
The Aeronautical Journal (2023), 127, pp. 289–304
doi:10.1017/aer.2022.61

REGULAR PAPER

Neural network-based velocity-controllable UAV flocking
T. He and L. Wang∗

Research Institute of Electronic Science and Technology, University of Electronic Science and Technology of China, Chengdu
China
∗Corresponding author. Email: wang_lei@uestc.edu.cn

Received: 26 February 2022; Revised: 27 April 2022; Accepted: 29 April 2022

Keywords: Unmanned aerial vehicle (UAV); Flocking; Multi-objective particle swarm optimisation (MOPSO); Neural network
(NN); Obstacle avoidance

Abstract
The unmanned aerial vehicle (UAV) flocking among obstacles was transferred to a velocity-controllable UAV flock-
ing problem, which means that multi-UAV gradually form and maintain the α-lattice geometry as they track the
desired flocking velocity, and can be applied to tasks such as obstacle avoidance and velocity tracking. Velocity-
controllable UAV flocking problem is a multi-objective flocking controller parameters optimisation problem, for
which we design flocking velocity and geometry objective function, and solve them using a multi-objective particle
swarm optimisation algorithm (MOPSO). On this basis, to address the problem that MOPSO has random results
and long computation time, we propose to use a neural network (NN) to approximate the mathematical relationship
between the UAV flocking state and the flocking controller parameters. We simulate the flight process of 5 and 49
UAVs performing obstacle avoidance and velocity tracking tasks, respectively. The results show that the proposed
UAV flocking controller has better convergence performance, obtains reproducible results, reduces computation
time, and can be used for large-scale UAV flocking control.

Nomenclature
N number of UAVs
Pi position vector of UAV i (m)
Pi

x x component of position vector of UAV i (m)
Pi

y y component of position vector of UAV i (m)
Pcore position vector of flocking core (m)
Pcore

x x component of position vector of flocking core (m)
Pcore

y y component of position vector of flocking core (m)
Vi velocity vector of UAV i (m/s)
Vi

x x component of velocity vector of UAV i (m/s)
Vi

y y component of velocity vector of UAV i (m/s)
Vi

xy horizontal airspeed of UAV i (m/s)
Vmin

xy lower limits of horizontal airspeed (m/s)
Vmax

xy upper limits of horizontal airspeed (m/s)
Vl

xy allowable control error of horizontal airspeed (m/s)
Ve desired velocity vector (m/s)
Ve

xy desired horizontal airspeed (m/s)
efvi desired flocking velocity vector of UAV i (m/s)
efvi

x x component of desired flocking velocity vector of UAV i (m/s)
efvi

y y component of desired flocking velocity vector of UAV i (m/s)
φ i yaw angle of UAV i (rad)
φ l allowable control error of yaw angle (rad)
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φe desired yaw angle (rad)
δi desired flocking yaw angle of UAV i (rad)
δcore desired flocking yaw angle of flocking core (rad)
Cδ parameter that controls the geometry of flocking
nmax maximum lateral overload (g)
g gravitational acceleration (m/s2)
ui control input vector of UAV i
ui

x x component of control input vector of UAV i
ui

y y component of control input vector of UAV i
ui

f flocking geometry control component of UAV i
ui

av horizontal airspeed alignment control component of UAV i
ui

c collision avoidance control component of UAV i
ui

vf flocking velocity control component of UAV i
Cf strength coefficient of the flocking geometry control component
Cav strength coefficient of the horizontal airspeed alignment control component
Cc strength coefficient of the collision avoidance control component
Cvf strength coefficient of the flocking velocity control component
Wi

j influence weight of UAV j to UAV i for flocking geometry control
Wi

i influence weight of UAV i to UAV i for flocking velocity control
Ŵi optimal influence weight vector of UAV i
dij horizontal distance between UAV i and j (m)
Dc maximum horizontal communication distance (m)
Dl1 minimum distance between UAVs to avoid collision (m)
Dl2 minimum distance allowed between the UAV and obstacle (m)
Dd desired horizontal distance between UAVs(m)
Qj position vector of obstacle j (m)
Qj

x x component of position vector of obstacle j (m)
Qj

y y component of position vector of obstacle j (m)
Rj

o radius of the obstacle j (m)
So the set of obstacles within maximum perceived distance ahead of the UAV flocking in the

desired velocity direction
Rformation radius of the UAV flocking in the desired flocking yaw angle direction (m)
obji

