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Isometry on Linear n-G-quasi
Normed Spaces

Yumei Ma

Abstract. This paper generalizes the Aleksandrov problem: the Mazur-Ulam theorem on n-G-quasi
normed spaces. It proves that a one-n-distance preserving mapping is an n-isometry if and only if
it has the zero-n-G-quasi preserving property, and two kinds of n-isometries on n-G-quasi normed
space are equivalent; we generalize the Benz theorem to n-normed spaces with no restrictions on
the dimension of spaces.

1 Introduction and Preliminaries

Let X and Y be metric spaces. A mapping f: X — Y is called an isometry if f satisfies
dy(f(x), f(y)) = dx(x,y) for all x,y € X, where dx(-,-) and dy(-, -) denote
the metrics in the spaces X and Y, respectively. And for some fixed number p > 0,
suppose that f preserves distance p, i.e., for all x, y € X with dx(x, y) = p, we have
dy(f(x),f(y)) = p. Then p is called a conservative distance for the mapping f.
Mazur and Ulam gave a theorem [9] stating that every isometry of a real normed
space onto a real normed space is a linear mapping up to a translation.

Aleksandrov [1] asked whether the existence of a single conservative distance for
some mapping f between two metric spaces implies that f is an isometry.

Benz [2] gave another relative result: let X and Y be real linear normed spaces such
that dim X > 2 and Y is strictly convex. Suppose that p > 0 is a fixed real number and
that N > 11is a fixed integer. Finally, if f: X — Y is a mapping such that for all x, y € X
=l = p = [f(x) = f(3)| < pand |x — y| = Np = | f(x) - f(7)]| > Np, then f
is an affine isometry.

Rassias and Semrl [17], Jing [8], and Ma [10] proved a series of results on the
Aleksandrov problem on normed spaces. Initial research in linear n-normed spaces
[3-6,14,16] defined the concept of a w-n-isometry and an n-isometry that are suitable
to represent the notion of a volume-preserving mapping, and generalized the Mazur-
Ulam theorem and Aleksandrov problem to n-normed spaces. Recently, Yumei Ma
[11-13] generalized the above results and proved the following.

Theorem 1.1  For every mapping f that preserves the unit distance between n-normed
linear spaces X and Y, the following properties are equivalent:

(i)  f preserves w-n-0-distance (n-collinear);
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(ii)  f is a w-n-Lipschitz;

(iii)  f preserves 2-collinearity;
(iv)  f is affine;

(v)  fisan n-isometry;

(vi) f is an n-Lipschitz;

(vii) f preserves n-0-distance;
(viii) f is a w-n-isometry.

This paper contains two parts: in the first section, we generalize Theorem 1.1 to
n-general quasi normed spaces; in the second section, we prove that the Benz theorem
holds in n-normed spaces.

Henceforth, let n > 2.

Definition 1.2  Assume that X is a real linear space with dimX > #» and
[-,...,]: X" - R is a function satisfying

¢ |x1,...,x,| = 0ifand only if x1, ..., x,, are linearly dependent,

y y dep
o |x1,. %0 = |xj,5 ..., xj, | for every permutation (ji, ..., ja) of (1,...,n),
o Jlaxt, ... x0| = el X1 -0 xu])s

for any « € R and all x1,...,x, € X. Then the function |-,..., -|| is called the
n-generalized quasi norm (written as n-G-quasi norm) on X, and (X, |-,..., )
is called a linear n-generalized quasi normed space (written as n-G-quasi normed
space).

The following two definitions [16,19] are n-G-quasi norms.

Definition 1.3  Assume that X is a real linear space with dimX > n and
[-,..., ]: X" - R is a function satisfying

* ||x1,..., x| = 0ifand only if x;, . . ., x,, are linearly dependent,

|x1 s x| = |xj,5 ... xj, | for every permutation (jy, ..., ja) of (1,...,n),
o axy, ..o xn| = el x5 -5 xns

o tx+(1=1t)y,x2, ..., xu| <max{|x,x2, ..., %], [y, %2, ., xu] }

forany a € R, t € [0,1], and all xy, ..., x, € X. Then the function | -,..., - | is called
the n-quasi convex norm on X, and (X, | -,..., -|) is called a linear n-quasi convex
normed space.

