ify its copy of the current block hash accordingly. At this stage, we can 
quickly figure out what happens to the block following the next one. 
We conclude that this mechanism makes every change reverberate as 
a sort of domino effect along the whole sequence of blocks. The older 
the changed block, the longer the domino effect.

The sequence of hash-based links thus forms a chain, as depicted 
in Figure 1.4. Hence the name, blockchain. DLTs such as Bitcoin and 
Ethereum are blockchain platforms as they employ the slicing of led-
gers into consecutive blocks that are backlinked from the current to 
the previous one. IOTA,3 instead, is a DLT that does not implement 
this approach. Blockchain platforms use blocks as packets transmitted 
within the chain to update the ledger with a new segment.

Transactions are broadcast by all nodes in the network to all their 
neighbours, so that every node can be aware of the fact that the trans-
action was issued. In blockchain platforms, they remain in a temporary 

	2	 See Bitcoin. Available online: www.bitcoin.org/en/ (accessed: 21/01/2023).
	3	 See Iota. Available online: www.iota.org/ (accessed: 20/01/2023).
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storage named transaction pool, from which the publishing node col-
lects the ones to include in the block. Until a block is published and 
accepted by the nodes in the network, indeed, the new transactions are 
not appended to the ledger.

The power in the hands of nodes publishing the blocks should not 
be overlooked: whether a transaction is included or not in a block 
depends on their choice. This is why transaction fees are usually 
included in the transactions by the senders: they are an economic 
incentive to motivate the miner to include the transaction in the 
next block.

Right to Publish and Consensus

We have already observed that decentralising the management 
and maintenance of a ledger strengthens the platform. However, 
this solution comes with a few infrastructural drawbacks. Firstly, 
the nodes must send digital messages through the network to keep 
the nodes updated with the latest transactions. These messages are 
prone to possible delays or complete loss. As a result, different nodes 
may have diverging views of the historical sequence of transactions. 
Secondly, the emission of the updates should be granted to nodes 
that give evidence of their reliability. Otherwise, malicious nodes 
could find it too easy to attack the network by flooding it with data 
reporting wrong or false information. Therefore, integrating at least 
two mechanisms appear fundamental to preserving safety and opera-
tional continuity. One should guarantee that the network eventually 
achieves a univocal view of the ledger (consensus). The other should 
cater for self-certification, ensuring that new messages are propa-
gated only by nodes demonstrating their reliability. Terms like Proof 

Figure 1.4  A schematised view of the backward link–based chain of blocks
Note: Every block contains a segment of the sequence of the transactions issued 
to that moment. The collation of transactions goes under the name of ledger
Source: author’s elaboration.
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of Work or Proof of Stake fall in the second category. Let us begin 
with the former, as it was historically introduced first and is still in 
use with platforms such as Bitcoin.

Proof of Work

The idea behind Proof of Work is that the nodes which aim to publish 
a new block should provide evidence of their will to keep the infra-
structure in operation. To this end, those nodes show that they are 
ready to put computation time and resources at risk by attempting 
to solve a complex cryptographic puzzle. The solution to this puzzle 
is easily verifiable once it is given: finding it is the source of the dif-
ficulty. More specifically, Bitcoin’s Proof of Work requires nodes to 
find a number (called a nonce) to be injected in the header of the 
block so that the hash of the block’s header is a number that is lower 
than a given target. For example, the miner of the Bitcoin block num-
ber 769,424 inserted 2,927,826,006 as the nonce to make the whole 
block header’s hash equal to 310,844,154,145,111,873,655,715,160,​ 
191,695,224,044,144,394,078,051,380, which is less than the set tar-
get (762,342,638,057,996,256,581,733,267,702,136,683,580,848,  
909,336,969,216).4

