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This paper introduces a new class of time-varying vector moving average processes
of infinite order. These processes serve dual purposes: (1) they can be used to model
time-varying dependence structures, and (2) they can be used to establish asymptotic
theories for multivariate time series models. To illustrate these two points, we first
establish some fundamental asymptotic properties and use them to infer the trending
term of a vector moving average infinity process. We then investigate a class of
time-varying VARX models. Finally, we demonstrate the empirical relevance of the
theoretical results using extensive simulated and real data studies.

1. INTRODUCTION

In the literature of time series analysis, moving average processes of infinite order
(MA(∞)) are possibly one of the most fundamental data generating mechanisms
(Beveridge and Nelson, 1981; Phillips and Solo, 1992; Hamilton, 1994, p. 48;
Lütkepohl, 2005, p. 18). Notably, MA(∞) representation does not only facilitate
the development of many asymptotic results (e.g., Xu and Phillips, 2008; Brügge-
mann, Jentsch, and Trenkler, 2016), but it is also widely used to model time series
autocorrelations (e.g., Bühlmann, 1998; Friedrich, Smeekes, and Urbain, 2020)
in different scenarios. To the best of our knowledge, most (if not all) studies
involving MA(∞) processes work with constant parameters. Therefore, modeling
heterogeneity along the time dimension is somewhat limited. However, as pointed
out by Hansen (2001), dynamic processes with time-invariant coefficients may be
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unnecessarily restrictive. Thus, our first goal is to marry MA(∞) representation
and a nonparametric framework to accommodate dynamics better.

We now review some relevant literature. In recent years, nonparametric frame-
work has been extensively adopted to study deterministically unknown time-
varying parameters of autoregressive models (e.g., Dahlhaus and Rao, 2006;
Dahlhaus, 2012; Zhang and Wu, 2012; Richter and Dahlhaus, 2019; Sun et al.,
2021). Many models are often referred to as “locally stationary processes,”
because their data generating processes change smoothly over time. This line of
research mainly deals with univariate time series and requires locally stationary
mixing (e.g., Sun et al., 2021; Casini, 2023). However, stationary linear processes
(including some simple AR(1) processes) are not necessarily mixing (Doukhan,
2012, Sect. 2.3.1), unless imposing some restrictive conditions on the densities of
error terms (Withers, 1981). Another equally important strand of literature assumes
that the coefficients of interest evolve in a random way (e.g., Primiceri, 2005;
Petrova, 2019), which relies on Bayesian algorithms to produce estimation results.
Despite its great popularity, asymptotic properties of these methods are barely
explored (Giraitis, Kapetanios, and Yates, 2014).

This paper takes another route, showing the versatility of vector moving average
(VMA(∞)) processes with nonparametrically unknown time-varying coefficients.
Specifically, we start with deriving a time-varying version of Beveridge–Nelson
(BN) decomposition (Beveridge and Nelson, 1981; Phillips and Solo, 1992),
which yields the time-varying counterparts of long-run and transitory elements.
As a sequence, time-varying versions of the (functional) central limit theorem
considered in Phillips and Solo (1992) remain true. In addition, we provide
several new asymptotic properties for time-varying linear processes, including the
uniform consistency, the bootstrap consistency, and the long-run covariance matrix
estimation.

The newly proposed framework can be used to model time-varying dependence
structure, and can also serve as a device to establish asymptotic theories for
many multivariate time series models. For the purpose of illustration, we consider
inferring the trending term of a VMA(∞) process and investigate a class of time-
varying VARX models. We then examine the aforementioned theoretical findings
using extensive simulations. In an empirical study, we study the long-run level
of inflation and the natural rate of unemployment using U.S. data, and find that
(1) the long-run level of inflation is more anchored now and is close to the Federal
Reserve’s target of 2% after the Great Moderation period began, and (2) the natural
rate of unemployment is less persistent and increases rapidly during the “Second
Oil Crisis” and “Global Financial Crisis.”

The paper is organized as follows: Section 2 introduces a class of time-varying
VMA(∞) processes, develops a time-varying counterpart of the conventional BN
decomposition, and establishes a set of asymptotic properties. Sections 3 and 4
apply the results of Section 2 to infer the trend of a time-varying VMA(∞) model,
and study a class of time-varying VARX models. Section 5 provides extensive
simulations and a real data example. Section 6 gives a short conclusion. The
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preliminary lemmas and the proofs of some selected proofs of the main results
are given in Appendix. In Appendix B of the Supplementary Material, we first
discuss some impulse response analyses, and then include the omitted proofs of
the main results.

Before proceeding, it is convenient to introduce some notation: ‖ · ‖ denotes
the Euclidean norm of a vector or the Frobenius norm of a matrix; ⊗ denotes the
Kronecker product; Ia stands for an a×a identity matrix; 0a×b stands for an a×b
matrix of zeros, and we write 0a for short notation when a = b; for a function
g(w), let g(j)(w) be the jth derivative of g(w), where j ≥ 0 and g(0)(w) ≡ g(w);
Kh(·) = K(·/h)/h, where K(·) and h stand for a nonparametric kernel function and a
bandwidth, respectively; let c̃k = ∫ 1

−1 ukK(u)du and ṽk = ∫ 1
−1 ukK2(u)du for integer

k ≥ 0; vec(·) stacks the elements of an m × n matrix as an mn × 1 vector; tr (A)

denotes the trace of A; finally, let →P and →D denote convergence in probability
and convergence in distribution, respectively.

2. THE SETUP AND ASYMPTOTICS

Consider the following time-varying VMA(∞) model:

xt = μt +
∞∑

j=0

Bj,tεt−j := μt +Bt(L)εt, t = 1, . . . ,T, (2.1)

where xt is a vector of d-dimensional observable variables, μt is a vector of
d-dimensional unknown deterministic trending functions, all Bj,t are d × d
unknown matrices, εt is a vector of d-dimensional random innovations, and d
is fixed. Obviously, Bt(L) =∑∞

j=0 Bj,tLj, where L is the lag operator.
We require the following conditions to hold throughout.

Assumption 1. LetBt(1) be of full rank for each given t, limT→∞
∑T−1

t=1 ‖μt+1 −
μt‖ < ∞, supt≥1

∑∞
j=1 j‖Bj,t‖ < ∞ and limT→∞

∑T−1
t=1

∑∞
j=1 j‖Bj,t+1 −Bj,t‖ < ∞.

Assumption 2. Suppose that {εt}∞t=−∞ is a martingale difference sequence
(m.d.s.) adapted to the filtration {Ft}, where Ft = σ (εt,εt−1, . . .) is the σ -field gen-
erated by (εt,εt−1, . . .), E[εtε

�
t |Ft−1] = Id almost surely (a.s.) and supt≥1 E‖εt‖δ <

∞ for some δ > 4.

Assumption 1 regulates the matrices Bj,t’s, and ensures the validity of the BN
decomposition under a time-varying framework. It covers many cases, including
(i) the parametric setting of Phillips and Solo (1992), and (ii) Bj,t := Bj(t/T), where
Bj(·) satisfies Lipschitz continuity on [0,1] for all j with the Lipschitz constant of
order O(j−(2+ν)) for some ν > 0. These conditions can easily be verified as they
are directly related to some commonly used data generating mechanisms (see, for
example, Proposition 2.1). Assumption 2 is rather standard (e.g., Dahlhaus and
Polonik, 2009).
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For (2.1), an application of the BN decomposition immediately yields

xt = μt +Bt(1)εt + B̃t(L)εt−1 − B̃t(L)εt, (2.2)

where Bt(L) = Bt(1)− (1−L)B̃t(L), B̃t(L) =∑∞
j=0

˜Bj,tLj, and ˜Bj,t =∑∞
k=j+1 Bk,t.

Consequently, the following lemma holds.

Lemma 2.1. Let Assumptions 1 and 2 hold. Suppose that there exists a function
B(u) on [0,1], and is continuous except for a finite number of discontinuities such
that

limsup
T→∞

max
1≤t≤T

‖Bt(1)−B(t/T)‖ = 0.

As T → ∞, for ∀r ∈ [0,1],

1√
T

Tr�∑
t=1

(
xt −μt

)→D

∫ r

0
B(u)dW(u),

where W(·) is a standard multivariate Brownian motion.

By Lemma 2.1, it is easy to see that (2.1) extends similar treatments by Phillips
and Solo (1992) for the conventional univariate linear process, and allows one
to relax many I(0) and I(1) related results of the literature using a time-varying
VMA(∞) framework. Below, we list two examples, of which the parametric
counterparts can be found in, for example, Lütkepohl (2005, pp. 387, 419).

Example 1. Suppose that xt is a d-dimensional time-varying VARMA(p,q)

process as follows:

xt = A1,txt−1 +·· ·+Ap,txt−p + εt +�1,tεt−1 +·· ·+�q,tεt−q, (2.3)

where the roots of Id −A1,t −·· ·−Ap,t = 0d all lie outside the unit circle. Simple
algebra shows that (2.3) can be expressed as xt = ∑∞

b=0 Db,tεt−b with Db,t =∑b
j=max(0,b−q) Bj,t�b−j,t−j, in which Bj,t = J

∏j−1
i=0 �t−iJ�, J = [Id,0d×d(p−1)], �t

is the companion matrix, and �0,t ≡ Id for all t.

Example 2. Suppose that xt is a d-dimensional time-varying VARX process of
the form:

xt = A1,txt−1 +. . . +Ap,txt−p +�tzt + εt and zt =
∞∑

j=0

Cj,tvt−j, (2.4)

where zt is an m-dimensional vector and �t is a d × m matrix. Under the
invertibility condition as in Example 1, model (2.4) can be further written as[

xt

zt

]
=

∞∑
j=0

[
Bj,t Dj,t

0 Cj,t

][
εt−j

vt−j

]
,
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where Dj,t =∑j
k=0 Bk,t�t−kCj−k,t−k and Bj,t is defined similarly to that in Exam-

ple 1.

Formally, we summarize the main results regarding Examples 1 and 2 in the
following proposition.

Proposition 2.1. Consider Examples 1 and 2, and suppose that:

� the roots of Id −A1,t −·· ·−Ap,t = 0d all lie outside the unit circle uniformly
over t;
� limT→∞

∑T−1
t=1

∥∥Am,t+1 −Am,t

∥∥< ∞ for m = 1, . . . ,p, and Am,t = Am,1 for t ≤ 0
and m = 1, . . . ,p;

� limT→∞
∑T−1

t=1

∥∥�m,t+1 −�m,t

∥∥< ∞ for m = 1, . . . ,q.

1. For Example 1, (2.3) admits a time-varying VMA(∞) process, of which the
coefficients satisfy Assumption 1.
2. For Example 2, suppose also that limT→∞

∑T−1
t=1

∑∞
j=1 j‖Cj,t+1 −Cj,t‖ < ∞ and

supt≥1

∑∞
j=1 j‖Cj,t‖ < ∞. Then, (2.4) admits a time-varying VMA(∞), of which

the coefficients satisfy Assumption 1.