Definition 1.4  Assume that X is a real linear space with dimX > #» and
[-,..., [l X" - Ris a function satisfying

* |x1,...,x,] =0ifand only if xy, ..., x, are linearly dependent,

o x5 x0 = |xj,5 ... xj, | for every permutation (jy, ..., ja) of (1,...,n),

o Jlaxy, ..., xq| = lal|x1, - o xul)s

o lx+y,x2, x| <K%, %2, - xul| + |y x2, - xa)s

forany a € R, K >1,and all xy, ..., x, € X. Then the function | -, ..., - | is called the
n-quasi norm on X, and (X, | -,..., - |) is called a linear n-quasi normed space.
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Remark 1.5 AsK=1,|-,..., | is called the n-norm on X and (X, ||,..., -|) is
called a linear n-normed space.

Let X and Y be two real n-G-quasi normed spaces.

Definition 1.6 A sequence {xy} is said to converge to an x € X (in the n-G-quasi
norm) if limy o | Xk — X, ¥2,..., yu| = 0 for every ys,..., yn € X.

Definition 1.7 A mapping f: X — Y is said to be a w-n-isometry if

1f(x1) = f(x0)5 -+ f(xn) = f(x0) | = |1 = %0+, X = 0],

for all x¢, x1,...,x, € X.

Definition 1.8 A mapping f: X — Y is said to have the w-n-distance one preserving
property (w-n-DOPP) if |x; — xg, ..., x, — xo| = 1 implies

1fGer) = f(x0)s oo f(xn) = f(x0) ]| = 1,

for all xg, x1,...,x, € X.

Definition 1.9 A mapping f: X — Y is said to be w-n-Lipschitz if
1fCer) = f(%0)s s f(xn) = fx0) | < 21 = X0, %0 = X0,

for all xg, x1,...,x, € X.

Definition 1.10 A mapping f: X — Y is said to be an n-isometry if

If () = fn)seeos f(xn) = fra)l = [0 = y1s o %0 =yl
forallxy,...,Xn, Y15 .., Yn € X.

Definition 1.11 A mapping f: X — Y is said to have the n-distance one preserving
property (n-DOPP) if |x; — y1,...,%Xn — ¥u| = 1 implies

1fCe) = f()seos fxn) = fya) [ = 1,

forallxy,..., Xu Y15 Yn € X.
Definition 1.12 A mapping f: X — Y is said to be n-Lipschitz if

IfCer) = fn)seeos f(xn) = fra) ] < 1=y =yl
forallxy,..., %X y1,...» Yn € X.

Definition 1.13 A mapping f: X — Y is said to preserve the 2-collinearity if for all
X, ¥,z € X, the existence of t € R with z — x = t(y — x) implies the existence of s € R

with f(2) - f(x) = s(f(y) = f(x)).

Definition 1.14 The points Xg, X1, . .., x, of X are called n-collinear if for every i,
{xj—x;:0< j#i<n}islinearly dependent.
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Definition 1.I5 A mapping f:X — Y is said to preserve the n-collinearity
if the n-collinearity of f(xo), f(x1),..., f(x,) follows from the n-collinearity of
X0>X15-->Xpn.

Remark 1.16  f: X — Y preserves the n-collinearity means that f preserves w-0-dis-
tance, i.e., | x1 = Xg, - . ., Xn — Xo|| = 0 implies || f(x1) = f(x0)>- .., f(xn) — f(x0)| = O.

2 Main Results on n-G-quasi Normed Spaces

Lemma 2.1 Let X and Y be two real n-G-quasi normed spaces. Suppose that f sat-
isfles w-n-DOPP and ||x; — x¢, X2 — X0, - - - » Xn — Xo|| = 0 implies

1f (1) = f(x0), f(x2) = f(x0)5 - f(3xn) = f(x0)] = 0.

Then f preserves 2-collinearity.