1 flocking velocity objective function of UAV i
obji

2 flocking geometry objective function of UAV i
inputi input vector i of NN
labeli label vector i of NN

1.0 Introduction
Flocking is a collective behaviour that describes the phenomenon of all individuals being close to each
other and moving at a common velocity. This phenomenon is universal in nature, such as jackdaw flocks
[1], locust groups [2], fish school [3], honeybee colonies [4], etc. Animals in flock are more likely
to avoid predators, which also makes them more conducive to getting more food. Flocking also bring
many benefits to artificial agents (e.g. unmanned vehicles, autonomous ships and robots), especially
UAVs. A UAV with single payload and limited ability to perform tasks cannot meet the demand. UAV
flocking, on the other hand, can enhance system performance and efficiently accomplish more complex
and larger missions by cooperating with each other and complementing each other’s strengths. Hence,
UAV flocking are widely used in both military and civilian fields [5, 6, 7, 8, 9, 10], while attracting the
interest of a growing number of researchers.

Obstacle avoidance is a key problem that needs to be solved for safe UAV flocking flight, and numer-
ous studies have been conducted to address this problem and various solutions have been proposed. In
Ref. [11], an improved artificial potential field method is recommended, which uses k-means algorithm
to divide space potential field into the inter-UAV potential field and the global potential field according
to the action range of potential field internal force, thus optimising the calculation of attractive field
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between UAVs. It also introduces the attraction disturbance component of the target point and proposes
a backtracking-filling method to solve the local minimum problem in the artificial potential fields. Dai
et al. [12], use the geometric obstacle avoidance control method (GOACM) to plan a safe path, and the
adaptive tracking control algorithm guarantees that the trajectory and velocity tracking errors converge
to zero. Olfati-Saber [13] presents a flocking algorithm with obstacle avoidance capability by creating a
virtual agent on the boundary of each nearby obstacle. In the work most closely related to this research,
Qiu and Duan [14] modeled obstacle and collision avoidance as hard constraint, hoping to realise that
the UAV moves more distance in the desired velocity direction in the process of changing direction for
obstacle avoidance, but the hard constraints did not work in the whole flight process, and the veloc-
ity control performance is poor. Therefore, we transform the UAV flocking problem among obstacles
into a velocity controllable UAV flocking problem, which means that multi-UAV gradually form and
maintain the α-lattice [13] geometry as they track the desired flocking velocity (e.g. optimal velocity for
obstacle avoidance in complex environments). It is a multi-objective optimisation problem, for which
we design flocking velocity and geometry objective function, and solve them using a multi-objective
particle swarm optimisation algorithm.

The study of flocking originated with the pioneering work of Reynolds [15] in 1987, who introduced
three heuristic rules: aggregation, alignment and separation to realise the computer simulation of col-
lective behaviour. Then, different flocking models [16, 17] and optimisation algorithms [18] have been
developed successively. The literature on the design of UAV flocking controller can be divided into
three categories: One is to manually complete the design of flocking controller according to the rules,
and then optimise the relevant parameters of flocking controller to improve the security of the system
and the performance of the algorithm [13, 14, 19, 20]. The second is to directly solve the flocking con-
troller by using the optimal control theory [21, 22], which requires the minimum energy consumption
with specific safety and task constraints. Third, a learning-from-data approach is used to design the
controller autonomously, avoiding the high a prior knowledge requirements of manual design and also
addresses, to some extent, control errors caused by incomplete problem models. In the literature [23,
24, 25, 26], a neural network term is added to the flocking controller to actively compensate for approx-
imation errors in the non-linear dynamics model as well as uncertainties and external disturbances.
The literature [27, 28, 29, 30], uses a neural network as a controller to achieve an end-to-end map-
ping of flocking states to control outputs. In this paper, the design approach for the flocking controller
is a combination of the first and third approaches. As we all know, in order to optimise the perfor-
mance of the hand-designed UAV flocking controller, it is usually necessary to optimise its parameters
using intelligent optimisation algorithm. However, there is a randomness in the results calculated by
the intelligent optimisation algorithm and the computational complexity is high. If the mathematical
relationship between the UAV flocking state and the controller parameters can be found, then the perfor-
mance of the controller will be improved. Therefore, in this paper, we use the powerful approximation
capabilities of NN [31] and take the UAV flocking state as the input of training NN and the optimal
flocking controller parameters calculated by MOPSO as the label of training NN. The trained NN suc-
cessfully approximates the mathematical relationship between the UAV flocking state and the controller
parameters.