Notably, the assumptions of Proposition 2.1 are rather minor. For example, we
may allow for structural breaks and smooth structural changes simultaneously as
follows:

Aj,t =
K0∑
i=1

Cji(τt) I(ri−1 < τt ≤ ri),

where I(·) denotes the indicator function, each Cji(τ ) is defined similarly to Aj(τ ),
K0 is an unknown finite integer representing the number of breaks, and 0 = r0 <

r1 < · · · < rK0 < 1 are the time stamps of the change points.
By allowing for discontinuities across some regimes, we can deal with relevant

features such as the Great Moderation with the gradual decline in variance for
many macroeconomic variables (Stock and Watson, 2016b) or the dramatic effects
of the COVID-19 pandemic (Lenza and Primiceri, 2022). The conditions on Bj,t

of Assumption 1 are flexible enough to accommodate such structural breaks.

2.1. Asymptotic Properties for Sample Moments

In this subsection, we present some useful asymptotic properties associated with
(2.1). First, we establish the law of large numbers for two weighted sample
moments of xt.

Lemma 2.2. Let Assumptions 1 and 2 hold. Suppose that
{
WT,t

}T

t=1 is a sequence
of m×d deterministic weighting matrices with m being fixed satisfying:

https://doi.org/10.1017/S0266466623000397 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466623000397


6 YAYI YAN ET AL.

�
∑T

t=1 ‖WT,t‖ = O(1);
�
∑T−1

t=1

∥∥WT,t+1 −WT,t

∥∥= O(dT) with dT = supt≥1 ‖WT,t‖ → 0.

As T → ∞, for any fixed integer p (≥ 0),

1.
∑T

t=1 WT,t (xt −E(xt)) = OP(
√

dT);

2.
∑T

t=1 WT,t
(
xtx�

t+p −E
(
xtx�

t+p

))= OP(
√

dT).

Lemma 2.2 establishes convergence rates for some weighted sample moments,
and covers both the parametric rate dT = 1

T (e.g., WT,t = 1
T ) and nonparametric

rate dT = 1
Th (e.g., WT,t = 1

T Kh(τt − τ) for ∀τ ∈ [0,1]).
We then strengthen the results of Lemma 2.2 with rates of uniform convergence.

Lemma 2.3. Let Assumptions 1 and 2 hold. Suppose that
{
WT,t(·)

}T

t=1 is a
sequence of m×d matrices of deterministic weighting functions with m being fixed
satisfying:
� each functional component of WT,t(·) is Lipschitz continuous and defined on a

compact set [a,b];
� supτ∈[a,b]

∑T
t=1 ‖WT,t(τ )‖ = O(1);

� supτ∈[a,b]

∑T−1
t=1 ‖WT,t+1(τ ) − WT,t(τ )‖ = O(dT) with dT = supτ∈[a,b],t≥1 ‖WT,t

(τ )‖ → 0.

As T → ∞, for any fixed integer p (≥ 0),

1. supτ∈[a,b] ‖
∑T

t=1 WT,t(τ )(xt −E(xt))‖ = OP(
√

dT logT) if T
2
δ dT logT → 0;

2. supτ∈[a,b] ‖
∑T

t=1 WT,t(τ )
(
xtx�

t+p −E(xtx�
t+p)
)‖ = OP(

√
dT logT) if T

4
δ dT log

T → 0 and supt≥1 E(‖εt‖4|Ft−1) < ∞ a.s.

Lemma 2.3 corresponds to some existing uniform convergence results for
nonparametric estimation of time series models without strict stationarity (e.g.,
Hansen, 2008; Gao et al., 2015; Li, Phillips, and Gao, 2016; Phillips, Li, and Gao,
2017). In Section 4, we apply this result to study a class of time-varying VARX
models.

2.2. Inferences

To obtain valid inferences in practice, we establish a central limit theorem in
Lemma 2.4, and then propose two methods: (1) the dependent wild bootstrap
(DWB) approach and (2) the heteroscedasticity and autocorrelation consistent
(HAC) covariance matrix estimation approach, to estimate the asymptotic covari-
ance matrix involved in Lemma 2.4.

Lemma 2.4. Let Assumptions 1 and 2 hold. Suppose that
{
WT,t

}T

t=1 is a sequence
of m×d deterministic weighting matrices with m being fixed satisfying:

�
∑T

t=1 ‖WT,t‖ = O(1), where supt≥1 ‖WT,t‖ = O(dT) with dT → 0;

�
∑T−1

t=1

∥∥WT,t+1 −WT,t

∥∥= O(dT).
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As T → ∞, 1√
dT

∑T
t=1 WT,t (xt −E(xt)) →D N(0,�W), where

�W = limT→∞ 1
dT

∑T
t=1 WT,tBt(1)B�

t (1)W�
T,t is a positive definite matrix.

With Lemma 2.4 derived, the only missing piece in order to infer the population
mean of xt is the information of �W , which is a type of long-run covariance matrix
arising from the infinity memory of xt. To recover �W , we consider the DWB
approach, and the HAC covariance matrix estimation below. These two approaches
date back to Shao (2010) and Newey and West (1987), respectively.

We start with the DWB method, and suppose that {ξ ∗
t }T

t=1 is a sequence of l-
dependent time series satisfying E[ξ ∗

t ] = 0, E[ξ ∗2
t ] = 1, E|ξ ∗

t |κ < ∞ for some κ >

2, and E[ξ ∗
t ξ ∗

s ] = a((t − s)/l) for a kernel function a(·) and a tuning parameter l.
The DWB procedure requires a tuning parameter l, which is the “block length”
(Shao, 2010) that ensures the variables more than l units apart are independent.

Lemma 2.5. Let l → ∞ and l
√

dT → 0. Additionally, let a(·) be a symmetric
and bounded function with bounded support [−1,1], a(·) is continuous on [−1,1],
a(0) = 1 and Ka(x) = ∫∞

−∞ a(u)e−iuxdu ≥ 0 for x ∈ R. Under the conditions of
Lemma 2.4, as T → ∞,

sup
w∈Rd

∣∣∣∣∣Pr∗
[

1√
dT

T∑
t=1

x̃tξ
∗
t ≤ w

]
−Pr

[
1√
dT

T∑
t=1

x̃t ≤ w

]∣∣∣∣∣= oP(1),

where x̃t = WT,t (xt −E(xt)), and Pr∗ denotes the probability measure induced by
the DWB procedure.

The condition on Ka(x) ensures the semi-positive definiteness of the covariance
matrix of {ξ ∗

t }T
t=1, and is necessary to generate dependent wild bootstrap samples

in practice. The restrictions on a(·) are satisfied by a few commonly used kernels,
such as the Bartlett and Parzen kernels (i.e., a(x) = (1−|x|)I(|x| ≤ 1) and a(x) =
(1 − 6x2 + 6|x|3)I(|x| ≤ 1/2) + 2(1 − |x|)3I(1/2 ≤ |x| ≤ 1) in Andrews, 1991,
p. 821). In practice, one may generate ξ ∗ ≡ (ξ ∗

1 , . . . ,ξ ∗
T )� ∼ N(0,�ξ∗), where

�ξ∗ = {a( t−s
	

)}T×T . The normal distribution is not really necessary, but it fulfills
the aforementioned conditions and is easy to implement.

We now consider the HAC approach to deal with inferential issues. Specifically,
we define

�̂W = �̂0 +
	∗∑

i=1

ψ
(
i/	∗)(�̂i + �̂

�
i ), (2.5)

where �̂i = 1
dT

∑T−i
t=1 WT,tete�

t+iW
�
T,t+i for i ≥ 0, et = xt − E(xt), ψ(·) is a kernel

function, and 	∗ is the bandwidth diverging at a relatively slow rate, in which E(xt)

is assumed to be computable at this stage. Otherwise, it will be replaced by an
estimated version as in (3.2). Under some mild conditions, we establish asymptotic
properties for (2.5) in the following lemma.
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Lemma 2.6. Suppose that ψ(·) is a symmetric and bounded function with
bounded support on [−1,1], ψ(·) is continuous on [−1,1], and ψ(0) = 1.
Additionally, let 	∗ → ∞ and 	∗√dT → 0. Under the conditions of Lemma 2.4,
�̂W = �W +oP(1).

The conditions on 	∗ and ψ(·) are standard, and are similar to those for the
DWB method, except that we do not require the Fourier transform of ψ(·) to be
nonnegative. It is worth mentioning that Casini (2023) considers HAC estimation
of time-varying long-run covariance matrix for univariate locally stationary pro-
cesses based on some cumulant conditions, and the author argues that the cumulant
conditions can be verified using some mixing conditions. In this article, we utilize
the MA structure, and do not impose any additional mixing conditions or cumulant
conditions on the error process.

Up to this point, we have established a set of asymptotic properties for the
VMA(∞) process (2.1). In the next section, we will apply these results to infer
the trend of (2.1).

To close this section, we comment on another relevant literature—the fixed-b
framework in which b denotes the ratio between the bandwidth and the sample
size. The DWB and HAC approaches are concerned with the consistency of long-
run covariance estimation, and a necessary condition is that the bandwidth goes
to infinity but at a slower rate than the sample size. However, these first-order
asymptotic results do not reflect the influence of bandwidth on the hypothesis
testing. To account for the influence of the bandwidth on the hypothesis testing,
the fixed-b framework is proposed in the heteroscedasticity autocorrelation robust
testing context. For example, Sun, Phillips, and Jin (2008) point out that “. . .the
optimal bandwidth that minimizes a weighted average of type I and type II errors is
larger by an order of magnitude than the bandwidth that minimizes the asymptotic
mean squared error of the corresponding long-run variance estimator.”

However, extending the fixed-b framework to the time-varying framework may
not be feasible. Consider a special case of the fix-b approach when d = 1, μt ≡ μ

and WT,t = 1/T . By Lemma 2.1,

T−1/2
T∑

t=1

(xt −μ) →D

∫ 1

0
B(u)dW(u).

We take the Bartlett kernel and let b = 1, so the long-run covariance estimator is
2T−1∑T

t=1(T
−1/2St)

2 with St =∑t
j=1(xj −μ) (see Kiefer and Vogelsang 2002 for

details). Using Lemma 2.1 again, we have
1√
T

STr� →D

∫ r

0
B(u)dW(u),

and thus by the continuous mapping theorem, we can derive

2

T

T∑
t=1

(T−1/2St)
2 →D 2

∫ 1

0

(∫ r

0
B(u)dW(u)

)2

dr.
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Hence, T−1/2∑T
t=1(xt −μt)/

√
2T−1

∑T
t=1(T

−1/2St)2 does not converge to a pivotal
distribution as in the time-invariant case since the nuisance parameter B(u) does
not get canceled out.

3. ON DETERMINISTIC TREND

To facilitate the development, it is useful to impose more structure: μt = μ(τt) and
Bj,t = Bj(τt), where τt = t/T . Thus, (2.1) can be rewritten as

xt = μ(τt)+ et, (3.1)

where et =∑∞
j=0 Bj(τt)εt−j. Below, we focus on the estimation of μ(τ ) in the rest

of this section before we make some comments at the end of this section.
The following assumptions are necessary.

