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Baroclinic critical layer in a viscous stratified
boundary layer flow on an undulated tilted
surface
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The present paper investigates theoretically and experimentally the boundary layer
generated by a stably stratified fluid flowing horizontally along a surface tilted in the
transverse direction and deformed by sinusoidal undulations with crests perpendicular to
the flow direction. In the absence of undulations, a weak transverse velocity proportional
to the normal velocity is created such that the flow remains purely horizontal. In the
presence of undulations of amplitude h, a stronger transverse flow is generated that exhibits
a singular behaviour at the critical altitude where the frequency of the perturbation matches
the buoyancy frequency of the fluid. This baroclinic critical layer was previously analysed
by Passaggia et al. (J. Fluid Mech., vol. 751, 2014, pp. 663–684) for a boundary layer
flow with a small sliding velocity on the surface. Here, the no-slip boundary condition
of the experimental flow is applied. For this purpose, we solve the viscous sub-layer
to obtain a complete theoretical model for the solution in the critical layer without any
adjusting parameter. The theoretical predictions for the transverse velocity are compared
with experimental measurements, and a good quantitative agreement is demonstrated.
Compared with the sliding case, the no-slip boundary condition on the surface reduces
the amplitude of the critical layer solution by a factor Re−1/3, where the Reynolds number
Re is defined using the velocity at infinity and the thickness of the boundary layer. As a
consequence, the transverse velocity has a maximum in the critical layer of order h, but it
still induces a shear rate of order h Re1/3.

Key words: stratified flows, topographic effects, critical layers

1. Introduction

Boundary flows of stratified fluids are often studied in an oceanographic context. Indeed,
they have a strong influence on sediment dispersion (Rebesco et al. 2014) but also on
the global ocean dynamics. For instance, they affect the global overturning circulation
of oceans (Kuhlbrodt et al. 2007) via the currents appearing on Antarctic coastal slopes
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(Baines & Condie 1998; Thompson et al. 2018). This last phenomenon has motivated
numerous gravity current studies, which are also relevant for atmospheric applications
such as katabatic winds (Baines 2001; Monti et al. 2002; Shapiro, Huthnance & Ivanov
2003; Baines 2005). Boundary layers are places of intense dissipation (Sen, Scott &
Arbic 2008; Beckebanze et al. 2018; Davis et al. 2019), but also regions where internal
gravity waves (Garrett & Kunze 2007) and intense mean flow (Le Dizès 2020) are
generated.

For large Reynolds numbers, the Blasius boundary layer flow that develop on a
plane surface is known to be unstable (Schlichting 1979). This two-dimensional viscous
instability does not disappear in the presence of stratification (Wu & Zhang 2008a; Chen,
Bai & Le Dizès 2016). However, another instability, of inviscid nature, appears as soon
as the stratification and the shearing directions are no longer aligned (Candelier, Le Dizès
& Millet 2012; Chen et al. 2016). This instability, which is characterised by an internal
gravity wave emission, has been observed in other contexts (Lindzen & Barker 1985; Le
Dizès & Billant 2009). In the present experimental study, the Reynolds number will be too
small for any of these instabilities to be present.

Stratified boundary layers are also particularly sensitive to topography. Wu & Zhang
(2008b) showed for example that an obstacle can induce a coupling between internal
waves and viscous instability modes of the boundary layer. Besides, the presence of
an inclination angle between the stratification direction and the boundary has strong
consequences for the flow (Garrett, MacCready & Rhines 1993), influencing transport
and mixing, as observed by Phillips, Shyu & Salmun (1986) and also reported by Baines
& Condie (1998). Recently, Puthan et al. (2019) numerically demonstrated that a density
perturbation in a stratified fluid above a surface inclined at an angle α can lead to the
generation of a mean oscillating flow along the slope at the frequency N sin α, where N
is the buoyancy frequency. Furthermore, in the case of a corrugated surface, inclination
enables the flow to avoid surface roughness without vertical displacement (inhibited by
stratification) by going around the obstacle horizontally. The two swerve regimes (going
around with a pure horizontal motion, or above) have been discussed by MacCready &
Pawlak (2001).

The precise structure of a stratified boundary layer developing above an undulated
inclined wall has been addressed by Passaggia, Meunier & Le Dizès (2014) using
numerical simulations. Considering small sinusoidal undulations of a surface, with crest
line perpendicular to the flow direction and slip boundary conditions, they predicted the
generation of a strong transverse flow at a specific location in the boundary layer. They
further showed that this flow is associated with a resonance mechanism between the
Brunt–Väisälä frequency and the forcing of the undulations at a critical point singularity
of the inviscid equations.

Such a baroclinic critical layer has been observed in other contexts. Boulanger, Meunier
& Le Dizès (2007) showed that it was excited when the axis of a vortex was tilted with
respect to the direction of the stratification. They demonstrated that a strong axial flow,
localised in the baroclinic critical layer, was created and could be destabilised (Boulanger,
Meunier & Le Dizès 2008). Wang & Balmforth (2020, 2021) argued that similar critical
layers could be responsible for the complex nonlinear dynamics observed in accretion
disks (Marcus et al. 2013).

The main objective of the present work is to observe experimentally the baroclinic
critical layer in a boundary layer flow and to compare the experimental data with the
critical layer predictions. For this purpose, we will also need to extend the theoretical
analysis of Passaggia et al. (2014) to account for the no-slip boundary condition on the
undulated surface.
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Figure 1. (a) Schematic of the experimental set-up indicating the main axes. The horizontal/vertical
coordinates (X, Y, Z) are rotated with an angle α around the X-axis to give the new coordinates (x, y, z). The
plate is in the (x, y) plane such that its outgoing normal ez is tilted with an angle α with respect to eZ (i.e.
with an angle π − α with respect to g). The plate is tilted around the y axis by a small angle γ = 2◦ to prevent
boundary layer separation. The undulations have a wavelength λ and an amplitude h. (b) Schematic of the
visualisation set-up including both shadowgraph (in yellow) and particle image velocimetry (in green).

The paper is organised as follows. In § 2, experimental details are given: the set-up
and visualisation techniques are first described and the plate design explained. The main
parameters of the study and their chosen definition are presented. Section 3 focuses on the
derivation of the stratified boundary layer flow on a flat inclined wall, and first comparisons
with experimental measurements. This solution constitutes the base flow that is perturbed
in § 4 by small undulations of the plate. The extension of the Passaggia et al. (2014)
analysis is carried out here. In particular, we solve the viscous sub-layer needed to apply
the no-slip boundary condition. A parameterless expression for the transverse velocity in
the baroclinic critical layer is obtained and compared with experimental measurements.
A good qualitative and quantitative agreement is demonstrated. Section 5 summarises the
main results and briefly discusses an application to a real atmospheric flow.

2. A stratified boundary layer experiment

A brief description of the experiment is provided in this section. More details on the
facility, stratification method and visualisation subtleties can be found in the PhD thesis of
Christin (2021).