Proof We first show that f is injective. For any distinct x¢, x; € X, since dim X > n,
there are x,, ..., x, € X such that x; — X, ..., x, — X are linearly independent. Thus,
[ %1 = X0, ..., %y — x0| # 0. Set z; = xo + (x2 — x0)/||x1 — X0> - - -» Xy — Xo|. Then we
have ||x; — X9, 22 — X0, X3 — X0, - - . » Xn — Xo|| = 1. Since f has w-n-DOPP, we get
|f(x1) = f(x0), f(22) = f(x0)> f(x3) = f(x0), ., f(xn) = fx0)] =1
and it follows that f(xo) # f(x1). Hence, f is injective.
For n = 2, f is obviously 2-collinear because ||x; — xo, x2 — xo| = 0 implies

[ f (1) = f(x0)s f(32) = f(x0)] = 0.

Let n > 2. Assume that x, x1, X, are distinct points of X which are 2-collinear.
Then x; — X9, X, — X are linearly dependent and f(xp), f(x1), f(x2) are also distinct
by the injectivity of f.

Since dim X > n, there exist yi, 2, ..., y» € X such that y;—x¢, y2—Xo, ..., ¥n—Xo
are linearly independent. Hence, it holds that | y; — xo, y2 — X0, ..., ¥n — Xo| # 0. Let
z1=x0+ (31— %0)/ %1 — X0> Y2 — X05 - - - » ¥n — Xo- Then we have

HZI —X(),yz — X05 .- .,yn —X()H =1.

Since f has w-n-DOPP,
1(20) = £ (x0)s f(32) = f(x0)s s f(yu) = f(x0) ] = 1.

Hence, the set A = {f(x) — f(x0) : x € X} contains n linearly independent vectors.
Then for any x3,...,%, € X, ||x1 — X0, X2 — X0, X3 — X0,...,%, — Xo| = 0, and any f
that preserves 0-distance, we have

|f(x1) = f(x0), f(x2) = f(x0), f(x3) = f(x0)5 -, f(xn) = f(x0)] = 0.
ie, f(x1) = f(x0), f(x2) — f(x0), f(x3) = f(x0), ..., f(xn) — f(x0) are linearly de-

pendent.
If there exist x3, ..., x,_1 such that

fla) = f(x0),  f(x2) = f(x0), f(x3) = f(x0),---> f(xn-1) = f(x0)
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are linearly independent, then

A= {f(xn) = f(x0) : xn € X}
c span{f(x1) - f(x0), f(x2) = f(x0), f(x3) = f(%0), - . f(%¥n-1) = f(x0)}
which contradicts the fact that A contains # linearly independent vectors. Then for

any x3,...,xXn—1, f(x1) = f(x0), ..., f(x4-1) — f(x0)} are linearly dependent.
If there exist x3, . .., x,_» such that

fla) = f(x0),  f(x2) = f(x0), f(x3) = f(x0),--> f(xn-2) = f(x0)

are linearly independent, then

A={f(xp-1) = f(x0) : xp-1 € X}
cspan{f(x1) = f(x0), f(x2) = f(x0), f(x3) = f(x0)> -+ > f(xn-2) = f(x0) }

which contradicts the fact that A contains # linearly independent vectors. Therefore,

f(x1)— f(x0) and f(x2) — f(x0) are linearly dependent, i.e., f(x0), f(x1), f(x2) are

2-collinear. Therefore, f preserves 2-collinearity. ]

Corollary 2.2 Let X and Y be two real n-G-quasi normed spaces. If f is w-n-Lipschitz
and satisfies w-n-DOPP, then f preserves 2-collinearity.
Proof Because f is w-n-Lipschitz, |x; — X, X2 — X0, - - ., Xn — Xo|| = 0 implies

1f (1) = f(x0), f(x2) = f(%0)5 - f(3n) = f(x0)] = 0.
Hence f preserves 2-collinearity by Lemma 2.3. [ |

Lemma 2.3 Let X and Y be two real n-G-quasi normed spaces. If f: X — Y satisfies
w-n-DOPP and preserves 2-collinearity, then f is affine.