Assumption 3. Each component of μ(·) and Bj(·)’s is second order contin-
uously differentiable on [0,1], and

∑∞
j=0 Bj(τ ) is of full rank uniformly over

τ ∈ [0,1]. Moreover, supτ∈[0,1]

∑∞
j=1 j‖B(	)

j (τ )‖ < ∞ for 	 = 0,1, where B(	)
j (τ )

denotes the 	th derivative of Bj(τ ) and B(0)
j (τ ) ≡ Bj(τ ).

Assumption 4. Let K(·) be a symmetric and positive kernel function with
bounded support on [−1,1] and

∫ 1
−1 K(u)du = 1. Moreover, K(·) is Lipschitz

continuous on [−1,1]. As T → ∞, h → 0 and Th → ∞.

Assumption 3 imposes smoothness conditions on the functional coefficients,
which are easily verifiable and can be regarded as a special case of Assumption 1.
Assumption 4 is standard in the literature of nonparametric kernel estimation (Li
and Racine, 2007, p. 9). In the same requirements as for a(·) in Lemma 2.5, the
choice of [−1,1] is for simplicity only.

We estimate μ(τ ) by

μ̂(τ ) =
[

T∑
t=1

Kh(τt − τ)

]−1 T∑
t=1

xtKh(τt − τ) (3.2)

following the literature of trend function estimation (e.g., Bühlmann, 1998;
Friedrich et al., 2020).

Theorem 3.1. Let Assumptions 2–4 hold. If, in addition, Th5 → α ∈ [0,∞),
then, for ∀τ ∈ (0,1) and as T → ∞,

√
Th(μ̂(τ )−μ(τ )) →D N

(
μb(τ ),ṽ0�μ(τ )

)
,

where μb(τ ) = 1
2

√
αc̃2μ

(2)(τ ), �μ(τ ) =∑∞
j=0 Bj(τ )

∑∞
j=0 B�

j (τ ), and c̃2 and ṽ0

have been defined in Section 1.
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If α = 0, there is no bias term involved in the asymptotic distribution of Theorem
3.1, which then falls in the usual undersmoothing scenario (Li and Racine, 2007,
p. 15). In general, in order to establish valid inferences, both μb(τ ) and ṽ0�μ(τ )

have to be accounted for.

The DWB Procedure:

1. For ∀τ ∈ (0,1), let μ̃(τ ) be defined in the same way as in (3.2) using an
oversmoothing bandwidth h̃, and obtain the estimated residuals: ẽt = xt − μ̃(τt)

for t ≥ 1.

2. Generate x∗
t = μ̃(τt)+ e∗

t with e∗
t = ξ ∗

t ẽt, where ξ ∗
t ’s form an l-dependent time

series satisfying E[ξ ∗
t ] = 0, E[ξ ∗2

t ] = 1, E
[|ξ ∗

t |ν] < ∞ for some ν > 2, and
E[ξ ∗

t ξ ∗
s ] = a((t − s)/l) with a kernel function a(·) and a tuning parameter l.

3. Use x∗
t ’s to construct an estimator μ̂∗(τ ) as in (3.2).

4. Repeat Steps 2 and 3 J times. Let qα(τ ) be the α-quantile of the J statistics
μ̂∗(τ )− μ̃(τ ), and denote the (1−α) ·100% confidence interval of μ̂(τ ) as[
μ̂(τ )−q1−α/2(τ ), μ̂(τ )−qα/2(τ )

]
.

Here, h̃ is an oversmoothing bandwidth, as we shall require h/̃h → 0. An asymp-
totic property for the DWB procedure is given in Theorem 3.2.

Theorem 3.2. Let l → ∞, max{̃h,h/̃h} → 0 and l · max{1/
√

Th,̃h4} → 0.
Additionally, let a(·) be a symmetric and bounded function with bounded support
[−1,1], a(·) is continuous on [−1,1], K(0) = 1, and Ka(x) = ∫∞

−∞ a(u)e−iuxdu ≥ 0
for x ∈ R. Under the conditions of Theorem 3.1, for ∀τ ∈ (0,1),

sup
w∈Rd

∣∣∣Pr∗
[√

Th
(
μ̂

∗
(τ )− μ̃(τ )

)≤ w
]
−Pr

[√
Th
(
μ̂(τ )−μ(τ )

)≤ w
]∣∣∣= oP(1),

where Pr∗ denotes the probability measure induced by the DWB procedure.

Theorem 3.2 shows that the confidence interval of μ(τ ) can be recovered by the
empirical quantile of μ̂∗(τ )− μ̃(τ ). It implies that there is no need to deal with the
bias in the DWB procedure, as the bootstrap draws generate a bias term identical
to that in Theorem 3.1. We stress that we only consider point-wise inference for
the time-varying coefficients functions, while simultaneous inference for the entire
time-varying curves relies on deep Gaussian approximation theory (cf. Zhou and
Wu, 2010), and is beyond the scope of this paper.

Note that the proposed kernel method can asymptotically recover μ(τ ) even
when the true form of μ(τ ) is linear. Note that the proposed kernel method
can also be applied to estimate a semiparametric version of the form: μ(τ ) =
α τ + g(τ ), where α is a vector of unknown parameters. In this case, under the
orthogonality condition:

∫ 1
0 ug(u)du = 0, α is identifiable and can be estimated by

α̂ =
(∑T

t=1 τ 2
t

)−1(∑T
t=1 τt xt

)
.
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We then estimate g(τ ) by ĝ(τ ) =
(∑T

t=1 Kh(τt − τ)
)−1∑T

t=1 (xt − α̂ τt)Kh(τt −
τ), and the corresponding asymptotic properties of ĝ(τ ) follow similarly from
those of μ̂(τ ). So we omit details for the corresponding theorems.

4. ON TIME-VARYING VARX

As a further application, we study a class of time-varying VARX(p,q) models of
the form:

yt = μ(τt)+
p∑

j=1

Aj(τt)yt−j +
q∑

j=0

Bj(τt)xt−j +ηt := Z�
t β(τt)+ηt, (4.1)

where Zt = zt ⊗ Id, zt = (1,y�
t−1, . . . ,y

�
t−p,x

�
t−1, . . . ,x

�
t−q,x

�
t )�, and ηt = ω(τt)εt.

Here, yt = (y1,t, . . . ,yd,t)
� is a d-dimensional vector of endogenous variables, xt =

(x1,t, . . . ,xm,t)
� is an m-dimensional vector of exogenous variables, and both d and

m are finite positive integers. We further allow xt to follow a VMA(∞) process, see
Assumption 5.3. Consequently, yt itself also admits a VMA(∞) representation and
thus we are able to establish a new estimation theory for the time-varying VARX
models. Here, {Aj(τ )} and {Bj(τ )} are the d × d and d × m coefficient matrices.
Also, ω(τ ) is an unknown deterministic function that has full row rank uniformly
in τ ∈ [0,1], and captures the heteroscedasticity over time. Obviously, we have

β(τ ) = vec(μ(τ ),A(τ ),B(τ ),B0(τ )), (4.2)

where A(τ ) = (A1(τ ), . . . ,Ap(τ )) and B(τ ) = (B1(τ ), . . . ,Bq(τ )).1 In what fol-
lows, we focus on β(τ ).

4.1. Nonparametric Estimation

Suppose that each component of β(·) has continuous derivatives of up to the second
order. When τt is close to τ , we have the following approximation:

yt � Z�
t β(τ )+Z�

t β(1)(τ )(τt − τ)+ηt. (4.3)

We estimate {β(τ ),β(1)(τ )} using the kernel weighted least-square criterion:

(β̂(τ ),β̂
(1)

(τ )) = argmin
β,β(1)

T∑
t=1

∥∥yt −Z�
t (β + (τt − τ)β(1))

∥∥2
Kh(τt − τ). (4.4)

Consequently, β̂(τ ) admits a closed-form expression as follows:

β̂(τ ) = (Is,0s)(Z�
τ Kτ Zτ )

−1Z�
τ Kτ y, (4.5)

1The specific form that B0(·) is singled out in equation (4.2) allows us to rewrite the VARX(p,q) model in a
VARX(1,0) form, which helps us to derive the asymptotic distributions of dynamic multipliers by using the Delta
method (see Lütkepohl (2005, p. 403) for more details).
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where s = d + d2p + (q + 1)md, y = (y�
1 , . . . ,y�

T )�, Kτ = diag{Kh(τ1 −
τ), . . . ,Kh(τT − τ)}⊗ Id, and

Zτ =
⎛⎜⎝Z�

1 Z�
1

τ1−τ

h
...

...
Z�

T Z�
T

τT−τ

h

⎞⎟⎠ .

The following assumptions are necessary for the theoretical development.

Assumption 5.

1. The roots of Id − A1(τ )L − ·· · − Ap(τ )Lp = 0d all lie outside the unit circle
uniformly in τ ∈ [0,1].

2. Each element of β(τ ) is second order continuously differentiable on [0,1] and
β(τ ) = β(0) for τ < 0.

3. Suppose that xt = g(τt) + ∑∞
j=0 Dj(τt)vt−j for t ≥ 1, and xt = g(0) +∑∞

j=0 Dj(0)vt−j for t ≤ 0, where g(·) and Dj(·) are m×1 and m×m, respectively.
Each component of g(·) and Dj(·) is second order continuously differentiable

on [0,1]. For 	 = 0,1, supτ∈[0,1]

∑∞
j=1 j‖D(	)

j (τ )‖ < ∞, where D(	)
j (τ ) denotes

the 	th derivative of Dj(τ ) and D(0)
j (τ ) ≡ Dj(τ ).

4. Each component of ω(τ ) is second order continuously differentiable on [0,1].
Moreover, �(τ ) = ω(τ )ω(τ )� is positive definite for ∀τ ∈ [0,1], and ω(τ ) =
ω(0) for τ < 0.

5. Let et = (ε�
t ,v�

t+1)
� and {et}∞t=−∞ form a sequence of martingale differences

such that E (et|Ft−1) = 0, where Ft = σ {et,et−1, . . .}. Also, suppose that

E(ete�
t |Ft−1) =

(
Id ρεv
ρ�

εv Im

)
almost surely (a.s.), and supt≥1 E‖et‖δ < ∞ for

some δ > 4.

Assumption 5.2 is standard in the literature (Li and Racine, 2007, p. 9), so the
discussions are omitted. Assumption 5.5 is also standard and assumes that the
innovation errors follow a martingale difference structure, which is identical to
those used in Phillips and Lee (2013) for example.