2.1. Facility
The experimental set-up, sketched in figure 1(a), consists of a poly-methyl methacrylate
(PMMA) tank 4 m long, 1 m wide and 1 m deep, filled with salty water up to a height
H ∼ 85 cm. A trolley is mounted on rails and moved with a ball screw connected to a
motor MAC800 D2 of JVL, allowing a horizontal translation of the plate along the tank.
The velocity of the trolley is kept constant during each run and varies in the range 1.79 �
U � 2.98 cm s−1.

As shown in the sketch, the plate is fixed to the trolley thanks to four supporting
arms. The study is done on the lower side, so that the arms do not perturb the region
of interest. The plate consists of a plane entrance zone where the boundary layer can
develop before reaching the undulations. This region is needed to obtain a sufficiently
large boundary layer width δ in the undulation zone. The corrugated part consists in 5
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undulations, of half-crest-to-crest height h and wavelength λ (wavenumber k), and is the
zone of interest in this study. It is parametrised as ξ(x) = h sin k(x − Lu), for x > Lu, where
Lu is the distance between the leading edge of the plate and the beginning of the sinusoidal
part. The transition between plane and undulated parts is smoothed thanks to a bending
radius.

Another important element of the present work is α, the angle made between the
outward normal of the plate surface ez and the upward vertical eZ . It generates a transverse
inclination of the plate and is necessary for the critical layer to exist.

Figure 1(a) also shows a second angle, γ = 2◦, made between the horizontal and the
longitudinal direction of the plate. This very small angle is needed to relaminarise the
boundary layer, as will be seen in § 2.4.

2.2. Stratification
The tank is filled with salty water with a salt concentration increasing linearly with depth.
The Brunt–Väisälä frequency is then defined as

N =
√

− g
ρ0

∂ρlin

∂Z
, (2.1)

where ρlin is the fluid density, ρ0 the density at the mean plate height, g the gravity and Z
the coordinate along the vertical.

This stratification is obtained using a technique described in the PhD thesis of Bosco
(2015) and improved by Christin (2021). It consists in dividing the tank into two parts, one
with pure water and the other one with uniformly mixed strongly salty water, and letting
the two fluids mix through holes of diameter 0.5 cm drilled in the separation slab. This
technique is preferred to the usual ‘two tanks method’ because it requires only one tank,
which is far more convenient considering the huge volume used here.

Once realised, the stratification can hold for months if the experiments performed in the
tank do not generate a very violent mixing. The density profile is measured by collecting
fluid samples along a tank wall in the middle of its length, every 5 cm. This is done once
every day before experiments are carried out, thanks to an Anton Paar densitometer DMA
35. Between two consecutive experimental days, the profile is barely observed to change.
The slope estimation induces uncertainties on N of the order of 5 %.

Final experiments which lead to the results of § 4.3 are made in a stratification with
constant frequency N = 0.85 ± 0.04 rad s−1.

2.3. Measurement techniques
Two measurement techniques have been used and recorded with the same camera Sony
α7s taking 25 frames per second.

Firstly, the flow was qualitatively observed by a shadowgraph method (see set-up in
yellow in figure 1b) which consists of observing the flow illuminated from the back,
through a lens. It is based on the fact that the flow induces inhomogeneities in the density
field, resulting in variations in the light refraction index which reveal the flow structure.
The contrast can be adjusted by moving the camera around the focal point of the lens. On
the camera is mounted a FE 2.8/50 MACRO lens, while the external lens used to focus the
rays on the camera sensor is a PCX condenser lens from Edmund Optics of focal length
50 cm and diameter 25 cm.
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The final results, revealing the critical layer, are obtained thanks to a particle image
velocimetry (PIV) system shown in green in figure 1(b). This method requires us to seed
the flow with particles (polydisperse hollow glass spheres from TSI) that are then lit by a
laser sheet (Z40M18B-F-532-Ip20 from Z LASER of 532 nm wavelength), and to treat
the images thanks to software (DPIVSoft on MATLAB) to deduce the velocity field.
This experimental technique is quantitative but complex in its execution, for its purely
experimental part as well as its data post-processing.

The seeding particles have been carefully chosen to be good tracers of the flow, meaning
that their density (between 1.05 and 1.15 g cm−3) is close to that of the ambient fluid
(ρ ∈ [1; 1.12]g cm−3) to avoid inertial effects, and their diameter, between 8 and 12 μm, is
lower than the size of the smallest structure of interest in the flow. In order to have a precise
flow field, a macro lens of focal length 2.8 mm and diameter 90 mm is mounted on the
camera. The laser sheet extends in the cross-flow direction, placed such that it cuts the plate
on its centre part along the ey axis. Furthermore, it makes an angle β = 20.0 ± 0.3◦ with
the longitudinal axis of the plate ex, shown in the bottom sketch (entitled ‘side view’) of
figure 1(b). This peculiar disposition enables a scan of the velocity in the whole boundary
layer depth since the velocity field is steady. It, however, requires a complex reconstruction
of the flow field in real space (see Christin 2021). As the camera axis is aligned with ez
(we neglect the very small angle γ ), PIV gives the x and y components of the velocity.

The present study needs the PIV to be accurate for small transverse displacements (of
few mm s−1) while measuring large longitudinal velocities (up to ∼3 cm s−1) close to the
plate. In order to do so, for the highest considered velocities, the image post-processing is
done twice. Firstly with the regular recorded images, and secondly with displaced images
to deduce the apparent velocity of the flow close to the plate. The final flow field considered
is the concatenation of both processes.

2.4. Design of the plate
The first test plate aimed at simply observing how the boundary layer develops. It consists
of a 30 cm long flat part, bevelled at 20◦ at its entrance tip, followed by undulations with
h = 1 cm and λ = 10 cm.

A shadowgraph visualisation of the flow above this plate is shown in figure 2(a). The
flow is clearly fully turbulent from the very beginning of the plate (called ‘the leading
edge’ in further discussion), with the presence of recirculation bubbles. In addition, the
boundary layer is observed to separate from the surface, generating a black stripe (called
‘the front’ hereafter) evidenced by the white arrow in the shadowgraph. This effect is
understood to be a consequence of lee waves generated by the leading edge, as the front
position scales with 2πU∞/N. These waves could possibly generate an adverse pressure
gradient leading to boundary layer separation. The undulation amplitude is also too large
as it creates boundary layer separation after each crest.

All of these issues have been solved by working on the design and position of the
plate. First, the leading edge has been slimmed and shaped with a smooth curve on its
downward part. Second, the whole plate has been inclined in its longitudinal direction at a
very low angle γ = 2◦ with respect to the horizontal. This forces the current lines to stay
attached to the surface and strongly inhibits the generation of the so-called front. Finally,
the undulation height h has been reduced to 2.5 % of the wavelength λ.