Recall that reverse-engineering the input of a hashing function given 
the output is nearly impossible. Therefore, the only way to find the 
nonce is adopting a brute-force approach: try all possible numbers 
until the hash of the whole block is right (i.e., less than the target). The 
challenge is already hard on its own but, to put more pressure on the 
nodes, it is an open race: if another node finds a suitable nonce first, 
the challenge for that block is over, and a new round starts with the 
next block. This approach is in line with the distributed computation 
scheme: any node in the network can concurrently run its own opera-
tions to be entitled to the right to publish the block. To make things 
worse, so to speak, we should consider that the previous computations 
do not lead to any advantage for the subsequent round. The new block 
is indeed different from the previous, so the nonce is to be inserted 
in a different data box. As a result, the new hash has to be recom-
puted from scratch for every possible candidate. Finally, notice that 

	4	 See Blockchair. Available online: www.blockchair.com/bitcoin/block/769424 
(accessed: 20/01/2023).
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the difficulty of the puzzle is set by the target: intuitively, the lower 
the target, the fewer the numbers that are below it. These numbers 
form the set of acceptable block-headers’ hash values. Every such hash 
value roughly corresponds to a nonce. Therefore, fewer nonces are 
there to be guessed, and finding one becomes a tougher challenge. The 
difficulty is thus tunable. The need to keep the average time to publish 
a block stable and around 10 minutes determines how the knob is 
turned. If the average publication time is lower than that, the difficulty 
gets increased. Otherwise, it is lowered. Notice that this decision is not 
governed by any single actor: the protocol lets every node know how 
to autonomously determine the necessary change at regular intervals 
of 2,016 blocks (about 2 weeks).

At this stage, a doubt could legitimately arise: what moves the nodes 
to try and guess the nonce, given the required considerable efforts in 
spite of no guarantee to win the game? To pay the electricity bill and the 
hardware consumption back, the winners who manage to publish the 
block included in the blockchain are rewarded with freshly minted cryp-
tocurrency (plus other non-negligible extras such as the transaction fees, 
discussed earlier). As such a prize is akin to finding gold behind a stone 
wall of a cave after extenuating excavations, we say that nodes publish-
ing blocks (or trying to do it) are mining nodes. At the time of writing, 
the mining reward amounts to 6.25 BTC. Cryptocurrencies therefore 
perform the function of cryptofuel, which supplies monetary resources 
to the nodes that maintain the infrastructure using their own computa-
tional resources. Cryptofuel attracts miner nodes as cryptocurrencies are 
traded in fiat money on dedicated markets by investors around the world. 
At the time of writing, the mining reward equates to about 20,000 €.

Notice that the mining reward was established in May 2020 and is 
getting halved every 210,000 blocks (i.e., about four years: in 2009, 
it amounted to 50 BTC). Quoting the Bitcoin white paper: ‘Once a 
predetermined number of coins have entered circulation, the incentive 
can transition entirely to transaction fees and be completely inflation 
free.’ (Nakamoto, 2008) The incentive can help encourage knots to 
remain honest. Quoting the white paper again: ‘A greedy attacker […] 
ought to find it more profitable to play by the rules, [as] such rules 
[…] favour [them] with more new coins than everyone else combined’ 
(Nakamoto 2008).

Verifying that the solution to the puzzle is correct has to be rela-
tively easy because every node in the network should be capable of 
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validating it: if the solution is incorrect, the block should be rejected. 
Other reasons for a proposed block to be discarded include incor-
rect transactions, wrong signatures, or excessively distant timestamps 
reported in the block header. We remark that these checking opera-
tions are carried out virtually by every node in the network.

Proof of Stake

Proof of Work has been subject to criticism due to the high consump-
tion of electricity, heating, and ultimately pollution that mining nodes 
cause. With regular periodicity, new reports are published on the com-
parison between the power consumption of entire states and that due 
to mining. The trend has long been upward, that is comparable states 
increase in size at every update. Furthermore, in an attempt to win 
the puzzle, larger and larger mining rigs have been assembled. Mining 
rigs consist of a multitude of machines equipped with dedicated hard-
ware that have the sole objective of running the mining processes in 
parallel to increase the chances to win. As a consequence, the risk of 
re-centralising the decision process becomes more and more tangible.