We now comment on the rest of the conditions of Assumption 5. Assumption 5.1
ensures that yt in model (4.1) is neither a unit-root process nor an explosive process,
and can be regarded as an extension of those used for the classical multivariate
dynamic models (e.g., Hamilton, 1994, p. 259). Note that Sun et al. (2021) assume
that a time-varying univariate ARX process is β-mixing. We employ an alternative
approach by utilizing the MA structure of ARX processes without imposing any
mixing condition. Assumption 5.3 formulates a time-varying VMA(∞) process
that nests many different processes as special cases as shown in Examples 1 and 2.
Assumption 5.4 imposes certain heteroscedasticity.

The following theorem establishes asymptotic properties associated with the
estimation procedure of (4.5).
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Theorem 4.1. Let Assumptions 4 and 5 hold. If T → ∞, then:

1. For ∀τ ∈ (0,1) we have

√
Th(β̂(τ )−β(τ )− 1

2
h2c̃2β

(2)(τ )+oP(h2)) →D N (0,̃v0V(τ )),

where V(τ ) = �−1
z (τ )⊗�(τ ) and �z(τ ) = limT→∞ 1

T

∑T
t=1 E(ztz�

t )Kh(τt − τ).

2. If, in addition, supt≥1 E
[‖et‖4 |Ft−1

]
< ∞ a.s. and T1−4/δh

logT → ∞, then for
∀τ ∈ [0,1]

V̂(τ ) →P V(τ ),

where V̂(τ ) = �̂
−1
z (τ )⊗�̂(τ ), �̂z(τ ) = ( 1

T

∑T
t=1 Kh(τt −τ))−1 1

T

∑T
t=1 ztz�

t Kh(τt −
τ), �̂(τ ) = ( 1

T

∑T
t=1 Kh(τt − τ))−1 1

T

∑T
t=1 η̂t̂η

�
t Kh(τt − τ), and η̂t = yt −Z�

t β̂(τt).

The first result of Theorem 4.1 establishes the asymptotic distribution of β̂(τ ),
while the second result ensures that the confidence interval can be constructed
practically. Furthermore, using Theorem 4.1 and the Delta method, we can infer
impulse responses (which are also known as dynamic multipliers) of yt to xt. We
present this result in Appendix B.1 of the Supplementary Material.

4.2. Semiparametric Estimation

In this subsection, we consider a semiparametric version of model (4.1) by
allowing that some of zt can be time-invariant. Let z1t be a subset of zt, and let z2t be
a vector collecting the elements of zt left out by z1t. Thus, (4.1) can be rewritten as

yt = Z�
1tc+Z�

2tθ(τ )+ηt, (4.6)

where Z1t = z1t ⊗ Id, Z2t = z2t ⊗ Id, c and θ(τ ) are the corresponding subsets
of β(τ ) and are of dimensions s1 and s2, respectively. Equation (4.6) is a
semiparametric model.

After profiling out the nonparametric part θ(τ ), we obtain

ỹt � Z̃
�
1tc+ηt,

where ỹt = yt −Z�
2ts(τt)y, Z̃1t = Z1t −Z�

1 s�(τt)Z2t, s(τ ) = (Is2,0s2)(Z
�
2,τ Kτ Z2,τ )

−1

Z�
2,τ Kτ , Z1 = (Z11, . . . ,Z1T)� and Z2,τ =

⎛⎜⎝Z�
21 Z�

21
τ1−τ

h
...

...
Z�

2T Z�
2T

τT−τ

h

⎞⎟⎠.

Since ηt has time-varying unconditional variance, we use the weighted least
squares (WLS) method to estimate c in order to improve efficiency. The WLS
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estimator of c is then given by

ĉWLS =
(

T∑
t=1

Z̃1t�̂
−1

(τt )̃Z
�
1t

)−1 T∑
t=1

Z̃1t�̂
−1

(τt )̃yt, (4.7)

where �̂(τt) = ( 1
T

∑T
s=1 Kh(τs −τt))

−1 1
T

∑T
s=1 η̂ŝη

�
s Kh(τs −τt) for t = 1, . . . ,T , and

η̂t = yt −Z�
t β̂(τt).

Finally, θ(τ ) of (4.6) can be estimated by2

θ̂(τ ) = (Is2,0s2)(Z
�
2,τ Kτ Z2,τ )

−1Z�
2,τ Kτ (y−Z1̂cWLS) . (4.8)

We require the following assumption to facilitate the development.

Assumption 6. Let supt≥1 E[‖et‖4 |Ft−1] < ∞ a.s., Th8 → 0, Th2

(logT)2 → ∞,

T1− 4
δ h

logT → ∞, and δ > 4, where δ is the same as that of Assumption 5.5.

Assumption 6 imposes more restrictive conditions on the bandwidth, and the
conditional moments of the error terms. These assumptions are commonly used in
the semiparametric kernel estimation literature (e.g., Fan and Huang, 2005).

With Assumptions 5 and 6 in hand, the next theorem establishes the asymptotic
distributions associated with the estimation procedure of (4.7) and (4.8).

Theorem 4.2. Let Assumptions 4–6 hold.

1. For (4.7), we have as T → ∞,√
T (̂cWLS − c) →D N

(
0,�−1

c

)
,

where �c = ∫ 1
0 (�z1,1(τ ) − �z1,2(τ )�−1

z2,2
(τ )��

z1,2
(τ )) ⊗ �−1(τ )dτ , in which for

j1,j2 ∈ {1,2}, �zj1,j2
(τ ) = limT→∞ 1

T

∑T
t=1 E(zj1tz�

j2t)Kh(τt − τ).

2. For (4.8), we also have for any given τ ∈ (0,1) and as T → ∞,

√
Th

(
θ̂(τ )− θ(τ )− 1

2
h2c̃2θ

(2)(τ )+oP(h2)

)
→D N(0,ṽ0�θ (τ )),

where �θ (τ ) = �−1
z2

(τ )⊗�(τ ).

Similar to Theorem 4.1, both �c and �θ (τ ) can be easily estimated by replacing
the unknown quantities with their estimators.

In the following section, we conduct numerical studies to evaluate the proposed
estimation methods and their theoretical properties.

2The kernel-weighted method uses local observations around time τ to estimate θ(τ ), so the variance of ηt is
automatically approximated by a constant due to the nature of the nonparametric kernel method. As a sequence,
there is no need to correct the unconditional heteroscedasticity when estimating θ(τ ).
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5. NUMERICAL STUDIES

We present a computational implementation procedure in Section 5.1, and then
conduct extensive numerical studies in Sections 5.2 and 5.3.

5.1. Computational Implementation

Throughout the numerical studies, the Epanechnikov kernel K(u) = 0.75(1 −
u2)I(|u| ≤ 1) is adopted. When studying the trending term of the VMA(∞) model,
we use the “leave-(2k+1)-out” version of cross-validation method of Chu and
Marron (1991), as the error components are serially correlated. Specifically,

ĥmcv = argmin
h

T∑
t=1

(
xt − μ̂k,h(τt)

)� (
xt − μ̂k,h(τt)

)
, (5.1)

where μ̂k,h(τ ) =
[∑

t:|t−τT|>k K
(

τt−τ

h

)]−1∑
t:|t−τT|>k xtK

(
τt−τ

h

)
and k = 5. For the

DWB method, we follow the suggestions of Bühlmann (1998), Shao (2010), and

Friedrich et al. (2020) by choosing h̃ = c0 · ĥ5/9
mcv with c0 = 2, a(x) =

∫ 1
−1 w(u)w(u+|x|)du∫ 1

−1 w2(u)du

with w(u) = u
0.43 I (u ∈ [0,0.43)) + I (u ∈ [0.43,0.57]) + 1−u

0.43 I (u ∈ (0.57,1]), and
l = 1.75 · (Tĥmcv)

1/3.
When studying the time-varying VARX model, we use the leave-one-out

method, since the error terms of VARX model are mutually uncorrelated:

ĥcv = argmin
h

T∑
t=1

(
yt −Z�

1t̂ch,−t −Z�
2t̂θh,−t(τt)

)� (
yt −Z�

1t̂ch,−t −Z�
2t̂θh,−t(τt)

)
,

(5.2)

where ĉh,−t and θ̂h,−t(·) are obtained using (4.7) and (4.8) but leaving the tth
observation out. For the above minimization, we set a predetermined sequence
of h’s from a wide range, say from 0.1 to 0.6 with an increment 0.02.

5.2. Simulation Results

We first evaluate the finite sample performance of the DWB procedure presented
in Section 3. Consider a multivariate time series data generating process (DGP):

xt = μ(τt)+ et, et = A(τt)et−1 + εt, t = 1, . . . ,T, (5.3)

where all the εt are i.i.d. draws from N(02×1,I2), μ(τ ) = [sin(πτ), cos(πτ)]� and

A(τ ) =
[

0.1d exp(−0.5+ τ) (τ −0.5)3

(τ −0.5)3 0.1d +0.3sin(πτ)

]
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Figure 1. Point-wise coverage probabilities for μ(·).

with d ∈ {1,3}, which corresponds to low and moderate persistence in the dynamics
of innovations, respectively. In addition, let the sample size be T ∈ {200,400,800}
and conduct 1,000 replications for each choice of T.

In order to evaluate the finite sample performance, we calculate the point-wise
coverage rate associated with μ(·) based on the DWB procedure with J = 1,000
bootstrap replications. Specifically, we consider the coverage at τ = 0.1, . . . ,0.9,
and use the nominal coverage 95%. For each given τ , the coverage probability is
first calculated for each component of μ(·). We then take the average across these
elements.

The coverage rates are plotted in Figure 1. A few facts emerge. First, for the
small positive correlation case, the coverage probabilities are close to the nominal
level even when the sample size is relatively small (i.e., T = 200). Second, the finite
sample coverage probabilities decrease with the increase of d (which measures
the extent of serial correlations in error innovations) for all the sample sizes
considered. Intuitively, the data may deviate from the trend functions in clusters
in the case of strong positive correlation, which causes the nonparametric estimate
to go through these clusters and thus, to deviate significantly from the true trend.
Interestingly, all time points are similarly affected. Third, for the strong positive
correlation case, the finite sample coverage probabilities are smaller than their
nominal level (95%) for small T, but are fairly close to 95% as T increases.