The latter has been fixed to 10 cm so that the perturbation amplitude is not too small, but
such that 5 complete undulations can still be shaped on the plate (the length of the plate is
limited by the tank dimensions). The plane entrance zone has been fixed at 91 cm so that
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Figure 2. Compilation of shadowgraph pictures of the flow above the entrance zone of the plate for two
different leading edge profiles at towing speed U∞ = 2.65 cm s−1 and N = 1.06 ± 0.06 rad s−1: (a) α = 180◦,
γ = 0◦; (b) α = 168.7◦, γ = 2◦. The transverse angle α has been observed to have no influence on the
boundary layer quality.

the boundary layer is of the largest possible extent. This eases visualisations and ensures
that the undulations are indeed within the boundary layer extent.

The final plate is machined in black polyoxymethylene. A shadowgraph of the flow is
presented in figure 2(b). The boundary layer flow is clearly nicer when compared with the
first plate. No more turbulence is observed, the flow is laminar and follows almost all the
undulations. Thin lines seem to be emitted from the plate but they do not correspond
to a genuine boundary layer separation, as checked by PIV measurements. Note that
shadowgraph visualisations do not show any evidence of a critical layer above the plate:
this will require PIV.

2.5. Parameters of the study
This study presents results for a unique plate designed to optimise the formation of a
critical layer, as has been discussed in the previous subsection. It is 141 cm long (including
a plane entrance zone of 91 cm), 60 cm wide and 2 cm thick after the slim leading edge
part. The undulations have a wavelength of λ = 10 cm and a height h = 0.25 cm. The
transverse inclination angle α is kept constant and equal to 118.1◦. The natural frequency
associated with stratification is set to N = 0.85 ± 0.04 rad s−1, by taking the mean density
ρ0 ∼ 1.024 g cm−3 as the reference density. These quantities lead to a constant theoretical
critical velocity Uc = λN sin α/2π = 1.19 cm s−1.

By fitting the measured longitudinal velocity at the mid-length of the undulations by
U∞F′(z/δemp) with F defined in (3.7) (see § 3 for justification), an empirical boundary
layer depth δemp is determined, varying between 0.58 and 0.75 cm (see table 1). It is the
reference scale which will be used to non-dimensionalise lengths and to calculate the two
non-dimensional parameters characterising the flow, namely the classical Reynolds Re and
Froude Fr numbers,

Re = U∞δemp/ν, (2.2a)

Fr = U∞/Nδemp. (2.2b)

The kinematic viscosity ν is 1.015 ± 0.005.10−6 m2 s−1, as the salted water temperature
is T ∼ 21.7 ◦C.

A summary of the parameters associated with each experiment is given in table 1.
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Exp. number U∞/Uc δemp (cm) Re Fr | ŵ0 |
1 1.5 0.75 ± 0.03 131 ± 7 2.8 ± 0.3 0.48
2 1.67 0.63 ± 0.02 124 ± 5 3.7 ± 0.35 0.5
3 1.84 0.60 ± 0.03 129 ± 7 4.35 ± 0.5 0.52
4 2 0.65 ± 0.03 153 ± 9 4.3 ± 0.5 0.50
5 2.17 0.58 ± 0.02 149 ± 6 5.2 ± 0.5 0.52
6 2.34 0.62 ± 0.03 173 ± 8 5.2 ± 0.5 0.5
7 2.5 0.61 ± 0.02 180 ± 6 5.75 ± 0.5 0.52

Table 1. Summary of experimental data. Here, N = 0.85 ± 0.04 rad s−1, λ = 10 cm and α = 118.1◦. The
critical velocity Uc = Nλ sin α/(2π) is equal to 1.19 cm s−1.

3. Base flow

3.1. Theoretical developments
A stationary stratified boundary layer flow above a tilted wall is considered. This first
section aims at properly calculating the base flow of this physical situation in the case
Re � 1.

The wall is inclined in the cross-stream direction, such that its outward normal ez makes
an angle α with the upward vertical eZ , which is the stratification direction (see figure 1a).

The fluid is assumed to have both constant kinematic viscosity ν and Brunt–Väisälä
frequency N, which is associated with a linear stable stratification


lin = 
0(1 − N2Z/g), (3.1)

where g is the gravity. The diffusivity of the quantity generating the stratification is
assumed to be very low compared with the viscosity of the fluid, such that its effect can
be neglected. This is a valid assumption for brine solutions like the ones experimentally
considered in this paper.

In the absence of motion, the balance between pressure and density terms prescribes

Plin = 
0gZ
(

1 − N2

2g
Z
)

. (3.2)

In the following, only pressure and density deviations from this hydrostatic equilibrium,
denoted with a regular letter without an index, are considered.

From now, when no scaling is specified, velocities will be non-dimensionalised by
U∞ (the uniform longitudinal velocity outside of the boundary layer), lengths by δ (the
boundary layer width), pressures by 
0U2∞ and density by 
0U2∞/gδ.

The dimensionless equations of motion, under the Boussinesq approximation, are

∇ · u = 0, (3.3a)

(u · ∇)u = −∇p + 1
Re

�u − ρeZ , (3.3b)

(u · ∇)ρ = u · eZ

Fr2 , (3.3c)

where p is the pressure and u is the dimensional velocity field, u, v and w being
respectively the longitudinal, transverse and normal components in the plate reference
frame.
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Considering a transverse α angle forces the introduction of a transverse velocity v as
ρ varies along the vertical Z which includes components in both the ez and ey directions.
This imposes a three-dimensional velocity field but as the wall is supposed infinite in the
ey direction, unknown functions can be kept independent of the y variable.

By analogy with the classical Blasius problem on a flat plane (x, z), we introduce the
spatial scales

x = Re x̄, z = z̄, (3.4a,b)

and the scaling

uB = ūB, (3.5a)

vB = Re−1v̄B, (3.5b)

wB = Re−1 w̄B, (3.5c)

pB = Re−2 p̄B, (3.5d)

ρB = Re−2 ρ̄B, (3.5e)

where the ‘B’ index has been added to refer to the Blasius base flow.
Using these equalities, the complete system (3.4a,b) can thereby be reduced at leading

order to

∂ ūB

∂ x̄
+ ∂w̄B

∂ z̄
= 0, (3.6a)

ūB
∂ ūB

∂ x̄
+ w̄B

∂ ūB

∂ z̄
= ∂2ūB

∂ z̄2 , (3.6b)

ūB
∂v̄B

∂ x̄
+ w̄B

∂v̄B

∂ z̄
= −ρ̄B sin α + ∂2v̄B

∂ z̄2 (3.6c)

ūB
∂w̄B

∂ x̄
+ w̄B

∂w̄B

∂ z̄
= −∂ p̄B

∂ z̄
− ρ̄B cos α + ∂2w̄B

∂ z̄2 , (3.6d)