Proof

Step I: Let x = yT” for distinct x, y,z € X. Then y — x = —(z — x). Since f is injective

and preserves 2-collinearity, there exists an s # 0 such that
2.1 f) = f(x) =s(f(2) - f(x)).
Since dim X > n, there exist x1, x3, ..., X,-1 € X with
ly—x,%1-%% —%,....,%x,1 — x| # 0.
Setw=x+(x1—x)/|y-x,%x-x%x-x,...,%x,1 — x|. Thus
(2.2) ly-—x,w=—x,2%—%,...,%51— x| =1
and [ f(y) = f(x), f(w) = f(x), f(x2) = f (%), f(xn1) = f(x)] = 1. Clearly, it
follows from (2.1) that

23)  f(2) = f(x), f(w) = f(x), f(x2) = ()55 f(xna) = f(2)] =

Since y — x = x — z, (2.2) yields |z = x,w — x,x2 = x, ..., Xp—1 — x| =1, and hence we
have

24)  f(2) = f(x), f(w) = f(x), f(x2) = ()55 f(xna) = f(2)] = 1.

1
s
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Because f is injective and comparing (2.3) with (2.4), we conclude that s = —1. Thus,
FO) = (%) = f(x) = f(z) and f(257) = HLEL

Step 2: Let g(x) = f(x) — f(0). It is obvious that for any x € X and all rational
numbers 7, p, we have

(2.5) g(rx)=rg(x),  g(rx+py)=rg(x)+pg(y).

Step 3: Next we show that g preserves any rational number n-distance. Suppose that
%1 = y1, %2 = Y2 oo Xn = Yl = é for integers ¢ and m. Then

”%(xl—yl),xz—yz,...,xn—ynH =1

According to (2.5), we have

|7 (8a) =0, 8(x2) = 8(32)s -8 xn) ~ ()] =1

t

Thus [|g(x1) - g(31), g(x2) = g(2)> -+, g(xn) = g(yu)ll = 5,

Step 4: For any r € R, since g(0), g(x), g(rx) are also 2-collinear from f(0), f(x),
f(rx) are 2-collinear and g(0) = 0. There exists a real number s such that g(rx) =
sg(x). Let {r} be rational number sequence with lim;_ ., 7y = s. Then for any

yz,...,ynEY,
lim [rig(x) =sg(x), y2 oo yull = lim |ric = sf[g(x), y2 .o yul = 0.

So g(rx) = limg_, o r¢g(x). This implies limy_ oo |g(7xx) — g(rx), y2, ..., yul = 0.
Then for x # 0 and any k, we can find x%, ..., x* such that |x,x¥,...,x*| > 1and
|r — ril|x, x5, ..., xX|| is a rational number. This implies that

Ir = ril 2 x5, o x5 = [ (r = )2, x5, x5 = [rx = e, 2K, &K
= | g(rx) = g(rix), g(x3)s r g5

Moreover, limy o, |g(rex) — g(rx), g(x%), ..., g(x¥)| = 0, and |x, x5, ..., xk| > 1
implies that lim;_, o, 7 = r. Thus r = s.

Step 5: Forany o, B € R,

glax +By) = %(g(mx) +8(2By)) = g(ax) +g(By) = ag(x) + fg(»),
which implies g is linear and f is affine. ]

Lemma 2.4 Let X and Y be two real n-G-quasi normed spaces. Suppose that f: X —
Y satisfies w-n-DOPP and f is affine.

(i)  f preserves n-0-distance.
(ii) f preserves n-1-distance (n-DOPP).
(iii) f is an n-isometry.
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Proof Set g(x) = f(x) - f(0). Then g(x) is linear.
(i) Suppose that | y; = x1,. .., yn —xn| = 0. Thus {y1 —x1, ..., ¥n — X, } are linearly
dependent. There are ay, a,, . . ., a, which are not all zero such that
ar(y1—x1) +ax(y2 —x2,. .., +an(Yu — x,) = 0.

Then a;(g(y1) — g(x1)) + a2(g(y2) — g(x2))s- .. +ang((yn) — g(x4)) = 0. Clearly,
we have |g(y1) - g(x1), ..., g(yn) — g(xn)| = 0. We deduce

1fOn) = f(xa)s-oos f(yn) = f(xn)] = 0.

(ii) Suppose that for x1, ..., %, Y1,---> ¥n € X, |y1 = X1, -+ +» ¥n — Xu|| = 1 for any
xo € X. Setz; = xo + y; — x;. Then ||z1 — x¢,...,2, — xo| = 1. Since f satisfies
w-n-DOPP, we have | f(z1) = f(x0), ..., f(z4) — f(x0)] = 1. Clearly,

Ig(z1) - 8(x0),. -, 8(zn) = g(x0)[ = 1,

and since g is linear, this means that |g(y1) — g(x1),...,g(y.) — g(x,)| = 1. This
implies | f(y1) = f(x1) > f(yn) = f(xn)] = 1.

