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It has been asked (see [8]) whether the £” boundedness of the Riesz transform
observed on R” could be extended to a reasonable class of noncompact manifolds.
Many partial answers have been given. In particular, we mention [3] for the case
1 < p <2 and [1] for the case p>2. In [1], the £? boundedness of the Riesz
transform was tied to the £” boundedness of the Gaffney inequality. The result held
on noncompact manifolds satisfying doubling and Poincaré conditions, along with a
stochastic completeness or preservation condition.

The main result of this thesis is the extension of the theorems of [1] to prove
sufficient conditions for £? bounds:

VL2 flll e < 1f 1o

with p > 2, for generalised Riesz transforms VL™!'/? in cases where a preservation
condition does not hold. To say that a preservation condition does not hold is to say
that

e L1 #1.

To compensate for the lack of a preservation condition, two new conditions are
required. These are a Hardy inequality and a localised norm bound on the associated
heat semigroup gradient. A good-A method is employed in the proof. This type of
method is common in the literature (see for example [ 1] or [2]). The results are general
enough to apply in a large number of circumstances. Further to this main result, the
thesis presents two significant extensions.
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The first extension is to Riesz transforms on nondoubling domains. Here both the
global doubling and the preservation conditions do not hold. This extension applies
specifically to the circumstance of a manifold with boundary and Dirichlet boundary
conditions. Strict upper bounds relating to heat semigroup decay are required to
take the place of standard doubling estimates. Once again the result gives sufficient
conditions for £” boundedness of the Riesz transform in such a case. An added benefit
of this nondoubling extension is that the Poincaré inequality is no longer required near
the boundary.

The second extension shows that the weighted £” boundedness of the Riesz
transform observed on R” can also be extended in some degree to a reasonable class
of noncompact manifolds. Once more the result is a list of sufficient conditions,
now ensuring weighted £” Riesz transform bounds in the absence of a preservation
condition. This second extension includes generalised deriving of weight classes
associated to skewed maximal functions and other operators. These weight classes are
a variation on the traditional Muckenhoupt A, weight classes, adapted for the chosen
domain.

Applications are to the case of Dirichlet Laplacians on various subsets of R”,
primarily exterior and halfspace-like domains. These applications are particularly
motivated by recent results in [5]. Heat kernel bounds from [6, 7] and [9] are used
in the proofs of the various conditions. Inner uniform domains and their properties
from [4] also feature in the applications.
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