ūB
∂ρ̄B

∂ x̄
+ w̄B

∂ρ̄B

∂ z̄
= Re2

Fr2 (cos αw̄B + sin αv̄B) , (3.6e)

where it is implicitly assumed that Re/Fr and α are O(1).
The two first equations (3.6a,b) correspond to the classical system governing a Blasius

boundary layer (e.g. Schlichting 1979). They constitute an independent system for the
two velocity components ūB and w̄B that can be solved in term of a self-similar variable
η = z̄/

√
x̄ using a single function F(η) satisfying

2F′′′ + F′′F = 0, (3.7)

with the boundary conditions: F′(0) = F(0) = 0 and F′(η → ∞) = 1 (a prime denotes a
derivative with respect to η). The relation between F(η) and the velocity components ūB
and w̄B is

ūB = F′, (3.8a)

w̄B = ηF′ − F

2
√

x̄
. (3.8b)
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Observing now the rest of system (3.6) suggests the origin of the other scalings: the one
for v is the same as for w because of (3.6e), which forces the scaling for ρ in (3.6c), itself
leading to the scaling for p in (3.6d).

In the present paper, we shall present experimental results obtained for a fixed angle
α = 118.1◦ and Froude numbers of the order of unity. We shall therefore be in the limit
Re � Fr for which the last equation (3.6e) reduces to the right-hand side. This means that
the transverse and normal velocities will be proportional in order to cancel the vertical
velocity. Streamlines will remain horizontal, as is often the case in stratified fluids. In this
large Re/Fr limit, the transverse velocity associated with the Blasius flow will therefore
be

v̄B = −cos α

sin α
w̄B = − cos α

sin α

ηF′ − F

2
√

x̄
. (3.9)

Once v̄B is calculated, the density field ρ̄B is obtained through (3.6c). The Blasius
equation (3.7) is needed to simplify some terms, such that one can write

ρ̄B = cos α

sin2 α

F′F − ηF′2 − 2F′′

4x̄3/2 . (3.10)

Combining (3.6c) and (3.6d) with (3.9) allows us to express the pressure gradient as a
function of the density only

∂ p̄B

∂ z̄
= − 1

cos α
ρ̄B, (3.11)

and obtain

p̄B = 1

x̄ sin2 α

(
2F′ − F2

2
+
∫ η

sF′2(s) ds
)

. (3.12)

The system (3.6a–e) has now been fully solved in the experimental parameter range, that
is: finite sin α, Fr of order one and large Re. These solutions are plotted in figure 3 as
a function of the normal component. Interestingly, the normal and transverse velocity
components and the density perturbation do not vanish at infinity but rather converge
toward a finite value. The pressure increases linearly at large z̄.

In Appendix A, we provide some information on another limit, obtained when α → 0
or Fr large, that can also be solved explicitly.

3.2. Comparison with experimental measurements
As detailed in § 2.3, a PIV technique has been set up to measure both longitudinal and
transverse velocity fields (u and v). Without undulations, the transverse velocity v scales as
Re−1 and is thus too small to be measurable. Only the longitudinal velocity u has therefore
been measured. It has been plotted for experiment 5 in figure 3 where it is also compared
with the theoretical Blasius solution.

The experimental measurement has been taken 5 cm before the start of the undulations,
after the boundary layer has developed over L = 86 cm from the front edge. A good
agreement is observed between the theoretical and experimental profiles, as figure 3
shows. For z̄ < 0.9, the reflexion of the laser on the plate creates a bright area on the
images which perturbs the PIV measurements and leads to wrong velocities. Above the
laser reflexion zone, for z̄ > 0.9, both profiles match with a maximum uncertainty of the
order of 5 %, which confirms the base flow theoretical profile. The spatial diffusion of the
boundary layer due to viscous effects suggests that the boundary layer width should be
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Figure 3. Normal profiles of the longitudinal velocity (a), the normal and transverse velocity (b), the density
(c) and the pressure (d). Solid black lines correspond to the stratified Blasius solution (3.8)–(3.12) for x̄ = 1
with F the solution of (3.7). In (a), blue dotted symbols correspond to the experimental longitudinal velocity u
at the end of the plane entrance zone (86 cm from the front edge) for experiment number 5 (see table 1) with z
dimensionalised by δfit = 0.49 cm and the red dashed line corresponds to the Falkner–Skan solution (3.13) for
x̄ = 1.1 with a tilt angle γ = 2◦.

δtheo = √
νL/U∞ = 0.58 cm, which is larger than the δfit = 0.49 cm obtained in figure 3

from the best fit. A similar difference between fitting and theoretical prediction of the order
of 20 % is observed for all performed experiments. This difference partly comes from the
small longitudinal tilt angle γ = 2◦ of the plate. Indeed, in the absence of stratification,
the streamwise velocity above a tilted plate is given by the Falkner–Skan solution (Drazin
& Reid 1999)

ūB = F′
FS

(
z̄

x̄(1−m)/2

√
m + 1

2

)
with F′′′

FS + FFSF′′
FS + β|1 − F′2

FS| = 0 (3.13)

where β = 2γ /180 and m = β/(2 − β). As shown in figure 3(a), this solution is almost
undistinguishable from the Blasius solution if x̄ is increased by 10 %. This means that the
tilt angle γ = 2◦ decreases the thickness by 5 %, which is thus equal practically to 0.55 cm
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Figure 4. Raw data of the transverse velocity field above the plate for experiment number 4.

rather than 0.58 cm. This prediction is closer to the measured thickness δfit = 0.49 cm
although it is still 10 % larger. The remaining difference probably comes from the rounded
leading edge.

For the final plots and the calculation of quantitative predictions presented in § 4.3, the
thickness δemp is measured by fitting the longitudinal profile with the Blasius profile in
the middle of the sinusoidal part of the plate, rather than upstream of the undulations as
done here for δfit. It has been checked that the longitudinal flow is not modified by the
undulations and that it still matches the Blasius profile. The empirical values are given in
table 1.

4. Perturbed flow

4.1. Experimental transverse velocity field
The tilt angle of the plate breaks the invariance along the y direction and induces
a transverse velocity v which is enhanced by the plate undulations. This allows its
measurement by PIV. A raw transverse velocity field is displayed in figure 4. The
undulations are darkened to ease the visualisation.

First, one can note that the transverse velocity is still very weak. Indeed, its amplitude
is of the order of only 5 % of the maximum longitudinal velocity U∞. This measurement
was thus extremely hard to achieve since the noise had to be reduced below 1 %. The fine
post-processing described in § 2.3 was necessary to obtain such an accuracy.

Then, one can observe in this field alternate bands of v above the plate upstream of
the undulated part. As was shown in Christin (2021), these waves are orographic waves
emitted by the front edge. They are of no interest for the present study.