(iii) Suppose that for x1, ..., %n, Y1, .- > Yu € X, |[¥1 = X1, o> ¥u — X4 | # 0, and we
set
(2.6) y=x+ N .

H)’l_xlw-")’n_xnu
This implies that | y—x1,..., ¥, —x,| =1and | f(¥) = f(x1), ..., f(yn) - f(x0)] = L
Hence, it holds that
(2.7) lg(y) = 8(x1), 8(y2) = g(x2), -, g(yn) = g(xn)| = 1.

Since g is a linear, it follows from (2.6) and (2.7) that

H H};l ;g(;:)_’g)g:cl_) xn” ’g(}’z) _g(X2), . ,g(yn) —g(xn) =1
This implies that
H I J_[(x):)”__,f)f:l_)xnrf(yz) — f(x2)s- s flyn) = fxa)| =1

Hence, | f(31) = f(x1)s-- > f(yu) = f(xn)| = |31 = %15+ -, ¥n — X5 |, which shows
that f is an n-isometry. ]

Theorem 2.5 Let X and Y be two real n-G-quasi normed spaces. Suppose that f
satisfies w-n-DOPP. Then the following properties are equivalent for f:

w-n-Lipschitz, n-collinear (w-n-0-distance), 2-collinear, affine,
n-isometry, n-Lipschitz, n-0-distance, w-n-isometry.

Proof {w-n-DOPP and w-n-Lipschitz} = {w-n-DOPP and n-collinear} = {w-n-
DOPP and 2-collinear} = {w-n-DOPP and affine} = {n-DOPP and n-0-distance} =

n-DOPP + n-Lipschitz
n-isometry = or = {w-n-DOPP and w-n-Lipschitz}. ®
w-n-isometry

Corollary 2.6 Let X and Y be two real n-G-quasi normed spaces. A mapping
f:X = Y is a w-n-isometry if and only if f is an n-isometry.
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Proof If f is a w-n-isometry, then f preserves w-n-DOPP. ]

Remark 2.7 Let X and Y be two real n-G-quasi normed spaces. Suppose that f sat-
isfies n-DOPP. Then the following properties are equivalent for f: w-n-Lipschitz, n-
collinear (w-n-0-distance), 2-collinear, affine, n-isometry, n-Lipschitz, n-0-distance,
w-n-isometry.

3 Main Results on the Benz Theorem in n-normed Spaces

An n-normed space is a special n-G-quasi normed space. We give the definitions and
property of n-normed space for the reader’s convenience.

Definition 3.1 ([4]) Let X beareallinear spacewithdimX > nand|-,..., - |: X" —»
R, a function. Then (X, ||-,..., -||) is called a linear n-normed space if for any « € R
andall x, y,x;,...,x, € X

nNp: |x1,...,x,]| = 0ifand only if x4, ..., x,, are linearly dependent,

nNy: x5 x| = | %15 - . > Xju| for every permutation (ji, ..., j.) of (1,...,n),
nN;3: |axi, ..., x| = |e||x1, ... %],

nNg: ||x+ y, %2, .., x| < %, %2, .. x| + |y, X2, - - ., X, | The function | -,..., -|

is called the n-norm on X.

Remark 3.2 ([4]) Let X and Y be real n-normed spaces. Then

(205 Xis s Xy X | = [ X1 X Xy X X
for xi,..., Xis. o3 Xjs vy X € X,
Definition 3.3 X is said to be an n-strictly convex normed space provided that for
any xo,Xx1,X2,...,X, € X, if xp,...,x, ¢ span{xo,x1} and ||xo + x1, X2, ..., %] =
[x0%x2, ..., %u| + |%1x2, ..., x, |, then xo and x; are linearly dependent.

Remark 3.4 Gehér [7] gave an example of a non-strictly convex n-normed space.

Lemma 3.5 Let X and Y be real n-normed spaces. If a mapping f: X — Y preserves
the distance %, for each k € N, then f preserves the distance zero.