To overcome this issue, Ethereum transitioned to a different 
approach: the Proof of Stake, already applied natively in other block-
chain platforms such as Algorand.5 In Proof of Work, miners put capi-
tal at risk by expending energy. In Proof of Stake, validators explicitly 
stake capital in Ether, the Ethereum platform’s cryptocurrency. More 
specifically, candidates propose themselves as validators by deposit-
ing a given amount (32 ETH, at the time of writing) from their bal-
ance: this amount is referred to as the stake, indeed. The stake cannot 
be used by the original owners as long as they remain in the role of 
validators. Validators are pseudo-randomly selected to become part 
of validator committees (currently) of 128 members each. Within the 
committee, one node is chosen as the proposer. The proposer replaces 
the role of the miner as block publisher. The members of a validation 
committee vote for (i.e., they broadcast their attestation to) the next 
block to be put at the head of the chain. For every published block that 
gets included in the blockchain, both the proposer and the validators 
get a reward that is topped up to the stake.

	5	 See Algorand Foundation. Available online: www.algorand.foundation/ 
(accessed: 20/01/2023).
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With Proof of Stake, the block time is fixed in Ethereum (set to 12 
seconds at present). The block time is named /slot/. The first half of the 
slot is the time the proposer has to submit the new block. Every 32 slots 
(an /epoch/, i.e., 6 minutes and 24 seconds currently), committees are 
drawn from the set of members with sufficient ETH at stake, one per 
slot and so that no two committees share any members in the epoch.

The finality of blocks is handled explicitly by the protocol: the first 
block published in every /epoch/ requires an additional vote from the 
committees. The decision is two-staged. The committee votes for pairs 
of epoch-boundary blocks: an older one (source) and a newer descen-
dant (target). Both source and target need to be attested by two-thirds 
of the votes to be bound by a so-called supermajority link. The tar-
get in the supermajority link becomes justified. The source is typically 
already justified (as it was the target in a previous voting round) and 
thus becomes finalised. Validators attesting to blocks that are included 
in a supermajority link receive specific extra rewards for justified and 
finalised blocks. A finalised block is nearly impossible to be removed 
from the net. Notice that not all attestations have the same weight. 
The weight depends on the quota left at stake – in particular, the so-
called effective balance, which cannot amount to more than 32 ETH. 
Notice that the staked ETH can also decrease.

With this scheme, indeed, inactive members could hamper the pro-
cess. This is why the protocol includes the so-called inactivity penal-
ties. Penalties remove limited amounts of the capital at stake as errors, 
temporary disconnection from the network, or seldom malfunctions 
can happen, after all. What is treated with a more severe countermea-
sure is the occurrence of (allegedly malicious) misbehaviour: nodes 
that publish multiple blocks (/equivocation/) attest to different blocks 
(double vote) in the same round, or vote for a source and a target 
that occur in epochs surrounding an already voted pair, are subject 
to slashing of their staked funds. Notice that slashing leads to the 
removal of the member from the set of validators. Interestingly, condi-
tions for slashing can only be verified if other nodes signal and report 
evidence of them. This is why a special reward is dedicated to whistle-
blowers (who notify the misbehaviour) and proposers who include the 
whistleblowing messages in the block. Also, notice that the slashed 
funds become higher if the misbehaving player operates in collusion 
with other players. The reason why finalised blocks are considered 
as such lies in the enormous slashing that their replacement in the 
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blockchain would require: as two-thirds of the validators have voted 
for it, there cannot be another two-thirds of validators attesting to 
another block unless one-third of the total were double votes.

Choosing the Fork

As we said, the network is subject to delays and loss of blocks. It is 
perfectly reasonable that, at some stage, a node observes that more 
alternatives are coming as an update – different blocks that are valid 
but report on different transactions.