Now, focusing on the field above the undulations, inclined lobes of alternating
positive and negative transverse velocity can clearly be identified. They are within the
boundary layer and exhibit the wavelength of the undulations. This pattern becomes more
pronounced downstream: two undulations seem to be sufficient to settle this oscillating
regime forced by the topography.

Although the orographic waves have a smaller amplitude than the inclined lobes, they
are not negligible. To better reveal the lobes, data are then filtered with a spatial Fourier
filter along x̃ at the wavenumber of the undulations in figure 5, which shows 3 wavelengths
to give a more detailed image of the velocity field. The Fourier-filtered velocity is obtained
as

vc(z̄) cos(kx̃) + vs(z̄) sin(kx̃), (4.1)

where for each z̄ the Fourier coefficients are defined as

vc(z̄) =
∫ xmax

xmin

v(x̃, z̄) cos(kx̃) dx̃
/∫ xmax

xmin

cos2(kx̃) dx̃, (4.2)

and

vs(z̄) =
∫ xmax

xmin

v(x̃, z̄) sin(kx̃) dx̃
/∫ xmax

xmin

sin2(kx̃) dx̃, (4.3)
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Figure 5. Transverse velocity field for experiment number 4, after applying a Fourier filter at the wavelength
of the undulations along x̃.

with xmin the starting point of the undulations and xmax the largest position where
experimental data are available. The specific pattern develops slightly above the surface
of the plate, around z̄ = 1, and has velocity lobes inclined with a small positive angle
with respect to the horizontal. Positive lobes are located above the ridge of the undulation
whereas negative lobes are located above the depression.

This measured transverse field corresponds to the perturbed transverse flow induced by
the undulations. This pattern, which is localised away from the boundary, is reminiscent
of a critical layer singularity (Passaggia et al. 2014). In the next section, we provide a
complete theory explaining the presence of this pattern. The theory developed in Passaggia
et al. (2014) is extended to account for a no-slip boundary condition and applied to the
Blasius profile configuration for a quantitative comparison.

4.2. Theoretical developments
The base flow is perturbed with low-amplitude (i.e. h 
 1) undulations of the plate,
parametrised with a sine function of wavenumber k = O(1) (the wavelength is assumed
to be of the same order as the boundary layer width). It is also assumed that the length
over which the boundary layer has developed before arriving on the corrugations is large
enough so that the boundary layer flow is settled and its width is approximatively constant
for the extent of the undulations. The slow longitudinal variable x̄ of the Blasius boundary
layer is now related to a local variable x̃

x̃ = Re(x̄ − 1) = x − Re. (4.4)

The location x̄ = 1 (where η = z) corresponds to the position in the middle of the
undulations. It is here that the boundary layer width δemp has been estimated and where
the flow is analysed.

Perturbations being searched as spatial Fourier modes, physical quantities are written as

utot = uB + 1
2 hk

(
ueikx̃ + c.c.

)
, (4.5a)

ptot = plin + pB + 1
2 hk

(
peikx̃ + c.c.

)
, (4.5b)

ρtot = ρlin + ρB + 1
2 hk

(
ρeikx̃ + c.c.

)
, (4.5c)

where u, ρ and p are functions of the normal spatial variable z only.
In the bulk of the boundary layer (that is for z = O(1)), the perturbations are expected

to be described by inviscid equations. This region corresponds to the inviscid outer layer
in the sketch of the different regions shown in figure 6. Viscous effects are present in
two localised regions. Very close to the surface of the plate, in a viscous sub-layer, they
are needed to apply the no-slip boundary condition at the surface of the plate. The width
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Inviscid outer layer

Viscous sub-layer

Figure 6. Scheme of the different layers studied.

of this layer is obtained by balancing inertial and viscous effects. For a flat plate, this
width is O(Re−1/3) owing to the presence of a regular critical point at the wall
(i.e. UB(0) = ω/k = 0) (see Drazin & Reid 1999). For an undulated plate, we obtain the
same width scaling as long as h 
 Re−1/3. The solution of this viscous sub-layer will
provide the boundary conditions for the inviscid outer solution. Viscous effects will also
be needed in the baroclinic critical layer to smooth the singularity that appears in the
inviscid solution.

4.2.1. The viscous sub-layer
In order to describe the perturbation in a viscous sub-layer of O(Re−1/3) width, it is natural
to introduce the new normal variable

z̃ = z − h sin kx̃
Re−1/3 , (4.6)

such that z̃ = 0 corresponds to the deformed boundary. As mentioned above, we further
assume that h 
 Re−1/3 such that the problem remains linear at leading order. In the
viscous sub-layer, velocity, pressure and density perturbations are expanded as

u = ũ, (4.7a)

v = Re−1/3ṽ, (4.7b)

w = Re−1/3w̃, (4.7c)

p = Re−1/3p̃, (4.7d)

ρ = Re−2/3ρ̃ . (4.7e)

The boundary conditions on the velocity perturbations are obtained by expanding ūB
close to the boundary

ūB ∼ ū′
B0

η = ū′
B0

(
z̃ Re−1/3 + h sin kx̃

)
, (4.8)
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where ū′
B0

stands for the derivative of ūB with respect to η for η = 0. The boundary
condition utot(z̃ = 0) = 0 then gives

ũ(0) = i ū′
B0

k
, ṽ(0) = 0, w̃(0) = 0. (4.9a–c)

Now introducing (4.7) and (4.8) in the governing equations (3.4a,b) the following
non-dimensionalised system is obtained:

ikũ + dw̃
dz̃

= 0, (4.10a)

ikũū′
B0

z̃ + w̃ū′
B0

= −ikp̃ + d2ũ
dz̃2 , (4.10b)

ikṽū′
B0

z̃ + ρ̃ sin α = d2ṽ

dz̃2 , (4.10c)

dp̃
dz̃

= 0, (4.10d)

ṽ sin α + w̃ cos α = 0. (4.10e)

Differentiation of (4.10b) with respect to z̃ yields a homogeneous Airy equation on dũ/dz̃

d3ũ
dz̃3 − ikū′

B0
z̃

dũ
dz̃

= 0. (4.11)

Without surprise, we obtain the equation describing perturbations in a viscous critical
layer (Drazin & Reid 1999). As already mentioned above, this comes from the fact that
the position z = 0 is a regular critical point for the stationary perturbations generated by
the wall undulations. Such a critical layer at the wall is also obtained in the asymptotic
structure of Tollmien–Schlichting waves in the lower branch of the stability diagram (Lin
1955). It also corresponds to the lower deck obtained in the triple deck theory describing
boundary layer separation (Smith 1973; Wu & Zhang 2008a; Dong, Liu & Wu 2020).