Proof Choose X1, ...,%y, y1,-..,¥n € X such that |x; = y1,..., %, — ¥u|| = 0, i.e.,

X1 = Y- .»Xy — ¥y are linearly dependent. Assume that {X,+1 = Vi1« > X0 — Vu}
is a maximum linearly independent group of {x; — y1,...,x, — y,} (m < n). As
dim X > n, we can find a finite sequence of vectors w;, w5, ..., w, € X such that
X1 = @15 oosXm — Wiy Xmae1 — Ym+ls - - -» Xn — Vp are linearly independent. Hence, it
holds that |[x] — W1, ..., Xm — @ms Xint1 = Yimsds -« - %n — Vaul # 0.

We will prove that | f(x1) = f(31), f(x2)=f(¥2)s - s f(x0)=f(yn)| < £ forevery
k € N. Let m = 1. We can find a vector w; € X such that x; — w1, X2 — ¥2,...,Xn — ¥

are linearly independent. Set

(1 - w1)p
2k|x) — w1, %2 = Y2505 X0 — Y

Vi =X+
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for arbitrarily fixed k € N. Then |x; — vi,% = y2,...,%n = ¥u| = & and

[vi—x15,%2 = Y2 s X = Y| = [ %1 — Y1 %2 = 25 - ...
< —x) + (1= 1) %2 = Y25e e Xn — V|

<vi—xu%2 = yase s Xn = Yu| + %1 =y %2 = 2.

Since |[x1 — ¥1,%2 = Y2, -« > Xn — Y| = 0, we get ||v1 — y1,x2 — ¥2,...

Since f preserves the distance p/(2k), we see that

Xn = Yl = %-

1fCGe) = f(n)s f(x2) = f(32)s o5 f(xn) = f () |
<[ fGa) = f(n), f(x2) = f(y2)s - f(xn) = f(n)]
+f ) = fOn)s f(x2) = f(p2)s s f ) = f(y) ]

P P
:—-2: .
2k k
For m > 2, we set

(1 - w1)p

(3.1 V1= X

+
2mkHX1 W Xm — W X+l — Y+l - - -

and v; = 2x; — w; forany i € {2,3,...,m}. Then we have

xi—vi=w;—x and v;—y;=(x;i—w;)+ (xi - i)

foreachie {2,3,...,m}. Since x; — ¥i, Xms1 — Ym1» - -
dent, we get

.» Xy — yn are linearly depen-

(3.2) IeoosXi= Yisewos Xma1 = Ymats o5 Xn = Y = 0,

and hence

H--->xi—wi,-.-,xm+1_}’m+1>--~>xn—)/nH

=X = Viv s Xmsl — Vit - - -

Shevos(xi—@i) + (X = ¥i)se v s Xmal = Vimsds -+ > Xn — Vall
ey X = Wis oo e Xl — Ymtlo -+ > Xn — Y|
Fllee X = Viv o s Xmal — Yt - - -

which together with (3.2) imply that

(33) | eeesVi= Yiseo s X1 = Ymsts oo Xn = Y|

:||...,x,-—w,~,...

»Xm+l = Ym+l> -5 Xn _ynH)

foralli € {2,3,...,m}. By a similar argument, we further obtain

(3.4) ||V1—)/1,.-->xm+1_ym+1a~~-’xn_ynH
= ||v1—x1,...

In view of (3.1), (3.3), and (3.4), we conclude that

(35)  |Vi— Yo t2seees s> Xintl — Yimtlo - -2 Xn — Vn|

>xm+1_ym+l’~-->xn _ynH-

=[x =V, X2 = Woy oo Xy — Wi Xt = Yot - -
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where p; denotes either v; — y; or x; — v; fori € {2,3,...,m}.
Since f preserves the distance p/(2"k) for any k € N, it follows from (3.5) that

1) = FOn)s £(x2) = F(2)s £(x3) = F(33)s -5 f(n) = f(ya)]
< f) = F0)s F(x2) = F(2)seos f(xmar) = FVmat)s f () = f (V)

f(xmar) = f(me1)s -5 f(Xn) —f()’n)H

| FGn) = F0)s F(x2) = F(W2)se s f(xmar) = FVmat)s f (V) = f ()
FGmat) = fGman)s-on fn) = F ()|