The rest of the paper is organised as follows: UAV model, flocking model, obstacle avoidance and
velocity tracking model are established in Section 2. Problem formulation is introduced in Section 3.
Section 4 describes the UAV flocking control based on optimisation. Section 5 shows the simulation
results in detail. Finally, the conclusion is presented in Section 6.

2.0 Model
2.1 UAV model
In this paper, N UAVs in a two-dimensional space are taken into consideration. The dynamic model of
each UAV is described as follows [14]:
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ṗi
x = Vi

xy cos φi,

Ṗi
y = Vi

xy sin φi,

V̇ i
xy = ui

x cos φi + ui
y sin φi,

φ̇i = ui
y cos φi − ui

x sin φi,

(1)

where, for UAV i, Pi = (Pi
x, Pi

y) is the position vector, Vi = (Vi
x, Vi

y) is the velocity vector, Vi
xy is the

horizontal airspeed, φi represents yaw angle, and ui = (ui
x, ui

y) is the control input vector. In addition,
the following constraints must be met:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Vmin
xy ≤ Vi

xy ≤ Vmax
xy ,∣∣φ̇i

∣∣ ≤ nmaxg
Vi

xy
,

Vi
xy = Ve

xy, if
∣∣Vi

xy − Ve
xy

∣∣ < Vl
xy,

φi = φe, if
∣∣φi − φe

∣∣ < φl,

(2)

where, nmax = 10g is the maximum lateral overload, g = 10m/s2 is the gravitational acceleration,
Vmin

xy = 5m/s, Vmax
xy = 15m/s are the lower and upper limits of horizontal airspeed, respectively, Vl

xy =
0.25m/s, φl = 0.1rad are allowable control error of horizontal airspeed, yaw angle, respectively, and
φe = a tan

(
Ve

y

Ve
x

)
, Ve = (Ve

x , Ve
y ) = (10, 0)m/s, Ve

xy are the desired yaw angle, desired velocity vector,
desired horizontal airspeed, respectively.

2.2 Flocking model
To achieve velocity controllable UAV flocking, the following movement rules need to be guaranteed: (1)
Each UAV stay close to its neighbours; (2) All UAVs fly at a common velocity; (3) UAVs avoid conflict
with each other; (4) The flocking velocity of UAVs is controllable.

Therefore, control input of UAV i consists of four components: ui
f is flocking geometry control compo-

nent, which regulates the distance between UAV i and its neighbour. ui
av is horizontal airspeed alignment

control component, which regulates the velocity of UAV i to be consistent with its neighbour. ui
c is col-

lision avoidance control component, which regulates the safe distance among UAVs. ui
vf is flocking

velocity control component, which regulates the velocity of UAV i to be consistent with the desired
flocking velocity. Details are as follows [14]:

ui
k = ui

f + ui
av + ui

c + ui
vf − Vi

k, k = x, y, (3)

where, k = x, y denotes the corresponding components in the x, y directions.
The flocking geometry control component ui

f is as the following equation:

ui
f = Cf

∑
j∈{dij≤Dc}

Wi
j (P

j
k − Pi

k)ln

(
dij

Dd

)
(4)

where, Cf = 0.1 denotes strength coefficient of the flocking geometry control component, Wi
j

denotes influence weight of UAV j to UAV i for flocking geometry control within [0,1], dij =√
(Pi

x − Pj
x)2 + (Pi

y − Pj
y)2 denotes the horizontal distance between UAV i and j, Dc = 20m denotes

the maximum horizontal communication distance, Dd = 10m denotes the desired horizontal distance
between UAVs.