Solving this equation allows us to obtain ũ, which gives w̃ thanks to (4.10a), then ṽ

through (4.10e), the constant p̃ using (4.10b) and finally ρ̃ using (4.10c).
As explained in the appendix of Drazin & Reid (1999) textbook, recessive solutions of

homogeneous Airy equations such as (4.11) can be expressed in terms of generalised Airy
functions Ak(z, p), where p denotes the integral order (if p > 0) of the Airy function. The
longitudinal velocity ũ is then searched under the form

ũ = C0A1(βeiπ/6z̃, 1) + C1, (4.12)

with C0 and C1 being two complex constants, and

β = (kū′
B0

)1/3. (4.13)

Applying the boundary conditions (4.9a–c), the system (4.10a–e) can then be fully
solved. The solution in the viscous sub-layer is found to be

ũ(z̃) = iū′
B0

k
A1(β

1/3eiπ/6z̃, 1)

A1(0, 1)
, (4.14a)
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ṽ(z̃) = − cot αβ−1ū′
B0

e−iπ/6 A1(βeiπ/6z̃, 2) − A1(0, 2)

A1(0, 1)
, (4.14b)

w̃(z̃) = β−1ū′
B0

e−iπ/6 A1(βeiπ/6z̃, 2) − A1(0, 2)

A1(0, 1)
, (4.14c)

p̃(z̃) = −β2ū′
B0

k2
A1(0, 2)

A1(0, 1)
eiπ/3, (4.14d)

ρ̃(z̃) = cos αβū′
B0

sin2 α

iβe−iπ/6z̃
(
A1(βeiπ/6z̃, 2) − A1(0, 2)

)− eiπ/6A1(βeiπ/6z̃)
A1(0, 1)

. (4.14e)

As explained above, from this solution, we can obtain the boundary conditions to apply
to the outer solution. The condition of matching implies that the sub-layer solution as
z̃ → ∞ should correspond to the inviscid outer solution as z → 0.

Using the property that z → ∞lim A1(z, 2) = 0 and relations between A1(0, p) and the
Γ function (see Drazin & Reid 1999), we, in particular, obtain the value of the normal
velocity of the outer solution at the wall that should be given by

w(0) = lim
z̃→∞

Re−1/3w̃ = Re−1/3 β−1ū′
B0

31/3Γ (4/3)
e−iπ/6. (4.15)

4.2.2. The outer layer
The inviscid layer lying above the viscous sub-layer, the so-called outer layer, has been
studied by Passaggia et al. (2014): it is in this region that the baroclinic critical layer
appears. In Passaggia et al. (2014), the normal velocity that was forcing the solution in
the outer layer was O(1) and proportional to a prescribed longitudinal velocity. Here, it is
obtained from the condition of matching with the viscous sub-layer. It is therefore weaker
and of order Re−1/3 as prescribed by (4.15).

In the outer layer, velocity, pressure and density perturbations vary with respect to the
spatial variables x̃ and z̄, both non-dimensionalised with δ and exhibit a scaling prescribed
by the matching with the sub-layer

(u, ρ, p) = Re−1/3(û, ρ̂, p̂). (4.16)

Despite the amplitude factor, the analysis of Passaggia et al. (2014) can still be applied.
One just has to consider a Blasius base flow instead of the tanh profile they considered. As
shown in that paper, one obtains after manipulating the system (3.4a,b) a single (Rayleigh)
equation for the normal velocity ŵ

d2ŵ
dz̄2 − ū′′

B
ūB

ŵ − k2 1 − (kūBFr)2

sin 2α − (kūBFr)2 ŵ = 0. (4.17)

The boundary condition at z̄ = 0 is now rigorously prescribed by the condition ŵ(0) =
z̃ → ∞limw̃ which, thanks to (4.15), gives

ŵ(0) = β−1ū′
B0

31/3Γ (4/3)
e−iπ/6. (4.18)

The other condition at infinity is that the perturbation should either vanish or be an
outgoing wave. These conditions at z̄ equal to zero and infinity fully determine the function
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ŵ if one knows how to treat the branch point singularity present at the position z̄c where

(kūB(z̄c)Fr)2 = sin2 α. (4.19)

At this point, the function ŵ is finite but its derivative ŵ′ exhibits a logarithmic singularity.
As explained in Passaggia et al. (2014), this logarithmic function can be defined as in the
classical stability theory (Lin 1955): the branch cut should be fixed in the upper complex
plane (because ū′

Bc > 0). This means that the singularity can be avoided by integrating
(4.17) in the lower complex plane above the singular point.

Once ŵ is obtained, the other components can be deduced from it. For the transverse
velocity v̂ and the density ρ̂, we get

v̂ = − sin α cos α ŵ

sin2 α − (kūBFr)2
, (4.20a)

ρ̂ = ikūB cos α ŵ

sin2 α − (kūBFr)2
. (4.20b)

By contrast with ŵ, which remains finite at rc, the outer expressions (4.20a,4.20b) of v̂

and ρ̂ are singular at rc. The singularity is therefore stronger than at a regular critical point.
It corresponds to a so-called baroclinic critical point (e.g. Wang & Balmforth 2020). It is
associated with a local resonance of the inertial frequency ω − kūB of the perturbation
(where the forcing frequency ω vanishes in our case since the undulations are stationary)
with the local Brunt–Väisälä frequency ±N sin α in the shear plane. As for a regular
critical layer, the regularisation of the solution is possible by considering viscous effects
in a small region of width O(Re−1/3) around the baroclinic critical point. This region
corresponds to the viscous baroclinic critical layer.

4.2.3. The viscous baroclinic critical layer
This part is formally strictly equivalent to the one presented by Passaggia et al. (2014) and
the reader is advised to refer to this article to have more details on the analysis.

To describe the fields in the vicinity of the critical position z̄c, viscous effects need to be
reintroduced to smooth out the singularity. The scaling becomes

u = Re−1/3ǔ(ž), (4.21a)

v = v̌(ž) + Re−1/3v̌s(ž), (4.21b)

w = Re−1/3ŵc + Re−2/3w̌(ž), (4.21c)

p = Re−1/3p̌(ž), (4.21d)

ρ = ρ̌(ž) + Re−1/3ρ̌s(ž), (4.21e)

where ž = (z̄ − z̄c)Re1/3 is the critical layer variable.
By introducing this scaling in the governing equations (3.4a,b), one can show that the

system can be reduced to an inhomogeneous Airy equation for v̌

d2v̌

dž2 − 2ikū′
Bcv̌ž = − iŵc sign(sin α) cos α

Fr
, (4.22)
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where ū′
Bc is the derivative of ūB with respect to η, evaluated at the critical position z̄c. The

other velocity components, the pressure and the density are then given by

ρ̌ = −i
v̌

Fr
, (4.23a)

dp̌
dž

= i cos αρ̌, (4.23b)

ūBcǔ = p̌ + i
w̃cū′

Bc
k

, (4.23c)

dw̌
dž

= −ikǔ. (4.23d)

Note that the log(Re) correction terms that were provided in Passaggia et al. (2014) are
here implicitly included in each expression.