The temporary situation in which more branches are taken into 
account as possible evolutions of the chain is typically named fork. 
Forks can happen with the top, most recent blocks. The further we go 
down the chain, the less likely they become. However, notice that if 
a block is included in the chain, its transactions are appended to the 
ledger and thus remain in the collective memory of the network. If a 
block is initially considered part of the chain but then gets replaced 
by another sub-chain, its transactions become non-existing all of a 
sudden (unless, of course, the new chain still retains that very block). 
Owing to this, it is recommended to wait for six blocks to be appended 
in Bitcoin before considering the transaction as finalised.

How to determine the fork to include in the blockchain in a way 
that eventually all nodes opt for the same one? The mechanism under-
neath this choice is the basis of consensus. With Proof of Work, the 
preference leans towards the block at the head of the sub-chain with 
the highest amount of work put in the mining – which translates with 
good approximation to the longest sub-chain. Every block received 
by a node brings with itself the hash-based link to the previous one. 
If the node observes that the new block does not appear to have the 
predecessor in the chain, it keeps the new block aside and waits until 
the predecessor is delivered from the network. Notice that the same 
process could occur with the predecessor’s predecessors, and so on, 
until a convergence point is found. At that moment, the node can 
decide which branch to take as the main chain. In Ethereum, the sub-
chain that accumulates the highest weight of attestations is chosen.

We remark that this choice is made by all nodes and recall that 
all nodes are in charge of individually verifying that the block they 
receive is correct, contains valid transactions, and is consistent with 
the remainder of the history of the blockchain. For practical reasons, 
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though, some nodes may not store the whole ledger locally, but only 
a section of their interest. These nodes are named light nodes. A typi-
cal example of light node is a wallet, that is the software that account 
holders use to keep track of their funds in cryptocurrencies.

This aspect offers food for thought about the nature of blockchain 
as a platform (Voshmgir 2019). It is politically decentralised because 
no entity controls the network. It is architecturally distributed because 
the information is held and managed by all nodes in the system. 
However, it is logically centralised because each entity has its own 
copy of the ledger, in a state that tends to be unanimously agreed.

Transaction Model and Balance Model

Not only the consensus mechanisms distinguish Bitcoin and Ethereum. 
Another key specificity lies in the paradigm with which the two blockchain 
platforms handle the transfer of value among accounts. Ethereum adopts 
a balance model: accounts are associated with their current amounts 
of Wei’s, which they can spend by adding a value to the transaction. If 
account 0xE owns, for example, three ETH, its owner can sign a transac-
tion with which they send 1.5 ETH to account 0xF. Therefore, the nodes 
in the network should keep track of the current balance of every account 
to verify whether they can spend the declared amount in a transaction 
or not. A metaphor for the balance model used in Ethereum is that of 
the bank transfer: akin to Ethereum transactions, bank transfers typically 
report the account coordinates of the sender, the account coordinates of 
the redeemer, the transferred amount, the transaction fee, and a unique 
identifying number for the transaction. When executed, they determine 
the subtraction of the indicated amount and the fee from the sender’s 
account and the addition of the amount in the recipient’s account. The 
transaction fee goes to the issuing bank. Notice that in blockchain plat-
forms, banks do not constitute the underlying organisation guarantee-
ing for the safety and security of the transfers and accounts. The whole 
network does, thus network nodes (specifically, the block proposers in 
Ethereum) are rewarded the transaction fees for their efforts.

Bitcoin, instead, uses a transaction model. Suppose that account 0xB 
had received a transaction worth 5 BTC, another one of 6 BTC, and 
a third one of 1 BTC in the past. The balance amounts to 12 BTC in 
total, which corresponds to the sum of the denominations of its Unspent 
Transaction Outputs (UTXOs). Imagine that the owner of account 0xB 
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wants to send 11.5 BTC to 0xC. To do so, the owner should sign the three 
UTXOs we mentioned, setting 0xC as the redeemer, and wrap them into 
a new transaction. UTXOs cannot be split into sub-units. To get the dif-
ference in return, the new transaction should include a new transaction 
unit that transfers 0.5 BTC (or less) from 0xC back to 0xB. If the change 
amounts to less than 0.5 BTC (say, 0.4 BTC), the difference becomes the 
transaction fee to the benefit of the miner (0.1 BTC in this case). In this 
setting, the balance of every account is computable by summing up all 
the UTXOs that belong to it. Considering that account addresses mark 
every transaction in which they occur as sender or redeemer, UTXOs can 
be tracked for all their lifetime. As a good metaphor for UTXOs, we can 
consider transferable cheques that are not redeemed.