The horizontal airspeed alignment control component ui
av is as the following equation:

ui
av = Cav

∑
j∈{dij≤Dc}

Wi
j (V

j
k − Vi

k) (5)

where, Cav = 0.1 denote strength coefficient of the horizontal airspeed alignment control component.
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The collision avoidance control component ui
c is as the following equation:

ui
c = Cc

∑
j∈{dij≤Dl1}

(
1

dij
− 1

Dl1

)2 Pi
k − Pj

k

dij
(6)

where, Cc = 105 denote strength coefficient of the collision avoidance control component, Dl1 = 2m
denotes the minimum distance between UAVs to avoid collision.

The flocking velocity control component ui
vf is as the following equation:

ui
vf = Cvf W

i
i efvi

k (7)

where, Cvf = 1 denotes strength coefficient of the flocking velocity control component, Wi
i denotes

influence weight of UAV i to UAV i for flocking velocity control within [1, 1.1], efvi = (efvi
x, efvi

y) =
(Ve

xy cos δi, Ve
xy sin δi) denotes the desired flocking velocity vector of UAV i, and δi denotes the desired

flocking yaw angle of UAV i.

2.3 Obstacle avoidance and velocity tracking model
Because the magnitude of the desired velocity remains constant throughout the flight, obstacle avoidance
and velocity tracking can be achieved by setting an appropriate desired flocking yaw angle δi which is
calculated as follows:

δi = a tan

(
Pcore

y + Cδ sin (δcore) − Pi
y

Pcore
x + Cδ cos (δcore) − Pi

x

)
(8)

Pcore
k = 1

N

N∑
i=1

Pi
k, k = x, y, (9)

where Pcore = (Pcore
x , Pcore

y ) is position vector of flocking core calculated by Equation (9), Cδ is the param-
eter that controls the geometry of flocking, δcore is the desired flocking yaw angle of flocking core, which
is directly set as the reference desired flocking yaw angle in the velocity tracking process, but its equation
is as follows in the obstacle avoidance process:

δcore =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a tan

(
PA

y − Pcore
y

PA
x − Pcore

x

)
, if So �= ∅,

a tan

(
Ve

y

Ve
x

)
, else,

(10)

where So is the set of obstacles within maximum perceived distance ahead of the UAV flocking in the
desired velocity direction, as shown in Fig. 1. A is the point closest to the flocking core among the
two edge points projected in the vertical direction of Ve by the envelope of the obstacle closest to
the flocking core in So, Dl2 = 10m is the minimum distance allowed between the UAV and obstacle,
Rformation is radius of the UAV flocking in the desired flocking yaw angle direction. Note that although the
UAV flocking bypass the current obstacle, it cannot bypass the next obstacle until it passes through the
current obstacle. The maximum perceived distance of UAV is 105.

3.0 Problem formulation
According to the above model, the influence weight vector Wi = (Wi

1, Wi
2, . . . , Wi

N) directly determines
the next state of the UAV i. Therefore, the UAV flocking control problem is transformed into solving the
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Figure 1. Obstacle avoidance model.

optimal influence weight vector Ŵi of UAV i which satisfies the following objective functions:⎧⎨
⎩min obji = [obji

1, obji
2],

s.t. Equations (1)–(8),
(11)

Flocking velocity objective function obji
1 indicates how far the actual velocity deviates from the

desired flocking velocity. The equation is as follows:

obji
1 =

⎧⎪⎨
⎪⎩

− (Vi
x, Vi

y).(efvi
x, efvi

y)

2 ‖efvi‖ , if efvi �= Ve or So �= ∅,∑
k=x,y

∣∣efvi
k − Vi

k

∣∣ , else,
(12)

Where, efvi �= Ve indicates the velocity tracking process, and So �= ∅ represents obstacle avoidance pro-
cess. In the process, the velocity of UAV i is not required to be exactly the same as the desired flocking
velocity, but is allowed to change slightly to adapt to the process as soon as possible.