To solve (4.22), it is convenient to introduce the generalised Airy functions Bk(z, 0) (see
Drazin & Reid 1999), that satisfy the inhomogeneous Airy equation(

d2

dz2 − z
)

Bk(z, 0) = 1, (4.24)

and behave as 1/z for large |z| (for particular values of arg(z)) to be able to match with the
solution in the outer region. An adequate choice of the cubic root of 2ikū′

Bc allows us to
use the function B1(z, 0) and write the solution as

v̌ = iŵc sign(sin α) cos α(
2kū′

Bc
)2/3 Fr

B1(−i(2kū′
Bc)

1/3ž, 0). (4.25)

As ž → ±∞, this expression satisfies

v̌ ∼ v̌ceq ≡ − ŵc sign(sin α) cos α(
2kū′

Bc
)

Frž
, (4.26)

and thus matches with (4.20a) as z̄ → z̄c.

4.3. Comparisons between experimental and theoretical results

4.3.1. Qualitative comparison of transverse velocity fields
Sections 4.2.1 to 4.2.3 give the complete solution of the perturbed flow. To compare the
theoretical predictions with the experimental measurements, we use for the transverse
velocity a composite expression obtained from expressions (4.20a) and (4.25) in the outer
region and in the critical layer

v̌p = v̂v̌

v̂ceq
, (4.27)

where v̌ceq is defined in (4.26).
Resulting theoretical fields are presented in figure 7(a) to directly be compared with the

corresponding experimental ones obtained thanks to a spatial Fourier filter applied to PIV
data as introduced in § 4.1.

It is important to emphasise that the theory has no adjustable parameter except the
boundary layer width δ, which is slightly modified to better fit with the base flow profile.
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Figure 7. Theoretical (vp) and Fourier-filtered experimental transverse velocity fields for two wavelengths of
experiment numbers 2, 4 and 6 (from the top to the bottom). For details see table 1. The four other fields are
presented in Christin (2021).

Even in the absence of direct fitting, a good qualitative agreement is observed in figure 7
between the experimentally measured fields and the ones predicted by the theory. Indeed,
the inclined lobes of alternating positive and negative transverse velocity generated slightly
away from the plate surface are captured. Whereas the theoretical critical layer is thinner
than the one effectively observed, both fields show a constant inclination angle Ω (around
10◦) of the lobes, which are located at a position that gets closer to the plate surface when
the towed velocity increases (from experiment 2 to 6). The order of magnitude also seems
to be recovered.

4.3.2. Quantitative results
These qualitative agreements can be quantitatively checked.

In order to do so, filtered and theoretical transverse velocity profiles along the normal
axis z̄ of a typical experiment (number 4 in table 1) are plotted in figure 8. The first two
graphs, shown in (a,b), correspond to the profile at two specific longitudinal positions
(x̃ = λ/4δ and 0, respectively) where the imaginary part and the real part of the transverse
velocity should be obtained according to the theory. The third graph, shown in (c), presents
the norm of v. Note that the theoretical position of the maximum of |v| is slightly smaller
than z̄c. This is due to the moderate value of the Reynolds number and the decreasing
behaviour of the outer solution |v̂|. These plots show some previously noted deviations
between data such as the larger extent of the experimental critical layer compared with
the predicted one, especially visible in (b,c). Also, an amplitude difference of the order of
50 % is also observed in (c): the amplitude of the velocity in the critical layer is larger
than expected. However, the distance from the plate at which the critical layer starts
is remarkably well predicted, as well as its first half-profile (up to z̄ ∼ 1.5), which is
particularly striking in the second plot. This better agreement for a lower z̄ position could
be explained by the larger amount of experimental data over which the Fourier filter is
applied at these heights. Indeed, as it can be seen in figure 4, the visual range is more
and more cropped away from the plate as x̃ increases, so that the complete velocity field
over the whole critical layer is only obtained on the first undulations (especially for lower
towing velocity experiments). Furthermore, it is on these early undulations (especially the
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Figure 8. Filtered (dots) and theoretical (full lines) transverse velocity profiles for experiment number 4 for
two x̃ positions and the norm.

z–c

vmax

λϕmax

Ω

2π

Figure 9. Scheme defining the quantities experimentally measured and theoretically computed for
comparison in figure 10.

first two as can be seen in figure 4) that the critical layer settles: then the filtered profile
resulting from this first part is expected to deviate from the theoretical prediction.

To have a more systematic comparison for each experiment, four characteristic quantities
are defined in figure 9 and plotted in figure 10. The first one is the position of the critical
layer z̄c experimentally defined as the z̄ position of the norm maximum value, itself
corresponding to the second checked quantity. The third one is the angle Ω made by the
velocity lobe with respect to the plate surface, and the last one is the phase ϕmax indicating
the relative position of the lobes compared with the undulations.

Again, theoretical and experimental results show a good agreement, especially
considering the completeness of the theory that does not require any direct fitting between
data.

Panel (a) confirms the lowering position of the critical layer with the increase of kFr (and
then in U∞ as it is the only varying parameter). It goes from +∞ when kFr → sin α (i.e.
U∞ tends to the critical velocity), to 0 when kFr increases. This can be easily understood as
the critical velocity (kept constant in these experiments as k, N and α are fixed) is reached
for smaller z̄ when the boundary layer profile has to match a higher velocity at ‘infinity’.
Experimental values all lie above the theoretical line. This could be explained by the fact
that the Blasius boundary layer is not a perfect model above the undulations which tend to
widen the boundary layer thickness by generating a larger normal velocity than expected
above a plane wall. Still, experimental values are close to the theoretical line and seem to
validate the model.
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Figure 10. Quantitative comparison between quantities extracted from experimental and theoretical results.
For theoretical lines, the mean value Re = 148 (and k = 0.40 for the continuous line) are used. Dotted lines
correspond to the minimum and maximum k experimentally considered.

Concerning the critical layer amplitude (panel b), the theoretical predicted value is
globally smaller than the one observed, but the model seems more and more accurate
with increasing kFr. The stronger deviation for lower towing velocity experiments could
be explained by the same phenomenon as discussed above concerning the cropped visual
range. However, considering the range of potential theoretical values suggested by the
dotted lines, indicating the extreme k values experimentally studied, the model seems to
catch the essence of the critical layer amplitude behaviour.

The lower graphs show the phase ϕmax (c) and the inclination angle Ω of the lobes (d)
which are theoretically expected to be constant for kFr > 1.4, that is in global agreement
with experimental measurements.

5. Conclusion

In this paper, a coupled theoretical and experimental approach has been presented to study
a stratified boundary layer above an inclined sinusoidal wall.