Smart Contracts

A second generation of blockchain arose when, from the intuition of 
Vitalik Buterin, the focus shifted from the concept of blockchain as a 
distributed system for the exchange of electronic money to the concept 
of blockchain as a /programmable distributed environment/ (Buterin 
2014). The notion through which this conceptual leap became pos-
sible is the smart contract.

The smart contract is a program run by the blockchain platform. 
Programmers typically use a coding language such as Solidity,6 which is 
later automatically turned into a set of low-level operations executable 
by computerised systems. Figure 1.5 shows the same smart contract 
written in Solidity (left) and turned into the so-called operation codes, 
or opcodes for short (top right in the figure), for execution. At the 
bottom-right corner of the figure, we can see the direct transposition of 
the instruction codes into binary codes that the delegated component 
of Ethereum named Ethereum Virtual Machine (EVM) executes. One 
of the crucial characteristics of smart contracts is that their code, and 
only their code, fully determines how their status evolves (‘The code 
is the law’).

Smart contracts, despite their name, are not necessarily linked to 
a binding contract between counterparts. Of course, they can also 
represent contracts in the most commonly adopted sense. However, 

	6	 See Solidity. Available online: www.solidity.readthedocs.io/ (accessed: 
20/01/2023).
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the spectrum of possible usages is much larger as, in Ethereum, they 
can express anything a computer program could do. For example, 
smart contracts are typically used to manage the life cycle of tokens 
such as the Hello Token in Figure 1.5. The Hello Token contract 
offers four operations: (1) the constructor function to deploy new 
instances of the smart contract and record the account address of 
the creator; (2) the mint function to buy new tokens at the price of 2 
Gwei each; (3) the transfer function to send tokens from the sender 
account to another account; and (4) the terminate function to cease 
the operations of the smart contract and transfer the funds from 
the account of the smart contract to the creator’s account. Notice 
that the way in which the smart contracts are encoded fully and 
exclusively dictates the way in which they behave and manage the 
tokens they define. The challenge of creating smart contracts that 
precisely and consistently represent the intended requirements and 
purposes is among the core challenges posed by the research agenda 
of Magazzeni et al. (2017).

Next to the so-called externally owned accounts (EOAs), owned 
by human users or in any case from entities outside the ecosystem 
of the blockchain platform, we have the smart contract accounts 
(CAs), that is accounts entirely managed by the aforementioned 
programs. Notice that the status of a smart contract includes the 

Figure 1.5  The Solidity code of a sample smart contract in Ethereum 
(Hello Token)
Source: author’s elaboration.
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balance of its own account, then. The code, therefore, determines 
how the funds therein are to be transferred or kept. However, the 
smart contracts solely react to calls from other accounts: they do 
not independently trigger their operations. This entails that they 
cannot independently take action at some stage on their own free 
will, so to speak: there always is an invoker that is responsible for 
triggering the operations.

Smart contracts, in other words, offer functions. Functions are 
invoked by other accounts (let them be EOAs or CAs) to execute oper-
ations. Updating the bank-transfer metaphor we used earlier to sup-
port this new paradigm, imagine that the recipient of the transfer is the 
smart contract, and the message encoded the data necessary to perform 
the requested operation. When the recipient receives the bank transfer, 
it automatically starts executing the requested operations based on the 
payload of the message. Indeed, the means to invoke smart contracts 
from EOAs is using transactions, as illustrated in Figure 1.6 (Box 1.2). 
As a consequence, all operations are fully tracked, the signee is known, 
and the outcome too (because the smart contract’s code determines it). 
Notice that the code, although at its low-level representation in terms 
of bytecode, is publicly known to every node in the network. The rea-
son is, new instances of a smart contract are deployed (i.e., assigned 
an account and initialised) by means of transactions too. The recipient 
is a previously unoccupied account address (which will become their 
own) and the code is in the payload. The payload (i.e., the code of the 
new instance of smart contract just deployed) is part of the transac-
tion, which is going to be stored in the ledger and, therefore, known 
to every node in the network and immutable.