We next evaluate the performance of the semiparametric profile likelihood
method for the following two DGPs:

DGP 1: yt = μ(τt)+A1yt−1 +B1(τt)xt−1 +ηt, ηt = ω(τt)εt,

DGP 2: yt = A1yt−1 +B1(τt)xt−1 +ηt, ηt = ω(τt)εt, (5.4)

where εt’s are i.i.d. draws from N(02×1,I2), μ(τ ) = [sin(πτ), cos(πτ)]�, xt =
0.4xt−1 + vt with vt ∼ N(0,1), and

A1 =
[

0.1+0.3d −0.1
−0.1 0.1+0.3d

]
,

B1(τ ) = [2exp(τ −1)−1,2exp(τ −1)−1
]�

,
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Table 1. Empirical coverage probabilities for μ(τ ), A1 and B1(·).
d = 1 d = 3

T μ(τ ) A1 B1(·) μ(τ ) A1 B1(·)
200 0.893 0.903 0.911 0.853 0.873 0.908

DGP 1 400 0.911 0.929 0.931 0.893 0.914 0.930

800 0.924 0.937 0.939 0.907 0.925 0.936

200 — 0.932 0.922 — 0.924 0.921

DGP 2 400 — 0.945 0.936 — 0.942 0.936

800 — 0.949 0.939 — 0.945 0.938

Table 2. The ratios of the RMSEs of OLS estimator
relative to that of WLS (the levels of RMSE are reported
for WLS in brackets).

d = 1 d = 3

T OLS WLS OLS WLS

200 1.061 [0.144] 1.061 [0.142]

DGP 1 400 1.077 [0.097] 1.079 [0.091]

800 1.082 [0.067] 1.083 [0.062]

200 1.062 [0.135] 1.062 [0.124]

DGP 2 400 1.078 [0.093] 1.080 [0.083]

800 1.082 [0.065] 1.081 [0.058]

ω(τ ) =
[

1.5+0.2exp (0.5− τ) 0
0.1exp (0.5− τ) 1.5+0.5(τ −0.5)2

]
.

Similarly, we set d ∈ {1,3}, which corresponds to low and moderate persistence in
the VAR dynamics. The coverage rates are calculated in a similar manner as above,
so we omit the details.

As shown in Table 1, the coverage rates move toward 95% as the sample size
goes up. In addition, similar to the trending estimation case, the rates are worse
with a larger value of d, which is not surprising.

Finally, we compare the performance of WLS and OLS estimators of A1. Here,
the WLS estimator is given in (4.7), while the OLS estimator is defined as

ĉOLS =
(

T∑
t=1

Z̃1tZ̃
�
1t

)−1 T∑
t=1

Z̃1t̃yt.

Table 2 reports the ratios of the root mean squared errors (RMSEs) of the OLS
estimator relative to those of the WLS estimator. The levels (rather than the
ratios) of RMSEs are reported for WLS in brackets. Clearly, OLS is inefficient. In
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Figure 2. Plots of the inflation (left), the unemployment rate (middle), and the interest rate (right).

addition, the performance of WLS relative to OLS is improved with the increased
sample size. Moreover, our simulation results also show that the improvement
of the WLS procedure relative to OLS is insensitive to the persistence of VAR
dynamics, as well as the presence of time-varying intercepts.

5.3. A Real Data Example

In the empirical study, we infer the trend value of inflation (i.e., trend inflation, see
Stock and Watson, 2016a for more details) and the trend value of unemployment
rate (i.e., the natural rate of unemployment, NAIRU, see Staiger, Stock, and
Watson, 1997 for more details). The trend inflation and NAIRU are centrally
positioned in setting monetary policy since the Federal Reserve Bank aims to
mitigate deviations of inflation and unemployment from their long-run targets
(Primiceri, 2006; Stock and Watson, 2016a). The estimation is conducted in
exactly the same way as in Section 5.1, so we will not repeat the details unless
necessary.

Specifically, we estimate the time-varying VMA(∞) model (3.1) using three
commonly adopted macroeconomic variables of the literature (Primiceri, 2005;
Cogley, Primiceri, and Sargent, 2010); the inflation rate (measured by the 100
times the year-over-year log change in the GDP deflator), the unemployment rate,
and the interest rate (measured by the average value for the Federal funds rates
over the quarter). Although we are not interested in the trend of interest rates, we
include this variable within the system in order to capture more dynamics and be
consistent with the literature. The data are quarterly observations measured at an
annual rate from 1954:Q3 to 2020:Q1, and are collected from the Federal Reserve
Bank of St. Louis economic database. Figure 2 plots the three variables.

We investigate the trend inflation and the NAIRU. Petrova (2019) considers a
Bayesian time-varying VAR(2) model, and induces the long-run mean of xt by

μt = lim
p→∞Et(xt+p) = (I2 −A1t −A2t)

−1at, (5.5)
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Figure 3. The estimated trends (i.e., μ(·)) of inflation and unemployment as well as the associated
95% bootstrap confidence intervals.

where at is the intercept term, and A1t and A2t are the coefficient matrices. The
main difference between our method and the Petrova’s method is that we explicitly
estimate the underlying trends of inflation and unemployment using model (3.1).

Figure 3 plots the estimates of the trend inflation and the NAIRU (i.e., μ̂(τ )),
as well as the 95% bootstrap confidence intervals. Here, we use the bootstrap
method to construct confidence intervals, which remains robust whether the VMA
coefficients are time-varying or not. First, we can see that the length of confidence
intervals change over time. For example, the estimation uncertainty was high in
the 1980s, but this uncertainty decreases dramatically after this period. This fact
implies that our time varying VMA model is much better than the constant VMA
model. Note that constant VMA coefficients correspond to a constant asymptotic
variance over τ ∈ [0,1] according to Theorem 3.1. In addition, it is obvious that the
underlying trend of inflation was high in the 1970s, but decreased in the subsequent
period. After the Great Moderation, the long-run level of inflation was below, but
quite close to the Federal Reserve’s target of 2%, indicating that inflation is more
anchored now than it was in the 1970s. However, the NAIRU is less persistent
and fluctuates over time. In particular, the NAIRU increased rapidly during the
“Second Oil Crisis” and “Global Financial Crisis.”

To provide more empirical evidence on the time-varying VMA coefficients, we
also estimate the time-varying volatility of xt, that is, the square root of diagonal
elements of

E(ete�
t ) =

∞∑
j=0

Bj(τ )B�
j (τ ).

Figure 4 plots the estimated volatilities of both the inflation and unemployment
rate, clearly showing that their volatilities change over time, which further under-
lines the empirical importance of the proposed time-varying VMA model. We can
also see that a decline in unconditional volatilities of exogenous shocks after 1980
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Figure 4. Estimates of the time-varying volatility of inflation (left panel) and unemployment rate
(right panel).

in every subplot of Figure 4. Thus, our results support the explanation of “bad
luck” (e.g., Primiceri, 2005; Sims and Zha, 2006).

6. CONCLUSION

In this paper, we introduce a class of time-varying VMA(∞) processes, and
derive a set of asymptotic properties accordingly. Our investigation starts with
decomposing the weighted sum of time-varying VMA(∞) processes into the
long-run and transitory elements, known as the BN decomposition (Beveridge
and Nelson, 1981; Phillips and Solo, 1992). As the long-run component of the
decomposition yields a martingale approximation, it ensures the feasibility of
achieving a variety of asymptotic properties for the multivariate case, for example,
the law of large numbers, the uniform convergence, the central limit theorem, the
bootstrap consistency, and the long-run covariance matrix estimation.

Furthermore, we show that these results can be readily applied when establishing
inferences for many other dynamic time-varying models. In the empirical study,
we apply the newly proposed framework to study the long-run level of inflation
and the natural rate of unemployment. We find that (1) the long-run level of
inflation is more anchored now and is close to the Federal Reserve’s target of
2% after the beginning of the Great Moderation period, and (2) the natural rate
of unemployment is less persistent and increases rapidly during the “Second Oil
Crisis” and “Global Financial Crisis.”

APPENDIX

In this Appendix, we provide some selected proofs of the main results. In what follows, M
and O(1) always stand for bounded constants, and may be different at each appearance.

Proof of Lemma 2.1. By the BN decomposition in Lemma B.3 in Appendix B of the
Supplementary Material, we have
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1√
T

Tr�∑
t=1

(xt −E(xt)) = 1√
T

Tr�∑
t=1

Bt(1)εt + 1√
T
B̃1(L)ε0 − 1√

T
B̃Tr�(L)εTr�

+ 1√
T

Tr�−1∑
t=1

(
B̃t+1(L)− B̃t(L)

)
εt := LT,1 +LT,2 +LT,3 +LT,4.

By using a functional central limit theorem for martingale difference sequences, for
example, Theorem 18.2 in Billingsley (2013), we have LT,1 →D

∫ r
0 B(u)dW(u). Note

that the condition limsupT→∞ max1≤t≤T ‖Bt(1)−B(t/T)‖ = 0 (plus the continuity con-
dition on B(·)) is enough to ensure the convergence of conditional variance, that is,
1
T
∑Tr�

t=1 Bt(1)B�
t (1) → ∫ r

0 B(u)B�(u)du. In addition, we have LT,2 →P 0 uniformly over
r ∈ [0,1] because of E

∥∥B̃1(L)ε0
∥∥< ∞ by Lemma B.3 in Appendix B of the Supplementary

Material.
For LT,3, we need to show that

sup
r∈[0,1]

∥∥∥∥ 1√
T
B̃Tr�(L)εTr�

∥∥∥∥→P 0,

which holds if max1≤t≤T T−1‖B̃t(L)εt‖2 →P 0. This is equivalent to show for any ν > 0

1

T

T∑
t=1

E
[
‖B̃t(L)εt‖2I(‖B̃t(L)εt‖2 > Tν)

]
→ 0,

which is satisfied due to {E‖B̃t(L)εt‖δ}1/δ ≤ M
∑∞

j=1 ‖B̃j,t‖ < ∞.

Finally, for LT,4, as E
[∑T−1

t=1

∥∥(B̃t+1(L)− B̃t(L)
)
εt
∥∥]< ∞ by Lemma B.3 in Appendix

B of the Supplementary Material, we have

sup
r∈[0,1]

‖IT,4‖ ≤ sup
r∈[0,1]

1√
T

Tr�−1∑
t=1

∥∥(B̃t+1(L)− B̃t(L)
)
εt
∥∥

≤ 1√
T

T−1∑
t=1

∥∥(B̃t+1(L)− B̃t(L)
)
εt
∥∥= OP(1/

√
T).

The proof is now completed. �

Proof of Lemma 2.2. By Lemma B.3 in Appendix B of the Supplementary Material,
we have xt = μt +Bt(1)εt + B̃t(L)εt−1 − B̃t(L)εt, which yields

T∑
t=1

WT,t (xt −E(xt)) =
T∑

t=1

WT,tBt(1)εt +WT,1B̃1(L)ε0 −WT,T B̃T (L)εT

+
T−1∑
t=1

(
WT,t+1B̃t+1(L)−WT,tB̃t(L)

)
εt := IT,1 + IT,2 + IT,3 + IT,4.
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For IT,1, by Assumption 2, we have

E

∥∥∥∥∥∥
T∑

t=1

WT,tBt(1)εt

∥∥∥∥∥∥
2

= tr

⎛⎝ T∑
t=1

WT,tBt(1)E(εtε
�
t )B�

t (1)W�
T,t

⎞⎠
≤ M

T∑
t=1

∥∥WT,t
∥∥2 ≤ M max

t≥1

∥∥WT,t
∥∥ T∑

t=1

∥∥WT,t
∥∥= O(dT ).