] £Ga) = F) f2) = FV2)so o fmar) = fmat)s ) = F (V)
FGoma) = FGmsn)s-on f () = f()|

+ | f(x1) = F0)s fF(2) = F(V2)seo s fFVme1) = F(ime1)s fF(Vin) = F(Im)s
FGoma) = FGmsr)s-on f(xa) = f(a)|

| fOD) = FGs f(2) = F(32)s o fmat) = fGmt)s f0m) = f(ym)»

fxme1) = f(Yma)s -5 f(xn) _f(yn)H
P m P

2k Tk
where k is an arbitrary positive integer. Hence, we conclude that

1fCa) = f()s f(x2) = f(p2)s - f(xn) = f ()] = 0,

which implies that f preserves the distance zero. ]

P
Corollary 3.6  Let X and Y be two real n-normed spaces. Suppose that f preserves ¢

distance for any k € N if and and only if f is an n-isometry.
Proof This is obvious by Lemma 3.5 and Theorem 1.1. ]

Lemma 3.7 Let X and Y be two real n-normed spaces. Suppose that f preserves p
distance and f(%) = Wfor any x, y € X. Then f is an affine n—isometry.

Proof Since f(52) = w forany x, y € X, wehave f(x+m(y-x)) = f(x)+
m(f(y)-f(x)) forall m € N. Indeed, it is clear for m = 0 and m = 1. Suppose that it

is also true forany m > 1. Set p,, = x +m(y—x). Then f(pm+1) = 2f (pm) = f(Pm-1),
which implies that

f(x+ (m+1)(y—x)) :Zf(x+m(y—x)) —f(x+ (m—l)(y—x))
=f(x)+ (m+)(f(y) - f(x)).

Let g(x) = f(x) — f(0). Clearly, for any x € X and all rational numbers r, p, we
have

(3.6) g(rx) =rg(x), g(rx+py)=rg(x)+pg(y).
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p . .
Next we show that g preserves - -n-distance for any integer m € N. Suppose that

|%1 = y1,%2 = ¥25. .. % = yu| = £ for integer m. Then

lm(x1=y1)s%2 = y2re oy Xn =yl = p
and by (3.6), we have

|g(mxi) — g(my1)), g(x2) = g(y2),- -, &(xn) = g(yn)| = p-

Thus [g(x1) = (1), g(x2) = g(32)>-->8(xn) = g(yn)| = . Thus f is an affine
n-isometry from Corollary 3.6. ]

Lemma 3.8 Let X and Y be real n-normed spaces such that dimX > n and Y is
n-strictly convex. If a mapping f: X — Y preserves p and 2p for some p > 0, then f is
an affine n-isometry.

Proof Since f preserves any integer p and 2p for some p > 0, let

ly=x,y2=x....yn— x| =2p.

Set p; = x + 2(y—x), fori = 0,1,2. Then |pr — x,y2 = X,..., yu — x| = 2p and
lpi = pi-1>y2 =%, ..., yu — x| = p for i = 1,2, so we have

1f(pi) = f(pina)s f(y2) = f (%) f(yn) = fF ()] = s
1f(p2) = f(x)s f(y2) = f (%) f(yn) = F ()] = 2p,

and

1f(p2) = f(Po) f(y2) = f(x)s..os f(yn) = fF(X)]
=1£(p2) = f(p1), f(2) = f(x)s., f(yn) = F (%)
+f (1) = F(Po), f(32) = f(x), s f(yn) = F()]-

Since Y is n-strictly convex, then there exists t with f(p2) - f(p1) = t(f(p1)-f(po))
and f is an injective mapping, so ¢ = 1. We show that f(y) - f(5%) = f(55%) - f(x).

Thus we have f(5%) = M and f is an affine n-isometry from Lemma 3.7. W

We generalized Benz’s theorem to n-normed spaces under the condition of
dim X > #n [13, Theorem 11]. In the following we have the same result without the
condition. The proofs of (a)-(e) in [[13], Theorem 11] do not involve the dimension,
so they are viable; however (f) in [[13] Theorem 11] is inviable here. For the conve-
nience of the reader, some proofs in [[13], Theorem 11] are repeated.