The experimental study of a stratified boundary layer generated by a towing plate has
been found to be particularly challenging. The shape of the leading edge of the plate,
its overall longitudinal inclination and the height/wavelength ratio of the undulations had
to be empirically studied and adjusted to limit boundary layer separation and lee wave
generation. These issues have been solved using a thin rounded leading edge, a longitudinal
angle of the plate of 2◦ and undulations with h = 0.25 cm and λ = 10 cm. Shadowgraphy
was performed to check the qualitative laminar aspect of the boundary layer. The flow was
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then measured by PIV, which is a quantitative visualisation technique set up so that the
longitudinal and transverse velocity fields could be obtained on the whole width of the
boundary layer. The wide range of velocities involved and the specific position of the laser
sheet used to scan the boundary layer have led to a complex data post-processing.

The longitudinal velocity profile has been convincingly fitted with the Blasius profile
predicted by the theory. The base flow obtained by analysis was then perturbed with small
undulations of the plate, and the perturbations searched in the form of monochromatic
Fourier modes. A viscous sub-layer has been added to the perturbation analysis to take
into account the no-slip boundary condition and obtain rigorous boundary conditions for
the inviscid outer problem that was already considered in Passaggia et al. (2014). This
sub-layer analysis was necessary to be able to compare quantitatively the experimental
data with the theory. It leads to a complete theory with no adjustable parameter except the
boundary layer width δ obtained by fitting the Blasius profile on the measured longitudinal
base flow.

Theoretical transverse velocity fields have been compared with raw experimental data
and experimental data filtered at the wavelength of the undulations. A good qualitative
agreement has been demonstrated. Both show localised lobes of alternating positive and
negative transverse velocity, detached from the surface of the plate and with a barely
constant low inclination angle with respect to the plate surface.

The critical layer can be characterised by four parameters which are: its position above
the plate zc, vmax (the maximum transverse velocity in a lobe), the inclination angle of
the lobe Ω and their relative positions compared with the plate undulation defined by the
phase ϕmax. Experimental and theoretical values of these quantities have been compared
and, again, a convincing agreement has been shown.

It is worth emphasising that the viscous sub-layer introduces a reducing factor of order
Re−1/3 in the amplitude of the transverse velocity in the critical layer compared with that
found by Passaggia et al. (2014). This significantly reduces the expected amplitude of
the phenomenon: the transverse velocity is now of order h whereas it was predicted as
O(h Re1/3) in the previous paper. This explains why only weak transverse velocities have
been observed. The generated shear rate is larger than the velocity since it is here of order
h Re1/3. However, it must remain smaller than O(1) for the linear analysis done in this
paper to be valid. For larger amplitudes h, it is necessary to do a nonlinear analysis of the
viscous sub-layer. Intuitively, we may expect a forcing of the normal velocity outside of
the sub-layer independent of the Reynolds number. This would lead to an amplitude of the
velocity inside the critical layer proportional to Re1/3, as for a slip boundary condition.
This would justify the use of slip boundary conditions, which are commonly used for the
study of lee waves (Bühler 2014; Legg 2021). However, they will also generate harmonics
and modify the mean velocity profile. The problem is thus far more complex and we leave
this for future work. Furthermore, it will be necessary to look at the critical layer in a
turbulent boundary layer in order to describe real geophysical flows for which the Reynolds
numbers can be of order 108.
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Appendix A. Inclined boundary layer flow in a stratified fluid

In § 3.1, we have given the equations that govern the stationary boundary layer flow on an
inclined surface in a stratified fluid. We have provided the general scalings, obtained when
Re � 1, Re/Fr = O(1) and α = O(1), for which the Blasius solution is recovered for the
longitudinal and normal velocities. We have further shown that, when Re/Fr is large, the
system of equations can be fully solved in terms of the self-similar function involved in
the Blasius equation. This limit, called limit 1, corresponds to the experiments we have
analysed. There exists another limit, called limit 2, obtained for small angles, or large
Froude numbers, that can also be completely solved and that we want to present now.

For this purpose, it is useful to introduce the new parameter Rα defined by

Rα = Re sin α

Fr
. (A1)

The square of this parameter measures the ratio of the magnitudes of the v term with
respect of the ρ terms in (3.6e). The limit 1 was obtained when the balance in that equation
was between w and v terms, which means Rα � 1. This limit is obtained for small α if the
condition Re sin α � 1 is also satisfied.

The other limit of interest is obtained when Rα 
 1 and Fr � 1. In this limit, the
balance in (3.6e) is between the w and ρ terms. The adequate scalings in this limit are
then

uB = u∗
B, (A2a)

vB = Re sin α cos α

Fr2 v∗
B, (A2b)

wB = Re−1 w∗
B, (A2c)

pB = Re−2p̄∗
B1 + cos2 α

Fr2 p∗
B2, (A2d)

ρB = cos α

Fr2 ρ∗
B, (A2e)

which give the parameterless system

∂u∗
B

∂ x̄
+ ∂w∗

B
∂ z̄

= 0, (A3a)

u∗
B
∂u∗

B
∂ x̄

+ w∗
B
∂u∗

B
∂ z̄

= ∂2u∗
B

∂ z̄2 , (A3b)

u∗
B
∂v∗

B
∂ x̄

+ w∗
B
∂v∗

B
∂ z̄

= −ρ∗
B + ∂2v∗

B
∂ z̄2 (A3c)

u∗
B
∂w∗

B
∂ x̄

+ w∗
B
∂w∗

B
∂ z̄

= −∂p∗
B1

∂ z̄
+ ∂2w∗

B
∂ z̄2 , (A3d)

0 = ∂p∗
B2

∂ z̄
+ ρ∗

B, (A3e)

u∗
B
∂ρ∗

B
∂ x̄

+ w∗
B
∂ρ∗

B
∂ z̄

= w∗
B. (A3f )

As for limit 1, (A3a) and (A3b) constitute the Blasius equations for u∗
B and w∗

B which are
then known quantities. Self-similar forms can also be obtained for the other quantities; p∗

B1
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Figure 11. Summary scheme of the base flow regimes.

and ρ∗
B can be deduced from the Blasius profile using (A3d) and (A3 f ), respectively. Then,

v∗
B and p∗

B2 are obtained from (A3c) and (A3e). The different quantities can be analytically
expressed as functions of the Blasius solution F and its derivatives

u∗
B = F′, (A4a)

w∗
B = ηF′ − F

2
√

x̄
, (A4b)

v∗
B = x̄3/2v, with v satisfying v′′ + F

2
v′ − 3F′

2
v = (η − F), (A4c)

ρ∗
B =

√
x̄(η − F), (A4d)

p∗
B1 = 1

x̄

(
2F′ − F2

2
+
∫ η

sF′2(s) ds
)

, (A4e)

p∗
B2 = −x̄

(
η2

2
−
∫ η

F(s) ds
)

. (A4f )

Both regions where limits 1 and 2 are obtained have been indicated in figure 11 for
values of α of order 1 (a), small (b) and null (c). Note that when α = 0, only limit 2 is
obtained when Fr � 1. In that case, v naturally vanishes, but a pressure correction ( p∗

B2)
associated with the density correction is still present.
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