Figure 1.6  Invocation of a smart contract
Source: author’s elaboration.
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The outcome of every invocation is known to every node in the 
network because virtually every node will execute the triggered 
operations after they read the invoking transaction in the published 
block – hence, after the proposer node has actually pre-executed and 
validated them: since the proposer is responsible for grouping trans-
actions into a block, it must be the first to verify their correctness. 
The operations of a smart contract function are thus going to be 
run multiple times across the whole network, with the same input 
and the same output, akin to a polygraph machine as metaphorically 
described by Dannen (2017). Therefore, their execution is associ-
ated with a price for the invoking account. The paid units go under 
the name of gas. Every opcode low-level operation (see the listing in 
Figure 1.5 at the top-right corner) is bound to a specific price in gas. 
Typically, altering the state of the smart contract and deploying new 
smart contracts are the most expensive operations, whereas math-
ematical and hashing operations have a lower cost. A full pricing list 
can be found in the Ethereum yellow paper (Wood 2014). Deploying 
a smart contract like the one in Figure 1.5 has a cost of 531,255 units 
of gas, invoking its mint operation to buy four Hello Tokens requires 
43,821 units of gas. Also, the amount of data sent to the smart con-
tract and treated therein are mirrored in additional costs: the more 
the data, the higher the overall price. Transaction fees in Ethereum 
are solely based on gas. Transactions with no smart contract invoca-
tions require gas, too. Notice that the gas is independent of the value 
we send. Therefore, to buy four Hello Tokens, we should send eight 
Gwei to the smart contract backing the token, in addition to the gas 
expenditure (for further details on the difference between tokens and 

Box 1.2  Smart contracts

If anything, immutability, non-repudiability, and persistence are good 
reasons to resort to smart contracts to coordinate the operations of 
multi-party processes, especially in the presence of partial trust among 
the participants (Mendling et al. 2018). All operations are tracked and 
cannot be erased, stored together with the smart contract that they 
testify the interactions with, in a permanent ledger that is replicated 
over all nodes. Therefore, the automated workflow is known to all 
participants, it is not going to change, and the ongoing evolution of the 
running processes can be monitored (Di Ciccio et al. 2022).
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cryptocurrencies, see Box 1.3). To  make sure that the invocation 
terminates and no harmful contract drains unlimited funds from the 
invoking account, the senders set a limit to the maximum amount of 
gas they are ready to pay (the gas limit).

The price of every unit of gas in units of cryptocurrency (Wei) 
oscillates depending on two factors, both to be multiplied by the 
units of gas consumed to run a smart contract’s function code: a 
priority fee, which the invoking account can raise at their will to 
increase the chances that the proposer will include that transaction 
in the next block, and a base fee, decided by the protocol and used 
to counterbalance the use of the network (the more the traffic, the 
higher the base fee). Notice that the priority fee (times the units of 
gas) will end up in the account of the proposer, whereas the base 
fee (multiplied by the units of gas) is going to be burnt. Ethereum, 
thus, allows for a deflationary mechanism unlike Bitcoin and per-
mits units of cryptocurrency to be not only issued but also removed 
from the network.