Hence, ‖IT,1‖ = OP(
√

dT ). Also, ‖IT,2‖ = OP(dT ) and ‖IT,3‖ = OP(dT ), since
maxt≥1

∥∥WT,t
∥∥ = O(dT ), E‖B̃1(L)ε0‖ < ∞ and E‖B̃T (L)εt‖ < ∞ by Lemma B.3 in

Appendix B of the Supplementary Material.
For IT,4,

T−1∑
t=1

(
WT,t+1B̃t+1(L)−WT,tB̃t(L)

)
εt

=
T−1∑
t=1

(
WT,t+1 −WT,t

)
B̃t+1(L)εt +

T−1∑
t=1

WT,t
(
B̃t+1(L)− B̃t(L)

)
εt. (A.1)

Note that for the first term on the right-hand side of (A.1),

E

∥∥∥∥∥∥
T−1∑
t=1

(
WT,t+1 −WT,t

)
B̃t+1(L)εt

∥∥∥∥∥∥≤ max
t≥1

E
∥∥B̃t+1(L)εt

∥∥ ·
T−1∑
t=1

∥∥WT,t+1 −WT,t
∥∥= O(dT )

by Lemma B.3 in Appendix B of the Supplementary Material and the conditions on WT,t.
For the second term on the right-hand side of (A.1), we write

E

∥∥∥∥∥∥
T−1∑
t=1

WT,t
(
B̃t+1(L)− B̃t(L)

)
εt

∥∥∥∥∥∥≤ max
t≥1

E‖εt‖ ·max
t≥1

∥∥WT,t
∥∥T−1∑

t=1

‖B̃t+1(1)− B̃t(1)‖

≤ M max
t≥1

∥∥WT,t
∥∥T−1∑

t=1

∞∑
j=0

∞∑
k=j+1

∥∥Bj,t+1 −Bj,t
∥∥= M max

t≥1

∥∥WT,t
∥∥T−1∑

t=1

∞∑
j=1

j
∥∥Bj,t+1 −Bj,t

∥∥
= O(dT ).

Thus, we have proved that ‖∑T
t=1 WT,t (xt −E(xt))‖ = OP(

√
dT ).

We now prove ‖∑T
t=1 WT,t

(
xtx�

t+p −E
(

xtx�
t+p

))
‖ = OP(

√
dT ). Start from p = 0 and

write

xtx�
t = μtμ

�
t +μt

∞∑
j=0

ε�
t−jB

�
j,t +

∞∑
j=0

Bj,tεt−jμ
�
t +

∞∑
j=0

Bj,tεt−jε
�
t−jB

�
j,t

+
∞∑

r=1

∞∑
j=0

Bj,tεt−jε
�
t−j−rB�

j+r,t +
∞∑

r=1

∞∑
j=0

Bj+r,tεt−j−rε
�
t−jB

�
j,t,

which yields
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vec
[
WT,t

(
xtx�

t −E
(

xtx�
t

))]
=(Id ⊗WT,t

) ∞∑
j=0

(
Bj,t ⊗μt

)
εt−j +

(
Id ⊗WT,t

) ∞∑
j=0

(
μt ⊗Bj,t

)
εt−j

+ (Id ⊗WT,t
) ∞∑

j=0

(
Bj,t ⊗Bj,t

)
vec[εt−jε

�
t−j − Id]

+ (Id ⊗WT,t
) ∞∑

r=1

∞∑
j=0

(Bj+r,t ⊗Bj,t)vec[εt−jε
�
t−j−r]

+ (Id ⊗WT,t
) ∞∑

r=1

∞∑
j=0

(Bj,t ⊗Bj+r,t)vec[εt−j−rε
�
t−j].

Consequently, we obtain∥∥∥∥∥∥
T∑

t=1

WT,t

(
xtx�

t −E
(

xtx�
t

))∥∥∥∥∥∥≤ 2

∥∥∥∥∥∥
T∑

t=1

(
Id ⊗WT,t

) ∞∑
j=0

(
μt ⊗Bj,t

)
εt−j

∥∥∥∥∥∥
+
∥∥∥∥∥∥

T∑
t=1

(
Id ⊗WT,t

) ∞∑
j=0

(
Bj,t ⊗Bj,t

)
vec[εt−jε

�
t−j − Id]

∥∥∥∥∥∥
+2

∥∥∥∥∥∥
T∑

t=1

(
Id ⊗WT,t

) ∞∑
r=1

∞∑
j=0

(Bj+r,t ⊗Bj,t)vec[εt−jε
�
t−j−r]

∥∥∥∥∥∥ := IT,5 + IT,6 + IT,7.

By the development of
∑T

t=1 WT,t (xt −E(xt)), it is easy to know that IT,5 is OP(
√

dT ).
For IT,6, by Lemma B.3 in Appendix B of the Supplementary Material, write

IT,6 ≤
∥∥∥∥∥∥

T∑
t=1

(
Id ⊗WT,t

)
B

0
t (1)

(
vec(εtε

�
t )−vec(Id)

)∥∥∥∥∥∥
+
∥∥∥(Id ⊗WT,1

)
B̃

0
1(L)vec(ε0ε�

0 )

∥∥∥+
∥∥∥(Id ⊗WT,T

)
B̃

0
T (L)vec(εTε�

T )

∥∥∥
+
∥∥∥∥∥∥

T−1∑
t=1

((
Id ⊗WT,t+1

)
B̃

0
t+1(L)− (Id ⊗WT,t

)
B̃

0
t (L)

)
vec
(
εtε

�
t

)∥∥∥∥∥∥
:= IT,61 + IT,62 + IT,63 + IT,64.

Let Zt = vec(εtε
�
t − Id) for notational simplicity. For IT,61, write

E

∥∥∥∥∥∥
T∑

t=1

(
Id ⊗WT,t

)
B

0
t (1)Zt

∥∥∥∥∥∥
2

≤ M

⎛⎝max
t≥1

∞∑
j=0

∥∥Bj,t
∥∥2

⎞⎠2 T∑
t=1

∥∥WT,t
∥∥2 E‖Zt‖2 ≤ M max

t≥1

∥∥WT,t
∥∥ T∑

t=1

∥∥WT,t
∥∥= O(dT ),
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which implies that IT,61 = OP(
√

dT ). Similar to the proofs of IT,2 and IT,3, we can prove
that IT,62 and IT,63 are OP(dT ). For IT,64, we have

IT,64 ≤
∥∥∥∥∥∥

T−1∑
t=1

(
Id ⊗ (WT,t+1 −WT,t)

)
B̃

0
t+1(L)vec

(
εtε

�
t

)∥∥∥∥∥∥
+
∥∥∥∥∥∥

T−1∑
t=1

(
Id ⊗WT,t

)(
B̃

0
t+1(L)− B̃

0
t (L)

)
vec
(
εtε

�
t

)∥∥∥∥∥∥ .

Similar to the proof of IT,4, by Lemma B.3 in Appendix B of the Supplementary Material,
we can prove that IT,64 is OP(dT ). Then we can conclude that IT,6 = OP(

√
dT ).

For IT,7, using Lemma B.3 in Appendix B of the Supplementary Material, we have

IT,7 ≤
∥∥∥∥∥∥

T∑
t=1

(Id ⊗WT,t)

∞∑
r=1

B
r
t (1)vec

(
εtε

�
t−r

)∥∥∥∥∥∥+
∥∥∥∥∥(Id ⊗WT,1)

∞∑
r=1

B̃
r
1(L)vec

(
ε0ε�−r

)∥∥∥∥∥
+
∥∥∥∥∥(Id ⊗WT,T )

∞∑
r=1

B̃
r
T (L)vec

(
εTε�

T−r

)∥∥∥∥∥
+
∥∥∥∥∥∥

T−1∑
t=1

∞∑
r=1

(
(Id ⊗WT,t+1)B̃r

t+1(L)− (Id ⊗WT,t)B̃
r
t (L)

)
vec
(
εtε

�
t−r

)∥∥∥∥∥∥
:= IT,71 + IT,72 + IT,73 + IT,74.

For IT,71, by Lemma B.3 in Appendix B of the Supplementary Material, we further write

E

∥∥∥∥∥∥
T∑

t=1

(Id ⊗WT,t)

∞∑
r=1

B
r
t (1)vec

(
εtε

�
t−r

)∥∥∥∥∥∥
2

= E tr

⎧⎨⎩
T∑

t=1

T∑
s=1

(Id ⊗WT,t)

∞∑
r,k=1

B
r
t (1)vec

(
εtε

�
t−r

)
vec� (εsε

�
s−k

)
B

k,�
s (1)(Id ⊗W�

T,s)

⎫⎬⎭
≤ M

T∑
t=1

∥∥WT,t
∥∥2

∞∑
r=1

∥∥Br
t (1)

∥∥2 ≤ M

(
max
t≥1

∞∑
r=1

∥∥Br
t (1)

∥∥)2

max
t≥1

∥∥WT,t
∥∥ T∑

t=1

∥∥WT,t
∥∥= O(dT ).

In addition, similar to the proofs of IT,2 to IT,4, we can show that IT,72 to IT,74 are
OP(dT ). Combining the above results, we have proved the case of p = 0. Similarly to the
development of p = 0, we can complete the proof for the case of p ≥ 1 given p is a fixed
number. The details are omitted due to similarity. The proof is now completed. �

Proof of Lemma 2.3.
(1). By Lemma B.3 in Appendix B of the Supplementary Material, we have xt = μt +
Bt(1)εt + B̃t(L)εt−1 − B̃t(L)εt.
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We are then able to write

sup
τ∈[a,b]

∥∥∥∥∥∥
T∑

t=1

WT,t(τ )(xt −E(xt))

∥∥∥∥∥∥
≤ sup

τ∈[a,b]

∥∥∥∥∥∥
T∑

t=1

WT,t(τ )Bt(1)εt

∥∥∥∥∥∥+ sup
τ∈[a,b]

∥∥WT,1(τ )B̃1(L)ε0
∥∥+ sup

τ∈[a,b]

∥∥WT,T (τ )B̃T (L)εT
∥∥

+ sup
τ∈[a,b]

∥∥∥∥∥∥
T−1∑
t=1

(
WT,t+1(τ )B̃t+1(L)−WT,t(τ )B̃t(L)

)
εt

∥∥∥∥∥∥ := IT,81 + IT,82 + IT,83 + IT,84,

where the definitions of IT,8j for j = 1, . . . ,4 are obvious.
By Lemma B.4 in Appendix B of the Supplementary Material, we have IT,81 =

OP
(√

dT logT
)
. It is also easy to see that IT,82 = OP(dT ) and IT,83 = OP(dT ), because

E‖B̃1(L)ε0‖ < ∞ and E‖B̃T (L)εT‖ < ∞ in view of the fact that

‖B̃1(1)‖ ≤
∞∑

j=0

‖B̃j,1‖ < ∞ and ‖B̃T (1)‖ ≤
∞∑

j=0

‖B̃j,T‖ < ∞

by Lemma B.3 in Appendix B of the Supplementary Material. Thus, we need only to
consider IT,84 below. Note that:

(1).
∑T−1

t=1 ‖B̃t+1(1)− B̃t(1)‖ = O(1) by Lemma B.3 in Appendix B of the Supplemen-
tary Material;

(2). T2/δdT logT → 0 and supτ∈[a,b]
∑T−1

t=1

∥∥WT,t+1(τ )−WT,t(τ )
∥∥ = O(dT ) by the

conditions in the body of this lemma;
(3). max1≤t≤T−1 ‖B̃t+1(L)εt‖ = OP(T1/δ) by E‖B̃t+1(L)εt‖δ < ∞ and

max
1≤t≤T−1

‖B̃t+1(L)εt‖ ≤
(

T−1∑
t=1

‖B̃t+1(L)εt‖δ

)1/δ

= OP(T1/δ).