Flocking geometry objective function obji
2 describes the degree of UAV flocking and the alignment

performance with neighbours velocities. The equation is as follows:

obji
2 =

∑
j∈{dij≤Dc}

[∣∣Dd − dij
∣∣ +

∑
k=x,y

∣∣Vi
k − Vj

k

∣∣] (13)

4.0 UAV Flocking control based on optimisation
4.1 UAV flocking obstacle avoidance and velocity tracking based on MOPSO
UAV flocking obstacle avoidance and velocity tracking based on MOPSO is a special case of UAV
flocking control framework (see Algorithm 1). It uses MOPSO [32] to calculate the optimal influence
weight vector Ŵi, The specific steps of the MOPSO are as follows:

Input: Objective function obji
1 and obji

2, maximum generation MG, number of particles NP, and the
upper and lower bounds of Lh

g and Sh
g are the same as those of influence weight vector. Where, Lh

g and Sh
g

are position vector and velocity vector of the generation g of particle h respectively, h = 1, 2, . . . , NP,
g = 1, 2, . . . , MG, Lh

g is a feasible influence weight vector.
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Algorithm 1 UAV flocking control framework
1. Initialise t = 0, number of UAVs N , state of UAV i (Pi, Vi = Ve, φi = 0), state of obstacles,

maximum simulation time Tmax, sampling time ts;
2. while t < Tmax do
3. for: i = 1 to N do
4. Calculate δi by Equation (8);
5. Calculate the optimal influence weight vector Ŵi;
6. Calculate control input vector ui by Equations (3)–(7);
7. Calculate the next state by Equations (1)–(2);
8. i = i + 1
9. end for
10. t = t + ts
11. end while
12. Output all UAV states

Initialisation: Initialise the Lh
g and Sh

g of NP particles within their upper and lower bounds respectively,
current iteration g = 1.

Step 1: Calculate the objective function obji
1 and obji

2 of all the particles by Equations (1)–(8) and
(12)–(13).

Step 2: Rank the particles positions in the set Lg by Pareto sorting scheme, store the positions of
particles in the Pareto frontier in the repository REP.

Step 3: pbesth = Lh
1.

Step 4: gbest is selected randomly from REP.
Step 5: Update the velocity of each particle by the following equation.

Sh
g+1 = aSh

g + rT
1 (pbesth − Lh

g) + rT
2 (gbest − Lh

g) (14)

Where, a = 0.4 is the inertia weight, r1 and r2 are random number vectors uniformly distributed in the
interval [0,1].

Step 6: Update the position of each particle by the following equation.

Lh
g+1 = Lh

g + Vh
g+1 (15)

Step 7: Initialises the state of the particle if its position exceeds the upper and lower bounds.
Step 8: Calculate the objective function obji

1 and obji
2 of all the particles by Equations (1)–(8) and

(12)–(13).
Step 9: If Lh

g+1 is better than pbesth, then pbesth = Lh
g+1.

Step 10: Rank the particles positions in the set Lg+1 and REP by Pareto sorting scheme, store the
positions of particles in the Pareto frontier in the repository REP.

Step 11: The current iteration g = g + 1. If g ≤ MG, then return to Step 4. Otherwise, output the
optimal influence weight vector which is the position of particle in the REP whose objective function
obji

2 has the smallest value.

4.2 UAV flocking obstacle avoidance and velocity tracking based on NN
UAV flocking obstacle avoidance and velocity tracking based on NN is a special case of UAV flocking
control framework(see Algorithm 1). It uses NN to calculate the optimal influence weight vector Ŵi,
and the NN is generated as follows.

Generate training samples: The UAV flocking velocity tracking algorithm based on MOPSO is
repeated Nrepeat = 100 times to obtain the training sample set {inputi, labeli}Nrepeat× Tmax

ts
i=1 . Where, inputi

is the input vector i and expressed by Equation (17), labeli is the label vector i and expressed by
Equation (18), Pi

x, Pi
y are random numbers within [0,30], [75,150] respectively, but horizontal distance
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Figure 2. Neural network structure.

between any two UAVs should be less than maximum horizontal communication distance of Dc,
number of UAVs N = 5, maximum simulation time Tmax = 50s, sampling time ts=0.5s, Cδ = ∞, δcore is
expressed by Equation (16).