Box 1.3  Token versus cryptocurrency

Notice the difference between a token and a cryptocurrency. 
Cryptocurrencies like ETH or BTC propel the infrastructure. 
Their emission (or burning in the case of Ethereum) depends on 
the protocol and its policies. Cryptocurrencies can be minted or 
exchanged for fiat money and sold back. This trading will determine 
their price in the market. Aside from this, there is hardly any other 
operation that can let users influence the nature of cryptocurrencies. 
Tokens, instead, are digital entities whose existence is bound 
to smart contracts supporting them. Their lifecycle, emission, 
exchange, and deletion are fully controlled by the backing smart 
contracts. Unlike cryptocurrencies, the rules of the game governing 
every token are fully determined by the custom code of which 
the smart contract consists. The infrastructure keeping up smart 
contracts (and tokens) is propelled by cryptocurrencies, and tokens 
are acquired from them in exchange for cryptocurrencies. Thus, 
they lie at different levels of abstraction in what computer scientists 
call the protocol stack, so to speak: cryptocurrencies are on a layer 
below contracts. Smart contracts and tokens are thus the main 
instruments to creating new blockchain-based projects for the 
automation of services and processes.
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To make an example from the real world, we can acquire points in the 
context of a fidelity program for customers when we buy a product 
or service from a given company. We buy products and services with 
money we can transfer with our credit card from our bank account, or 
withdraw at an Automated Teller Machine (ATM). The rules deter-
mining the market value of the currency of our bank account are not 
easily customisable by individuals. Also, we cannot typically deposit 
fidelity points in our bank account. Fidelity programs, however, are 
fully controlled and manageable by their company. Fidelity points, 
therefore, are akin to tokens.

The purpose of tokens is typically classified according to their fungibil-
ity. Tokens are fungible whenever individual units can be mutually sub-
stituted as they are indistinguishable. For instance, the Hello Token in 
Figure 1.5 is fungible. If a token represents an individual entity, with its 
own characteristics, different to another one and thus not interchange-
able, it is non-fungible. Tokens representing the ownership of a physi-
cal or digital good, an artwork, or a digital identity, are all examples 
of non-fungible tokens. Semi-fungible tokens are fungible until a given 
expiry date or in case of a change of status like their redeeming, after 
which they become non-fungible (like tickets for concerts or vouchers).

Blockchain is often compared to the internet. The comparison con-
cerns the current potential and the possible development that is 
obtained from it. In the beginning, the internet itself was an experi-
mental project that required implementation effort by highly skilled 
software developers. However, its revolutionary nature has meant 
that its adoption has spread to the levels we know today. Blockchain 
and DLTs in general seem to follow this path. In fact, web services 
can integrate the blockchain. The effect has reduced visibility to the 
end user, through. Since its inception, the web has been based on a 
paradigm of clients and servers, with the former requesting services 
from the front-end (accessible by the user) to the latter, on the back 
end. In its first generation, the front end was delegated minor opera-
tions other than displaying and formatting the content provided by 
the servers. With the advent of Web 2.0, there has been a migration 
and outsourcing of operations from the back end to the front-end side, 
thanks to an increase in the capabilities of desktop PCs, laptops, hand-
held devices, etc. At the same time, although not evident on the user 
side, web servers have also delegated operations and data processing 
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to specific management systems (e.g., on the cloud). The new Web 3.0 
paradigm integrates blockchain platforms on the back-end side, tak-
ing advantage of smart contracts for carrying out (part of the) opera-
tions though maintaining a front-end that does not impact the user 
interface. Applications that adopt the Web  3.0 paradigm are com-
monly known as Decentralised Applications (DApps).

Thus far, we have observed characteristics and traits that are typical 
of blockchains that are publicly accessible and in which every node 
can potentially contribute to the validation and publishing of new 
blocks. However, there are other approaches to DLTs that restrict the 
aforementioned openness criteria. We briefly examine them next.

Public, Private, Permissioned, and Permissionless

Blockchains are often classified according to two criteria: trans-
actability (or visibility) and consensus (Bellia et al. 2019). Table 1.1 
displays the four categories that stem from these criteria. If a block-
chain is public, every node can make transactions and view them. 
If only selected nodes are entitled to this right, it is private. If any 
node in the network can participate in the consensus decision-making 
process, the blockchain platform is permissionless. Instead, if only 
specific nodes can determine the next status of the blockchain, it is 
permissioned. Bitcoin, for example, is public and permissionless like 
Ethereum, natively. On the other side of the spectrum, Hyperledger 
Fabric7 (Gaur et al. 2020) is an example of a private permissioned 
blockchain. The LTO network8 offers a private though permission-
less blockchain. EOSIO9 is an example of a public blockchain plat-
form with a permissioned consensus system.