Hence, write

sup
τ∈[a,b]

∥∥∥∥∥∥
T−1∑
t=1

(
WT,t+1(τ )B̃t+1(L)−WT,t(τ )B̃t(L)

)
εt

∥∥∥∥∥∥
= sup

τ∈[a,b]

∥∥∥∥∥∥
T−1∑
t=1

(WT,t+1(τ )−WT,t(τ ))B̃t+1(L)εt +WT,t(τ )(B̃t+1(L)− B̃t(L))εt

∥∥∥∥∥∥
≤ max

1≤t≤T−1
‖B̃t+1(L)εt‖ · sup

τ∈[a,b]

T−1∑
t=1

‖WT,t+1(τ )−WT,t(τ )‖

+ sup
τ∈[a,b],1≤t≤T

∥∥WT,t(τ )
∥∥ ·

T−1∑
t=1

‖(B̃t+1(L)− B̃t(L))εt‖

= OP(T1/δ ·dT )+OP(dT ) = oP(
√

dT logT).

The first result then follows.
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(2). Below, we consider p = 0 only. The general case of p ≥ 1 can be verified in a similar
manner, so omitted.

sup
τ∈[a,b]

∥∥∥∥∥∥
T∑

t=1

vec
(

WT,t(τ )(xtx�
t −E(xtx�

t ))
)∥∥∥∥∥∥≤ 2 sup

τ∈[a,b]

∥∥∥∥∥∥
T∑

t=1

(Id ⊗WT,t(τ ))

∞∑
j=0

(Bj,t ⊗μt)εt−j

∥∥∥∥∥∥
+ sup

τ∈[a,b]

∥∥∥∥∥∥
T∑

t=1

(Id ⊗WT,t(τ ))

∞∑
j=0

(Bj,t ⊗Bj,t)
(

vec
(
εt−jε

�
t−j

)
−vec(Id)

)∥∥∥∥∥∥
+2 sup

τ∈[a,b]

∥∥∥∥∥∥
T∑

t=1

(Id ⊗WT,t(τ ))

∞∑
r=1

∞∑
j=0

(Bj+r,t ⊗Bj,t)vec
(
εt−jεt−j−r

)∥∥∥∥∥∥ := 2IT,91 + IT,92 +2IT,93,

wherein IT,91 = OP(
√

dT logT) by a proof similar to the first result of this lemma.
Consider IT,92. Using Lemma B.3 in Appendix B of the Supplementary Material, write

IT,92 ≤ sup
τ∈[a,b]

∥∥∥∥∥∥
T∑

t=1

(Id ⊗WT,t(τ ))B0
t (1)

(
vec
(
εtε

�
t

)
−vec(Id)

)∥∥∥∥∥∥
+ sup

τ∈[a,b]

∥∥∥(Id ⊗WT,1(τ ))B̃0
1(L)vec

(
ε0ε�

0

)∥∥∥+ sup
τ∈[a,b]

∥∥∥(Id ⊗WT,T (τ ))B̃0
T (L)vec

(
εTε�

T

)∥∥∥
+ sup

τ∈[a,b]

∥∥∥∥∥∥
T−1∑
t=1

(
(Id ⊗WT,t+1(τ ))B̃0

t+1(L)− (Id ⊗WT,t(τ ))B̃0
t (L)

)
·vec

(
εtε

�
t

)∥∥∥∥∥∥
:= IT,101 + IT,102 + IT,103 + IT,104.

By Lemma B.5 in Appendix B of the Supplementary Material, we have IT,101 =
OP
(√

dT logT
)
. Also, IT,102 = OP(dT ) and IT,103 = OP(dT ), because ‖B̃0

1(1)‖ < ∞ and

‖B̃0
T (1)‖ < ∞ by Lemma B.3 in Appendix B of the Supplementary Material. Similar to the

proof of the first result, for IT,24, we write

sup
τ∈[a,b]

∥∥∥∥∥∥
T−1∑
t=1

(
(Id ⊗WT,t+1(τ ))B̃0

t+1(L)− (Id ⊗WT,t(τ ))B̃0
t (L)

)
vec
(
εtε

�
t

)∥∥∥∥∥∥
≤ √

d sup
τ∈[a,b],1≤t≤T

∥∥WT,t+1(τ )
∥∥ ·

T−1∑
t=1

∥∥∥(B̃0
t+1(L)− B̃

0
t (L)

)
vec
(
εtε

�
t

)∥∥∥
+√

d max
t

∥∥∥B̃0
t (L)vec

(
εtε

�
t

)∥∥∥ · sup
τ∈[a,b]

T−1∑
t=1

∥∥WT,t+1(τ )−WT,t(τ )
∥∥= oP

(√
dT logT

)
,

where we have used the following facts:

(1). T4/δdT logT → 0; (2). max
t≥1

∥∥∥B̃0
t (L)vec

(
εtε

�
t

)∥∥∥= OP(T2/δ);

(3). sup
τ∈[a,b]

T−1∑
t=1

∥∥WT,t+1(τ )−WT,t(τ )
∥∥= O(dT ); (4).

T−1∑
t=1

∥∥∥B̃0
t+1(1)− B̃

0
t (1)

∥∥∥= O(1).

Then we can conclude that IT,104 = OP
(√

dT logT
)
.
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We now consider IT,93. Using Lemma B.3 in Appendix B of the Supplementary Material,
we have

sup
τ∈[a,b]

∥∥∥∥∥∥
T∑

t=1

(Id ⊗WT,t(τ ))

∞∑
r=1

∞∑
j=0

(Bj+r,t ⊗Bj,t)vec
(
εt−jεt−j−r

)∥∥∥∥∥∥
≤ sup

τ∈[a,b]

∥∥∥∥∥∥
T∑

t=1

(Id ⊗WT,t(τ ))ζ tεt

∥∥∥∥∥∥+ sup
τ∈[a,b]

∥∥∥∥∥(Id ⊗WT,1(τ ))

∞∑
r=1

B̃
r
1(L)vec

(
ε0ε�−r

)∥∥∥∥∥
+ sup

τ∈[a,b]

∥∥∥∥∥(Id ⊗WT,T (τ ))

∞∑
r=1

B̃
r
T (L)vec

(
εTε�

T−r

)∥∥∥∥∥
+ sup

τ∈[a,b]

∥∥∥∥∥∥
T−1∑
t=1

∞∑
r=1

(
(Id ⊗WT,t+1(τ ))B̃r

t+1(L)− (Id ⊗WT,t(τ ))B̃r
t (L)

)
vec
(
εtε

�
t−r

)∥∥∥∥∥∥
:= IT,111 + IT,112 + IT,113 + IT,114,

where ζ t is defined in Lemma B.5 in Appendix B of the Supplementary Material.
By Lemma B.5 in Appendix B of the Supplementary Material, IT,111 = OP

(√
dT logT

)
.

Moreover, IT,112 = OP(dT ) and IT,113 = OP(dT ), because
∑∞

r=1 ‖B̃r
1(1)‖ < ∞ and∑∞

r=1 ‖B̃r
T (1)‖ < ∞ by Lemma B.3 in Appendix B of the Supplementary Material. For

IT,114, we write

sup
τ∈[a,b]

∥∥∥∥∥∥
T−1∑
t=1

∞∑
r=1

(
(Id ⊗WT,t+1(τ ))B̃r

t+1(L)− (Id ⊗WT,t(τ ))B̃r
t (L)

)
vec
(
εtε

�
t−r

)∥∥∥∥∥∥
≤ √

d sup
τ∈[a,b],1≤t≤T

∥∥WT,t(τ )
∥∥ ·

T−1∑
t=1

∥∥∥∥∥
∞∑

r=1

(
B̃

r
t+1(L)− B̃

r
t (L)

)
vec
(
εtε

�
t−r

)∥∥∥∥∥
+√

d max
t

∥∥∥∥∥
∞∑

r=1

B̃
r
t (L)vec

(
εtε

�
t−r

)∥∥∥∥∥ · sup
τ∈[a,b]

T−1∑
t=1

∥∥WT,t+1(τ )−WT,t(τ )
∥∥= oP(

√
dT logT),

where we have used the following results:

(1). T4/δdT logT → 0; (2). max
t

∥∥∥∥∥
∞∑

r=1

B̃
r
t (L)vec

(
εtε

�
t−r

)∥∥∥∥∥= OP(T2/δ);

(3).
T−1∑
t=1

∞∑
r=1

‖B̃r
t+1(1)− B̃

r
t (1)‖ = O(1); (4). sup

τ∈[a,b]

T−1∑
t=1

∥∥WT,t+1(τ )−WT,t(τ )
∥∥= O(dT ).

Based on the above development, the proof of the case with p = 0 is done. The proof is now
completed. �

Proof of Lemma 2.4. Similar to the proof of Lemma 2.2, we have

1√
dT

T∑
t=1

WT,t(xt −E(xt)) = 1√
dT

T∑
t=1

WT,tBt(1)εt +oP(1)

as dT = o(1).
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Since

Var

⎛⎝ 1√
dT

T∑
t=1

WT,tBt(1)εt

⎞⎠= 1

dT

T∑
t=1

WT,tBt(1)B�
t (1)W�

T,t → �W,

we then use the Cramér–Wold device to prove its asymptotic normality. That is to show that
for any conformable vector l,

1√
dT

T∑
t=1

l�WT,tBt(1)εt →D N
(

0,l��Wl
)

.

Let Zt = 1√
dT

l�WT,tBt(1)εt. By the law of large numbers for martingale differences and

the assumption E
(
εtε

�
t |Ft−1

)
= Id a.s., we have

∑T
t=1 Z2

t (τ ) →P l��Wl.