δcore =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

π

3
sin

(
2π t

0.8Tmax

)
, if t ≤ 0.8Tmax,

a tan

(
Ve

y

Ve
x

)
, if t > 0.8Tmax,

(16)

inputi =
(

P1
x , P1

y , V1
x , V1

y , efv1
x , efv1

y︸ ︷︷ ︸
State of UAV 1

,

P2
x , P2

y , V2
x , V2

y , efv2
x , efv2

y︸ ︷︷ ︸
State of UAV 2

,

. . . ,

PN
x , PN

y , VN
x , VN

y , efvN
x , efvN

y︸ ︷︷ ︸
State of UAV N

)
(17)

labeli =
(

Ŵ1
1 , Ŵ1

2 , . . . , Ŵ1
N︸ ︷︷ ︸

Optimal influence weight of UAV 1

,

Ŵ2
1 , Ŵ2

2 , . . . , Ŵ2
N︸ ︷︷ ︸

Optimal influence weight of UAV 2

,

. . . ,

ŴN
1 , ŴN

2 , . . . , ŴN
N︸ ︷︷ ︸

Optimal influence weight of UAV N

)
(18)

Neural network structure: NN has four hidden layers, each layer has 6×N neurons, and the
dimensions of the input and output layers are 6 × N and N × N, respectively. Its structure is shown in
Fig. 2. Where, the activation function of hidden layer, output layer are shown in Equations (19), (20),
respectively.

Tansig(o) = 2

1 + exp( − 2o)
− 1 (19)

Purelin(o) = o (20)
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Training neural network: Each dimension of the input data is normalised to [ − 1, 1] before training,
the loss function is the mean square error function is expressed by Equation (21), the training function
is trainscg (scaled conjugate gradient backpropagation), epochs=1,000, and The ratio between training
set, validation set and test set is 7:1.5:1.5.

mse = 1

Nd

Nd∑
k=1

(labelk − outputk)
2 (21)

4.3 Analysis of generalisation capability of UAV flocking control based on NN
We discuss the generalisation capability of UAV flocking control based on NN from the following two
aspects:

Position of UAVs: Deviation occurs in the calculation result when UAV position exceeds min-max
normalisation range of the NN input vector. This problem can be solved by moving all UAVs in the
flocking to min-max normalisation range without changing their relative positions.

Number of UAVs: The input vector of NN only supports the state of k UAVs, and can not be directly
applied to larger scale UAV flocking control. This problem can be solved by distributed computing, that
is, each UAV only calculates its next state according to the nearest k-1 UAV and its own state.

5.0 Simulation results
In this section, taking obstacle avoidance and velocity tracking as application scenarios, two numerical
simulation examples are designed to verify the effectiveness of our proposed algorithm. The first simu-
lation shows UAV flocking obstacle avoidance and velocity tracking, and the second simulation shows
generalisation capability of UAV flocking control based on NN. All simulations were conducted on lap-
tops running Windows 10 and MATLAB R2020a with Intel(R) Core(TM) i5-10210U CPU and 16GB
memory.

5.1 Simulation of UAV flocking obstacle avoidance and velocity tracking
In the simulation, five UAVs form a flocking, they first spend 50s crossing obstacles, then track the veloc-
ity for 50s. Initial parameters of UAVs and obstacles are shown in Table 1, and other initial parameters
are as follows: maximum generation MG = 58, number of particles NP = 20, maximum simulation time
Tmax = 100s, sampling time ts=0.5s, Cδ = ∞, and calculate δcore by Equation (22).