Theorem 3.9 Let X and Y be two real linear n-normed spaces and let Y be n-strictly
convex. If a mapping f: X — Y is a function satisfying the conditions that

© Ay =x1eos yn = xal = p implies [ f(y1) = fCa)s s fyn) = f(xn) ] < ps
(D) [y =1 yn = xn| = Np implies | f(y1) = f(x1),-... f(yn) = f(xn)| 2 Np,
forany x1,...,%n, Y1, ..> ¥n € X, some p > 0 and a integer N,

then f is an affine n-isometry.
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Proof (a) We first prove that f preserves the w-p-distance. Let

ly1 = %05+ s yn = %ol = p-

Set p; = xo +i(y1—%x0),i=0,1,...,N. Clearly, we have p; = y1, po = x0, pi — %0 =
i(y1—%0), pi — Pi-1 = Y1 — Xo = p1 — Xo, and

|pi = pi-1>y2 = X05 - o» yu = %ol = |31 = %0, -, yu = %0 = p.
By (0), [ f(pi) = f(pi-1): f(y2) = f(x0),- > f(yn) = f(x0)] < p. By (id),
Np <[ f(pn) = f(x0)>--» f(yn) = f(x0)]

< 21: 1f(pi) = f(Pi1)s f(y2) = f(x0)s -5 f(yn) = f(x0) | < Np.

Thus [ f(pi) = f(pi-1), f(32) = f(x0)s - f(yn) = f(x0) | = p. This implies
1f ) = f(x0)s f(y2) = f(x0)s - f(yn) = f(x0) | = p-

(b) We then prove that f preserves w-Np. Let |y1 — xo,..., ¥n — xo|| = Np. Set
pi = %o+ %(yl - X0),i=0,1,...,N. Clearly, we have px = y1, po = X0, pi — X0 =

5 (n=x0), pi = pic1 = 5 (31— x0) = 1 (pi — Xo),
|pi = pi-1 y2 = %05 yu = %o = [ 71 = %0, y2 = X0, .. yu = X0 = p
and | pn — xo, ..., ¥u — Xo| = Np. By (i),
1f(pi) = f(pi1)> f(y2) = f(x0)s > f(yn) = f(x0) ] < p
By (i),
Np <[ f(pn) = f(x0)s-- s f(yn) = f(x0)]|
gi::|f(pi)_f(pi—l)’f(XZ)_f(x())w'wf(xn)_f(x()” < Np.

This implies | f(y1) = f(x0), f(y2) = f(x0) .-, f(yn) = f(x0)] = Np.

(c) Finally we prove that f preserves w-2p. Next, we discuss (a) and (b) for N > 3.
Let |y —x, 92— x...,yn — x| = 2p. Set p; = x + 2(y—x), for i = 0,1,2,...,N.
Then ||py — %, ¥2 = %,...,¥n — x| = Npand |p; — pict, y2 — %, ..., yn — x| = p for
i=12,...,N. And by (a) and (b) for i = 1,2,..., N, we have

1f(pi) = f(Pia)s f(y2) = f (%) s f(ym) = f(2)] < s
1fCon) = f(%), f(92) = f(x)s-.s f(yn) = ()] 2 Np,

and

) Np<|f(pn) = f(x), f(2) = f(x)s- s f(yn) = f(X) ]
< Zl |f(pneri) = f(pn-i)s f(92) = f (%), f(yn) = ()] < Np.
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We obtain

1f(p2) = f(po)s f(y2) = f(x)s-., f(ym) = f(x)]
=1£(p2) = f(p1) f(y2) = f(x)s-. f(ym) = f(x)
+[f (1) = F(Po) f(2) = f (%) os f(ym) = F ()] = 2p.

Thus, [ f(y) = f(x), f(y2) = (%), f(yn) = F(2)] = 2p.

(d) Since Y is n-strictly convex, there exists t with

F(p2) = f(p1) = t(f(p1) = f(po))s
because ||p; — pi-1, Y2 = X,..., yu — x| = pfori=1,2,..., N. Thus (+) implies that

1f (o) = f(pica)s f(32) = f (%) f () = f () =

and f is an injective mapping, so t = 1. We show that

fO-1(52) = (5) - ).

Thus we have f (%) = W, which implies f is an affine n-isometry from
Lemma 3.7. u
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