Furthermore, for any ν > 0, by both Hölder’s and Markov’s inequalities, we have

T∑
t=1

E
(

Z2
t (τ )I (|Zt(τ )| > ν)

)

≤
T∑

t=1

1

dT
‖WT,t‖δ

(
E‖Bt(1)εt‖δ

)2/δ
(

E‖Bt(1)εt‖δ

(dT )δ/2νδ

)(δ−2)/δ

= O
(

d(δ−2)/2
T

)
= o(1)

since
∑T

t=1

∥∥WT,t
∥∥= O(1) and maxt≥1

∥∥WT,t
∥∥= O(dT ). By Lemma B.1 in Appendix B

of the Supplementary Material, the proof is now completed. �

Proof of Lemma 2.5. By d−1/2
T

∑T
t=1 WT,t(xt − E(xt)) →D N(0,�W) and using a

multivariate version of Polya’s theorem (p. 23, Bhattacharya and Rao, 1986), we have

sup
w∈Rd

∣∣∣∣∣∣Pr

⎛⎝d−1/2
T

T∑
t=1

WT,t(xt −E(xt)) ≤ w

⎞⎠−�(w;�W)

∣∣∣∣∣∣= o(1),

where �(·;�W) denotes the CDF function of multivariate normal variables with zero mean

and variance �W . Hence, it is enough to obtain d−1/2
T

∑T
t=1 WT,t(xt − E(xt))ξ

∗
t →D∗

N(0,�W) in order to show

sup
w∈Rd

∣∣∣∣∣∣Pr∗
⎡⎣ 1√

dT

T∑
t=1

x̃tξ
∗
t ≤ w

⎤⎦−Pr

⎡⎣ 1√
dT

T∑
t=1

x̃t ≤ w

⎤⎦∣∣∣∣∣∣= oP(1).

Let et = xt − E(xt) and Z∗
T = 1√

dT

∑T
t=1 d�WT,tetξ

∗
t for any conformable unit vector d.

Then, it suffices to show that

Z∗
T →D∗ N

(
0,d��Wd

)
.

In the following step, we first show that

Var∗(Z∗
T (τ ))2 = d��Wd +oP(1),

and then prove its normality by blocking techniques.
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Conditioning on the original sample, we have

E∗(Z∗
T )2 = 1

dT

T∑
t=1

T∑
s=1

d�WT,tete�
s W�

T,sdE∗(ξ∗
t ξ∗

s )

= 1

dT

T∑
t=1

d�WT,tete�
t W�

T,td + 1

dT

T−1∑
i=1

T−i∑
t=1

d�WT,tete�
t+iW

�
T,t+ida(i/l)

+ 1

dT

T−1∑
i=1

T−i∑
t=1

d�WT,t+iet+ie
�
t W�

T,tda(i/l). (A.2)

For the first term on the right-hand side of (A.2), similar to the proof of Lemma 2.2, it is
straightforward to obtain that

1

dT

T∑
t=1

d�WT,tete�
t W�

T,td = 1

dT

T∑
t=1

d�WT,tE(ete�
t )W�

T,td +oP(1).

For the second and third terms on the right-hand side of (A.2), as a(i/l) = 0 for i > l, we
have

E

∥∥∥∥∥∥
T−1∑
i=1

1

dT

T−i∑
t=1

WT,t

(
ete�

t+i −E(ete�
t+i)
)

W�
T,t+ia(i/l)

∥∥∥∥∥∥
≤

T−1∑
i=1

a(i/l)E

∥∥∥∥∥∥ 1

dT

T−i∑
t=1

WT,t

(
ete�

t+i −E(ete�
t+i)
)

W�
T,t+i

∥∥∥∥∥∥
= l ·√dT = o(1)

as we have E
∥∥∥ 1

dT

∑T−i
t=1 WT,t

(
ete�

t+i −E(ete�
t+i)
)

W�
T,t+i

∥∥∥ = O(
√

dT ) by using similar

arguments to those used in the proof of Lemma 2.2.
We now need only to focus on 1

dT

∑T−1
i=1

∑T−i
t=1 WT,tE(ete�

t+i)W
�
T,t+ia(i/l). Note that

1

dT

T−1∑
i=1

T−i∑
t=1

WT,tE(ete�
t+i)W

�
T,t+ia(i/l), (A.3)

= 1

dT

T−1∑
i=1

T−i∑
t=1

WT,tE(ete�
t+i)W

�
T,t+i +

1

dT

T−1∑
i=1

T−i∑
t=1

WT,tE(ete�
t+i)W

�
T,t+i(a(i/l)−1).

It is then sufficient to show that the second term of the above equation is o(1) since

1

dT

T∑
t=1

T∑
s=1

WT,tE(ete�
s )W�

T,s = Var

⎛⎝ 1√
dT

T∑
t=1

WT,tet

⎞⎠→ �W

by the proof of Lemma 2.2.
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Let sT satisfy 1
sT

+ s2
T
l → 0. The second term of (A.3) is then bounded by∥∥∥∥∥∥ 1

dT

T−1∑
i=1

T−i∑
t=1

WT,tE(ete�
t+i)W

�
T,t+i(a(i/l)−1)

∥∥∥∥∥∥
≤M

sT∑
i=1

max
t

∥∥∥E(ete�
t+i)
∥∥∥ |a(i/l)−1|+M

∞∑
i=sT+1

max
t

∥∥∥E(ete�
t+i)
∥∥∥ |a(i/l)−1|

≤M
sT∑

i=1

(1−a(i/l))+M
∞∑

i=sT+1

max
t

∥∥∥E(ete�
t+i)
∥∥∥= o(1),

since |∑sT
i=1(1−a(i/l))| ≤ M

∑sT
i=1 i/l ≤ Ms2

T/l = o(1) by Lipschitz continuity of a(·) and

∞∑
i=sT+1

max
t

∥∥∥E(ete�
t+i)
∥∥∥= o(1) as sT → ∞.

Conditioning on the original sample, we now employ standard arguments for using a
block technique to show the asymptotic normality. Now, let Z∗

T (τ ) = ∑k
j=1 X∗

T,j(τ ) +∑k
j=1 Y∗

T,j(τ ), where X∗
T,j(τ ) = 1√

dT

∑Bj+r1
t=Bj+1 d�WT,tetξ

∗
t and Y∗

T,j(τ ) = 1√
dT∑Bj+r1+r2

t=Bj+r1+1 d�WT,tetξ
∗
t , in which Bj = (j−1)(r1 + r2) and k = �T/(r1 + r2)�.

Let r1 = r1(T) and r2 = r2(T) satisfying k ·r2 ·dT → 0, r1 ·dT + l/(r1) → 0 and r2/r1 +
l/r2 → 0. We first show that

∑k
j=1 Y∗

T,j(τ ) = oP(1). Since r1 > l for large enough T and

the blocks Y∗
T,j are mutually independent conditionally on the original data, then we have

EE∗
⎛⎝ k∑

j=1

Y∗
T,j(τ )

⎞⎠2

= E

⎛⎝ k∑
j=1

E∗(Y∗
T,j(τ ))2

⎞⎠
≤ 1

dT

r2−1∑
i=−r2+1

a(i/l)max
t

∥∥∥E(ete�
t+i)
∥∥∥ k∑

j=1

Bj+r1+r2−i∑
t=Bj+r1+1

‖WT,t‖ · ‖WT,t+i‖

≤ M
1

dT
max

0≤i≤r2−1

k∑
j=1

Bj+r1+r2−i∑
t=Bj+r1+1

‖WT,t‖ · ‖WT,t+i‖ ≤ Mkr2dT = o(1).

We employ Lindeberg CLT to establish the asymptotic normality of
∑k

j=1 X∗
T,j(τ ) as the

blocks X∗
T,j(τ ) are independent when r2 > l for large enough T. As discussed before, we

have already shown that the asymptotic variance equals to �W . We then need to verify that
for every ν > 0,

k∑
j=1

E∗
⎛⎜⎝ X∗

T,j(τ )2

E∗
(∑k

j=1 X∗
T,j(τ )

)2
I

⎛⎜⎝ X∗
T,j(τ )2

E∗
(∑k

j=1 X∗
T,j(τ )

)2
> ν

⎞⎟⎠
⎞⎟⎠= oP(1).
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Conditioning on the original sample, {etξ
∗
t } is an Lδ-mixingale sequence. By Hölder’s

inequality, Chebyshev’s inequality and Lemma 2 in Hansen (1991), we have

k∑
j=1

E∗
⎛⎜⎝ X∗

T,j(τ )2

E∗
(∑k

j=1 X∗
T,j(τ )

)2
I

⎛⎜⎝ X∗
T,j(τ )2

E∗
(∑k

j=1 X∗
T,j(τ )

)2
> ν

⎞⎟⎠
⎞⎟⎠

≤ν
2−δ

2

k∑
j=1

E∗(X∗
T,j(τ ))δ(

E∗(
∑k

j=1 X∗
T,j(τ ))2

) δ
2

≤ ν
2−δ

2

k∑
j=1

d−δ/2
T M

[∑Bj+r1
t=Bj+1

(
d�WT,tet

)2
]δ/2

(
E∗(
∑k

j=1 X∗
T,j(τ ))2

) δ
2

≤ν
2−δ

2

k∑
j=1

Md−δ/2
T rδ/2−1

1
∑Bj+r1

t=Bj+1

(
d�WT,tet

)δ
(

E∗(
∑k

j=1 X∗
T,j(τ ))2

) δ
2

≤ν
2−δ

2
Md−δ/2

T rδ/2−1
1 dδ−1

T
∑T

t=1 ‖WT,t‖ · ‖et‖δ(
E∗(
∑k

j=1 X∗
T,j(τ ))2

) δ
2

= OP((dT r1)δ/2−1) = oP(1).

Combining the above results, Z∗
T →D∗ N

(
0,d��Wd

)
. The proof is now completed. �

Proof of Lemma 2.6. Define �i = 1
dT

∑T−i
t=1 WT,tE

(
ete�

t+i

)
W�

T,t+i with et =∑∞
j=0 Bj,tεt. Write

�̂W = �0 +
	∗∑

i=1

ψ
(
i/	∗)(�i +��

i

)
︸ ︷︷ ︸

IT,1

+�̂0 −�0︸ ︷︷ ︸
IT,2

+
	∗∑

i=1

ψ
(
i/	∗)(�̂i −�i + �̂

�
i −��

i

)
︸ ︷︷ ︸

IT,3

.

We next prove �̂W →P �W by showing that IT,1 → �W , IT,2 = oP(1) and IT,3 = oP(1)

one by one.
Consider

∑	∗
i=1 ψ

(
i/	∗)�i. By the fact that maxt

∑∞
j=1 j

∥∥Bj,t
∥∥ < ∞, Lipschitz conti-

nuity of ψ(·), and ψ(0) = 1, we have∥∥∥∥∥∥
	∗∑

i=1

(1−ψ
(
i/	∗))�i

∥∥∥∥∥∥≤ M ·max
t

‖WT,t‖ · 1

dT

T∑
t=1

‖WT,t‖
∞∑

j=0

‖Bj,t‖
	∗∑

i=1

i

	∗ ‖Bj+i,t+i‖

= O(1/	∗) = o(1).

Hence, we have IT,1 → �W .

For IT,2 and IT,3, since
∑	∗

i=1 |ψ(i/	∗)| = O(	∗), b
√

	∗ → 0 and E‖�̂i −�i‖ = O(
√

	∗)

(using similar arguments to those used in the proofs of Lemma 2.2), we have

E‖IT,3‖ ≤ 2 max
1≤i≤	∗ E‖�̂i −�i‖ ·

	∗∑
i=1

|ψ(i/	∗)| = O(	∗√dT ) = o(1).

The proof is now completed. �
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