δcore =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−π

3
sin

(
2π (t − 50)

30

)
, if t > 50 and t ≤ 80,

a tan

(
Ve

y

Ve
x

)
, if t > 80,

(22)

Figure 3 depicts the simulation results of five UAVs flocking obstacle avoidance and velocity tracking
based on NN where, RDij denotes the relative distance between UAV i and UAV j, Dl1 is the minimum
distance to avoid collision between UAVs. As shown in Fig. 3(a), five UAVs successfully completed
obstacle avoidance and velocity tracking tasks and flew out of a smooth trajectory curve. As shown in
Fig. 3(b), the difference of horizontal airspeed among UAVs was less than 1.5480m/s, and the horizontal
airspeed of the UAV flocking quickly converges to the desired horizontal airspeed after fluctuating within
the allowable range. As shown in Fig. 3(c), the UAV flocking has a good velocity tracking effect, and a
slight yaw angle difference. As shown in Fig. 3(d), relative distance between UAVs is converges rapidly
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Table 1. Initial parameters of the UAVs and obstacles

i Pi
x(m) Pi

y(m) Vi(m/s)

UAV 1 22.0222 107.9526 (10, 0)
2 25.5856 114.5043 (10, 0)
3 24.6951 116.9755 (10, 0)
4 10.5040 113.8653 (10, 0)
5 8.4631 120.6620 (10, 0)

j Qj
x(m) Qj

y(m) Rj
o(m)

Obstacle 1 100 40 5
2 230 40 5
3 165 75 5
4 295 75 5
5 100 110 5
6 230 110 5
7 165 145 5
8 295 145 5
9 100 180 5

10 230 180 5
11 165 215 5
12 295 215 5

and fluctuates less and always greater than the minimum distance to avoid collision between UAVs. As
shown in Fig. 3(e) and (f), the geometry and velocity of the UAV flocking converge rapidly and stably.

To illustrate the superiority of the UAV flocking obstacle avoidance and velocity tracking based
on NN, we compare it with the UAV flocking obstacle avoidance and velocity tracking based on the
MOPSO. The statistical results of the two algorithms are shown in Table 2. From the data in the table,
the NN-based algorithm achieves faster convergence of horizontal airspeed and yaw angle, especially the
simulation time has been greatly reduced. The simulation results of the UAV flocking obstacle avoidance
and velocity tracking based on the MOPSO is shown in Fig. 4. From the comparison between Figs 3
and 4, it can be seen more intuitively that the experimental results based on NN have smaller fluctuation,
faster convergence, and better obstacle avoidance and velocity tracking effects.

5.2 Simulation of generalisation capability of UAV flocking control based on NN
In the simulation, we adopt the neural network for 5 UAVs in the previous experiment to verify its
generalization capability in a flocking of 49 UAVs, which first track the velocity for 60s, then spend 60s
crossing obstacles, and finally track the velocity for 60s. The initial velocity of the UAV and radius of
obstacle is the same as that shown in Table 1, and the positions of UAVs and obstacles have been moved
away from where they were during training NN (due to the large amount of data, no specific data is
given here). Other initial parameters are as follows: maximum simulation time Tmax = 180s, sampling
time ts=0.5s, calculate Cδ by Equation (23), calculate δcore

1 for the first velocity tracking by Equation
(24), calculate δcore

2 for the second velocity tracking by Equation (25).

Cδ =
⎧⎨
⎩80, if So �= ∅,

∞, else,
(23)
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Figure 3. Simulation results of 5 UAV flocking obstacle avoidance and velocity tracking based on NN:
(a) trajectory curves, (b) horizontal airspeed curves, (c) yaw angle curves, (d) relative distance curves,
(e)

∑
obji

1 curves, and (f)
∑

obji
2 curves.

δcore
1 =

⎧⎪⎪⎨
⎪⎪⎩

π

3
sin

(
2π t

40

)
, if t ≤ 40,

a tan

(
Ve

y

Ve
x

)
, if t > 40 and t < 50,

(24)

δcore
2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−π

3
sin

(
2π (t − 120)

40

)
, if t > 120 and t ≤ 160,

a tan

(
Ve

y

Ve
x

)
, if t > 160,

(25)
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Table 2. Statistical results of two algorithms for 5 UAVs

Algorithm CTOHAa(s) CTOYAb(s) TSTc(s)
MOPSO 86.0 66.0 785.4
NN 69.5 7.0 3.8

a Convergence time of horizontal airspeed.
b Convergence time of yaw angle.
c Total simulation time.
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Figure 4. Simulation results of 5 UAV flocking obstacle avoidance and velocity tracking based on
MOPSO: (a) trajectory curves, (b) horizontal airspeed curves, (c) yaw angle curves, (d) relative distance
curves, (e)
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1 curves, and (f)
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Figure 5. Simulation results of 49 UAV flocking obstacle avoidance and velocity tracking based on NN:
(a) trajectory curves, (b) horizontal airspeed curves, (c) yaw angle curves, (d) relative distance curves,
(e)

∑
obji

1 curves, and (f)
∑

obji
2 curves.