Choosing the right combination (public or private? Permissioned 
or permissionless?) is a design choice that is up to the system architect 
based on the application context and foreseen use. Several decision 
models have been proposed to determine whether taking the block-
chain as a building block is appropriate in the first place and, if so, 

	7	 See Hyperledger. Available online: www.hyperledger.org/use/fabric (accessed: 
20/01/2023).

	8	 See LTO network. Available online: www.ltonetwork.com/ (accessed: 
20/01/2023).

	9	 See EOSIO. Available online: www.eos.io/ (accessed: 20/01/2023).
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which type of blockchain should be adopted. A renowned example of 
such guidelines is provided by Wüst and Gervais (2018).

To sum up, blockchains are fit for purpose whenever storing the 
status of the system is necessary, multiple entities concur to provide 
information on the evolution of the system while not all of them are 
trustable, and no trusted third parties are fully available. Otherwise, 
other solutions, such as distributed or centralised databases, can be 
more appropriate.

If a blockchain is appropriate for the intents and purposes of the 
project, the policy on whether making the circle of information pro-
viders and validators open or restricted drives the decision on whether 
the blockchain should be public or private, and permissionless or per-
missioned, respectively.

Concluding Remarks

This chapter illustrated and discussed the key traits of DLTs and block-
chain platforms, with a focus on the technical mechanisms underpin-
ning their guarantees. Transactions, the fundamental building block, 
allow for the transfer of cryptocurrencies and invocation of smart 
contracts’ functions. Digital signatures enable the authentication of 

Table 1.1  Blockchain types according to their visibility and consensus 
mechanisms

Transactability/visibility

Private Public

Consensus

Permissionless Selected nodes can 
transact and view, 
every nodes can 
participate in 
consensus

Every node can 
transact and view, 
participate in 
consensus

Permissioned Selected nodes can 
transact and view, 
or participate in 
consensus

Every node can 
transact and view, 
selected nodes 
participate in 
consensus
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transaction senders. The order of transactions is preserved by the 
sequential nature of ledgers. The distributed architecture ensures data 
persistence, as a replica of the ledger is saved virtually on every node. 
Hashing makes the blockchain robust, as it impedes changes in older 
transactions without altering the whole sequence of blocks that fol-
low. Mechanisms such as proof-of-work and proof-of-stake ensure 
that the publishing rights of new blocks are given to nodes that prove 
their reliability. Consensus algorithms guarantee that the blockchain 
is eventually consistent in the replicas stored on the network nodes. 
Smart contracts make blockchain programmable and, among other 
things, able to support tokens.

Distributed ledger and blockchain technologies are not a panacea for 
all projects in information technologies and beyond. Their use is suit-
able for settings where multiple actors cooperate in a regime of partial 
(or lack of) mutual trust and in the absence of trusted third parties that 
can authoritatively exert control of the stored information. Entering 
the details of the core mechanisms and rationale thereof reportedly 
is a challenging task on its own, and their installation or integration 
requires the intervention of technically skilled experts. However, they 
offer a number of critical guarantees by design, including authentica-
tion, inviolability, full traceability of data, and robustness, availability, 
and customisability of service. Arguably, building a novel system that 
offers ex novo all that would be a highly challenging task, let alone in 
regimes of partial trust between the key actors. Notice that the obser-
vations made thus far refer to using distributed ledger and blockchain 
technologies as an information technology (IT) core infrastructure 
within larger projects integrated with business processes (Xu  et al. 
2019). Their potential is enormous and can be fully unleashed when 
their adoption goes beyond the mere exchange of cryptocurrencies. 
The next chapters of this book will document success case studies in 
which endeavours of this sort are carried out in the banking sector.
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