Figure 5 depicts the simulation results of 49 UAV flocking obstacle avoidance and velocity tracking
based on NN. where, RDmin is the minimum relative distance between UAVs. As shown in Fig. 5(a),
the UAV flocking can safely pass through the obstacle area through geometric transformation, and the
UAV position exceeds min-max normalisation range of the NN input vector, but it has no adverse impact
on flight. As shown in Fig. 5(b), the horizontal airspeed of the UAV flocking quickly converges to the
desired horizontal airspeed after fluctuating within the allowable range. As shown in Fig. 5(c), the UAV
flocking has a good velocity tracking effect, and the yaw angle quickly converges to the desired yaw
angle after fluctuations. As shown in Fig. 5(d), during the whole flight, the minimum relative distance
between UAVs is always greater than the minimum distance to avoid collision between UAVs. As shown
in Fig. 5(e) and (f), the geometry and velocity of the UAV flocking converge rapidly and stably. To sum
up, UAV flocking controller based on NN has good generalisation capability and can control the flocking
geometry to a certain extent.
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Table 3. Statistical results of two algorithms for 49 UAVs

Algorithm CTOHAa(s) CTOYAb(s) TSTc(s)
MOPSO 162.5 161.0 25, 847.2
NN 147.5 161.0 317.99

a Convergence time of horizontal airspeed.
b Convergence time of yaw angle.
c Total simulation time.
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Figure 6. Simulation results of 49 UAV flocking obstacle avoidance and velocity tracking based on
MOPSO: (a) trajectory curves, (b) horizontal airspeed curves, (c) yaw angle curves, (d) relative distance
curves, (e)
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1 curves, and (f)
∑

obji
2 curves.

To illustrate the superiority of the UAV flocking obstacle avoidance and velocity tracking based
on NN, we compare it with the UAV flocking obstacle avoidance and velocity tracking based on the
MOPSO. The statistical results of the two algorithms are shown in Table 3. From the data in the table,
the NN-based algorithm achieves faster convergence of horizontal airspeed, especially the simulation
time has been greatly reduced. The simulation results of the 49 UAV flocking obstacle avoidance and
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velocity tracking based on the MOPSO is shown in Fig. 6. From the comparison between Figs 5(a) and
6(a), it can be seen that in the NN-based experimental results the UAV is further away from the obstacle
and safer. The comparison of Figs 5(b) and 6(b) shows that the horizontal airspeed deviates from the
desired value in a shorter time, smaller amplitude, more regular, and achieves convergence earlier in the
NN-based experimental results. Contrast Fig. 5(c) with Fig. 6(c) indicates that the NN-based method
has a fast response to changes in yaw angle. In conclusion, the experimental results based on NN have
smaller fluctuation, faster convergence, and better obstacle avoidance and velocity tracking effects.

6.0 Conclusions
In this paper, we propose a method to design UAV flocking controller based on NN. The designed
controller has the following advantages: (i) It has good generalisation capability and can be directly used
in UAV flocking control with larger scale and wider flight range. (ii) The UAV flocking convergence and
velocity controllability can be achieved simultaneously in the environment with and without obstacles.
(iii) The trained NN successfully approximates the mathematical relationship between the UAV flocking
state and the flocking controller parameters. It not only improves the quality of solution and obtains
repeatable results, but also reduces computation time.

Nevertheless, there are still some drawbacks in this paper: (i) The structure of NN is determined by
simple algorithm without optimisation. (ii) The quality of training samples is not carefully evaluated. In
the future, we will continue to deepen the research on UAV flocking technology, and ultimately verify
the feasibility of the algorithm in the actual flight environment.
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